Misc files
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

usbconfig.h 18KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. /* Name: usbconfig.h
  2. * Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
  3. * Author: Christian Starkjohann
  4. * Creation Date: 2005-04-01
  5. * Tabsize: 4
  6. * Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
  7. * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
  8. * This Revision: $Id: usbconfig-prototype.h 785 2010-05-30 17:57:07Z cs $
  9. */
  10. #ifndef __usbconfig_h_included__
  11. #define __usbconfig_h_included__
  12. /*
  13. General Description:
  14. This file is an example configuration (with inline documentation) for the USB
  15. driver. It configures V-USB for USB D+ connected to Port D bit 2 (which is
  16. also hardware interrupt 0 on many devices) and USB D- to Port D bit 4. You may
  17. wire the lines to any other port, as long as D+ is also wired to INT0 (or any
  18. other hardware interrupt, as long as it is the highest level interrupt, see
  19. section at the end of this file).
  20. */
  21. /* ---------------------------- Hardware Config ---------------------------- */
  22. #define USB_CFG_IOPORTNAME D
  23. /* This is the port where the USB bus is connected. When you configure it to
  24. * "B", the registers PORTB, PINB and DDRB will be used.
  25. */
  26. #define USB_CFG_DMINUS_BIT 4
  27. /* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
  28. * This may be any bit in the port.
  29. */
  30. #define USB_CFG_DPLUS_BIT 2
  31. /* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
  32. * This may be any bit in the port. Please note that D+ must also be connected
  33. * to interrupt pin INT0! [You can also use other interrupts, see section
  34. * "Optional MCU Description" below, or you can connect D- to the interrupt, as
  35. * it is required if you use the USB_COUNT_SOF feature. If you use D- for the
  36. * interrupt, the USB interrupt will also be triggered at Start-Of-Frame
  37. * markers every millisecond.]
  38. */
  39. #define USB_CFG_CLOCK_KHZ (F_CPU/1000)
  40. /* Clock rate of the AVR in kHz. Legal values are 12000, 12800, 15000, 16000,
  41. * 16500, 18000 and 20000. The 12.8 MHz and 16.5 MHz versions of the code
  42. * require no crystal, they tolerate +/- 1% deviation from the nominal
  43. * frequency. All other rates require a precision of 2000 ppm and thus a
  44. * crystal!
  45. * Since F_CPU should be defined to your actual clock rate anyway, you should
  46. * not need to modify this setting.
  47. */
  48. #define USB_CFG_CHECK_CRC 0
  49. /* Define this to 1 if you want that the driver checks integrity of incoming
  50. * data packets (CRC checks). CRC checks cost quite a bit of code size and are
  51. * currently only available for 18 MHz crystal clock. You must choose
  52. * USB_CFG_CLOCK_KHZ = 18000 if you enable this option.
  53. */
  54. /* ----------------------- Optional Hardware Config ------------------------ */
  55. /* #define USB_CFG_PULLUP_IOPORTNAME D */
  56. /* If you connect the 1.5k pullup resistor from D- to a port pin instead of
  57. * V+, you can connect and disconnect the device from firmware by calling
  58. * the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
  59. * This constant defines the port on which the pullup resistor is connected.
  60. */
  61. /* #define USB_CFG_PULLUP_BIT 4 */
  62. /* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
  63. * above) where the 1.5k pullup resistor is connected. See description
  64. * above for details.
  65. */
  66. /* --------------------------- Functional Range ---------------------------- */
  67. #define USB_CFG_HAVE_INTRIN_ENDPOINT 1
  68. /* Define this to 1 if you want to compile a version with two endpoints: The
  69. * default control endpoint 0 and an interrupt-in endpoint (any other endpoint
  70. * number).
  71. */
  72. #define USB_CFG_HAVE_INTRIN_ENDPOINT3 1
  73. /* Define this to 1 if you want to compile a version with three endpoints: The
  74. * default control endpoint 0, an interrupt-in endpoint 3 (or the number
  75. * configured below) and a catch-all default interrupt-in endpoint as above.
  76. * You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
  77. */
  78. #define USB_CFG_EP3_NUMBER 3
  79. /* If the so-called endpoint 3 is used, it can now be configured to any other
  80. * endpoint number (except 0) with this macro. Default if undefined is 3.
  81. */
  82. /* #define USB_INITIAL_DATATOKEN USBPID_DATA1 */
  83. /* The above macro defines the startup condition for data toggling on the
  84. * interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
  85. * Since the token is toggled BEFORE sending any data, the first packet is
  86. * sent with the oposite value of this configuration!
  87. */
  88. #define USB_CFG_IMPLEMENT_HALT 0
  89. /* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
  90. * for endpoint 1 (interrupt endpoint). Although you may not need this feature,
  91. * it is required by the standard. We have made it a config option because it
  92. * bloats the code considerably.
  93. */
  94. #define USB_CFG_SUPPRESS_INTR_CODE 0
  95. /* Define this to 1 if you want to declare interrupt-in endpoints, but don't
  96. * want to send any data over them. If this macro is defined to 1, functions
  97. * usbSetInterrupt() and usbSetInterrupt3() are omitted. This is useful if
  98. * you need the interrupt-in endpoints in order to comply to an interface
  99. * (e.g. HID), but never want to send any data. This option saves a couple
  100. * of bytes in flash memory and the transmit buffers in RAM.
  101. */
  102. #define USB_CFG_INTR_POLL_INTERVAL 10
  103. /* If you compile a version with endpoint 1 (interrupt-in), this is the poll
  104. * interval. The value is in milliseconds and must not be less than 10 ms for
  105. * low speed devices.
  106. */
  107. #define USB_CFG_IS_SELF_POWERED 0
  108. /* Define this to 1 if the device has its own power supply. Set it to 0 if the
  109. * device is powered from the USB bus.
  110. */
  111. #define USB_CFG_MAX_BUS_POWER 100
  112. /* Set this variable to the maximum USB bus power consumption of your device.
  113. * The value is in milliamperes. [It will be divided by two since USB
  114. * communicates power requirements in units of 2 mA.]
  115. */
  116. #define USB_CFG_IMPLEMENT_FN_WRITE 1
  117. /* Set this to 1 if you want usbFunctionWrite() to be called for control-out
  118. * transfers. Set it to 0 if you don't need it and want to save a couple of
  119. * bytes.
  120. */
  121. #define USB_CFG_IMPLEMENT_FN_READ 0
  122. /* Set this to 1 if you need to send control replies which are generated
  123. * "on the fly" when usbFunctionRead() is called. If you only want to send
  124. * data from a static buffer, set it to 0 and return the data from
  125. * usbFunctionSetup(). This saves a couple of bytes.
  126. */
  127. #define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
  128. /* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
  129. * You must implement the function usbFunctionWriteOut() which receives all
  130. * interrupt/bulk data sent to any endpoint other than 0. The endpoint number
  131. * can be found in 'usbRxToken'.
  132. */
  133. #define USB_CFG_HAVE_FLOWCONTROL 0
  134. /* Define this to 1 if you want flowcontrol over USB data. See the definition
  135. * of the macros usbDisableAllRequests() and usbEnableAllRequests() in
  136. * usbdrv.h.
  137. */
  138. #define USB_CFG_DRIVER_FLASH_PAGE 0
  139. /* If the device has more than 64 kBytes of flash, define this to the 64 k page
  140. * where the driver's constants (descriptors) are located. Or in other words:
  141. * Define this to 1 for boot loaders on the ATMega128.
  142. */
  143. #define USB_CFG_LONG_TRANSFERS 0
  144. /* Define this to 1 if you want to send/receive blocks of more than 254 bytes
  145. * in a single control-in or control-out transfer. Note that the capability
  146. * for long transfers increases the driver size.
  147. */
  148. /* #define USB_RX_USER_HOOK(data, len) if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
  149. /* This macro is a hook if you want to do unconventional things. If it is
  150. * defined, it's inserted at the beginning of received message processing.
  151. * If you eat the received message and don't want default processing to
  152. * proceed, do a return after doing your things. One possible application
  153. * (besides debugging) is to flash a status LED on each packet.
  154. */
  155. /* #define USB_RESET_HOOK(resetStarts) if(!resetStarts){hadUsbReset();} */
  156. /* http://codeandlife.com/2012/02/22/v-usb-with-attiny45-attiny85-without-a-crystal/ */
  157. #ifndef __ASSEMBLER__
  158. /* extern void hadUsbReset(void); // define the function for usbdrv.c */
  159. #endif
  160. /* This macro is a hook if you need to know when an USB RESET occurs. It has
  161. * one parameter which distinguishes between the start of RESET state and its
  162. * end.
  163. */
  164. /* #define USB_SET_ADDRESS_HOOK() hadAddressAssigned(); */
  165. /* This macro (if defined) is executed when a USB SET_ADDRESS request was
  166. * received.
  167. */
  168. #define USB_COUNT_SOF 0
  169. /* define this macro to 1 if you need the global variable "usbSofCount" which
  170. * counts SOF packets. This feature requires that the hardware interrupt is
  171. * connected to D- instead of D+.
  172. */
  173. /* #ifdef __ASSEMBLER__
  174. * macro myAssemblerMacro
  175. * in YL, TCNT0
  176. * sts timer0Snapshot, YL
  177. * endm
  178. * #endif
  179. * #define USB_SOF_HOOK myAssemblerMacro
  180. * This macro (if defined) is executed in the assembler module when a
  181. * Start Of Frame condition is detected. It is recommended to define it to
  182. * the name of an assembler macro which is defined here as well so that more
  183. * than one assembler instruction can be used. The macro may use the register
  184. * YL and modify SREG. If it lasts longer than a couple of cycles, USB messages
  185. * immediately after an SOF pulse may be lost and must be retried by the host.
  186. * What can you do with this hook? Since the SOF signal occurs exactly every
  187. * 1 ms (unless the host is in sleep mode), you can use it to tune OSCCAL in
  188. * designs running on the internal RC oscillator.
  189. * Please note that Start Of Frame detection works only if D- is wired to the
  190. * interrupt, not D+. THIS IS DIFFERENT THAN MOST EXAMPLES!
  191. */
  192. #define USB_CFG_CHECK_DATA_TOGGLING 0
  193. /* define this macro to 1 if you want to filter out duplicate data packets
  194. * sent by the host. Duplicates occur only as a consequence of communication
  195. * errors, when the host does not receive an ACK. Please note that you need to
  196. * implement the filtering yourself in usbFunctionWriteOut() and
  197. * usbFunctionWrite(). Use the global usbCurrentDataToken and a static variable
  198. * for each control- and out-endpoint to check for duplicate packets.
  199. */
  200. #define USB_CFG_HAVE_MEASURE_FRAME_LENGTH 0
  201. /* define this macro to 1 if you want the function usbMeasureFrameLength()
  202. * compiled in. This function can be used to calibrate the AVR's RC oscillator.
  203. */
  204. #define USB_USE_FAST_CRC 0
  205. /* The assembler module has two implementations for the CRC algorithm. One is
  206. * faster, the other is smaller. This CRC routine is only used for transmitted
  207. * messages where timing is not critical. The faster routine needs 31 cycles
  208. * per byte while the smaller one needs 61 to 69 cycles. The faster routine
  209. * may be worth the 32 bytes bigger code size if you transmit lots of data and
  210. * run the AVR close to its limit.
  211. */
  212. /* -------------------------- Device Description --------------------------- */
  213. #define USB_CFG_VENDOR_ID (VENDOR_ID & 0xFF), ((VENDOR_ID >> 8) & 0xFF)
  214. /* USB vendor ID for the device, low byte first. If you have registered your
  215. * own Vendor ID, define it here. Otherwise you may use one of obdev's free
  216. * shared VID/PID pairs. Be sure to read USB-IDs-for-free.txt for rules!
  217. * *** IMPORTANT NOTE ***
  218. * This template uses obdev's shared VID/PID pair for Vendor Class devices
  219. * with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
  220. * the implications!
  221. */
  222. #define USB_CFG_DEVICE_ID (PRODUCT_ID & 0xFF), ((PRODUCT_ID >> 8) & 0xFF)
  223. /* This is the ID of the product, low byte first. It is interpreted in the
  224. * scope of the vendor ID. If you have registered your own VID with usb.org
  225. * or if you have licensed a PID from somebody else, define it here. Otherwise
  226. * you may use one of obdev's free shared VID/PID pairs. See the file
  227. * USB-IDs-for-free.txt for details!
  228. * *** IMPORTANT NOTE ***
  229. * This template uses obdev's shared VID/PID pair for Vendor Class devices
  230. * with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
  231. * the implications!
  232. */
  233. #define USB_CFG_DEVICE_VERSION 0x00, 0x01
  234. /* Version number of the device: Minor number first, then major number.
  235. */
  236. #define USB_CFG_VENDOR_NAME 'd', 'i', '0', 'i', 'b'
  237. #define USB_CFG_VENDOR_NAME_LEN 5
  238. /* These two values define the vendor name returned by the USB device. The name
  239. * must be given as a list of characters under single quotes. The characters
  240. * are interpreted as Unicode (UTF-16) entities.
  241. * If you don't want a vendor name string, undefine these macros.
  242. * ALWAYS define a vendor name containing your Internet domain name if you use
  243. * obdev's free shared VID/PID pair. See the file USB-IDs-for-free.txt for
  244. * details.
  245. */
  246. #define USB_CFG_DEVICE_NAME 'g', 'h', 'e', 'r', 'k', 'i', 'n', '3', '2'
  247. #define USB_CFG_DEVICE_NAME_LEN 9
  248. /* Same as above for the device name. If you don't want a device name, undefine
  249. * the macros. See the file USB-IDs-for-free.txt before you assign a name if
  250. * you use a shared VID/PID.
  251. */
  252. /*#define USB_CFG_SERIAL_NUMBER 'N', 'o', 'n', 'e' */
  253. /*#define USB_CFG_SERIAL_NUMBER_LEN 0 */
  254. /* Same as above for the serial number. If you don't want a serial number,
  255. * undefine the macros.
  256. * It may be useful to provide the serial number through other means than at
  257. * compile time. See the section about descriptor properties below for how
  258. * to fine tune control over USB descriptors such as the string descriptor
  259. * for the serial number.
  260. */
  261. #define USB_CFG_DEVICE_CLASS 0
  262. #define USB_CFG_DEVICE_SUBCLASS 0
  263. /* See USB specification if you want to conform to an existing device class.
  264. * Class 0xff is "vendor specific".
  265. */
  266. #define USB_CFG_INTERFACE_CLASS 3 /* HID */
  267. #define USB_CFG_INTERFACE_SUBCLASS 1 /* Boot */
  268. #define USB_CFG_INTERFACE_PROTOCOL 1 /* Keyboard */
  269. /* See USB specification if you want to conform to an existing device class or
  270. * protocol. The following classes must be set at interface level:
  271. * HID class is 3, no subclass and protocol required (but may be useful!)
  272. * CDC class is 2, use subclass 2 and protocol 1 for ACM
  273. */
  274. #define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 0
  275. /* Define this to the length of the HID report descriptor, if you implement
  276. * an HID device. Otherwise don't define it or define it to 0.
  277. * If you use this define, you must add a PROGMEM character array named
  278. * "usbHidReportDescriptor" to your code which contains the report descriptor.
  279. * Don't forget to keep the array and this define in sync!
  280. */
  281. /* #define USB_PUBLIC static */
  282. /* Use the define above if you #include usbdrv.c instead of linking against it.
  283. * This technique saves a couple of bytes in flash memory.
  284. */
  285. /* ------------------- Fine Control over USB Descriptors ------------------- */
  286. /* If you don't want to use the driver's default USB descriptors, you can
  287. * provide our own. These can be provided as (1) fixed length static data in
  288. * flash memory, (2) fixed length static data in RAM or (3) dynamically at
  289. * runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
  290. * information about this function.
  291. * Descriptor handling is configured through the descriptor's properties. If
  292. * no properties are defined or if they are 0, the default descriptor is used.
  293. * Possible properties are:
  294. * + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
  295. * at runtime via usbFunctionDescriptor(). If the usbMsgPtr mechanism is
  296. * used, the data is in FLASH by default. Add property USB_PROP_IS_RAM if
  297. * you want RAM pointers.
  298. * + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
  299. * in static memory is in RAM, not in flash memory.
  300. * + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
  301. * the driver must know the descriptor's length. The descriptor itself is
  302. * found at the address of a well known identifier (see below).
  303. * List of static descriptor names (must be declared PROGMEM if in flash):
  304. * char usbDescriptorDevice[];
  305. * char usbDescriptorConfiguration[];
  306. * char usbDescriptorHidReport[];
  307. * char usbDescriptorString0[];
  308. * int usbDescriptorStringVendor[];
  309. * int usbDescriptorStringDevice[];
  310. * int usbDescriptorStringSerialNumber[];
  311. * Other descriptors can't be provided statically, they must be provided
  312. * dynamically at runtime.
  313. *
  314. * Descriptor properties are or-ed or added together, e.g.:
  315. * #define USB_CFG_DESCR_PROPS_DEVICE (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
  316. *
  317. * The following descriptors are defined:
  318. * USB_CFG_DESCR_PROPS_DEVICE
  319. * USB_CFG_DESCR_PROPS_CONFIGURATION
  320. * USB_CFG_DESCR_PROPS_STRINGS
  321. * USB_CFG_DESCR_PROPS_STRING_0
  322. * USB_CFG_DESCR_PROPS_STRING_VENDOR
  323. * USB_CFG_DESCR_PROPS_STRING_PRODUCT
  324. * USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
  325. * USB_CFG_DESCR_PROPS_HID
  326. * USB_CFG_DESCR_PROPS_HID_REPORT
  327. * USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
  328. *
  329. * Note about string descriptors: String descriptors are not just strings, they
  330. * are Unicode strings prefixed with a 2 byte header. Example:
  331. * int serialNumberDescriptor[] = {
  332. * USB_STRING_DESCRIPTOR_HEADER(6),
  333. * 'S', 'e', 'r', 'i', 'a', 'l'
  334. * };
  335. */
  336. #define USB_CFG_DESCR_PROPS_DEVICE 0
  337. #define USB_CFG_DESCR_PROPS_CONFIGURATION USB_PROP_IS_DYNAMIC
  338. //#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
  339. #define USB_CFG_DESCR_PROPS_STRINGS 0
  340. #define USB_CFG_DESCR_PROPS_STRING_0 0
  341. #define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
  342. #define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
  343. #define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
  344. //#define USB_CFG_DESCR_PROPS_HID USB_PROP_IS_DYNAMIC
  345. #define USB_CFG_DESCR_PROPS_HID 0
  346. #define USB_CFG_DESCR_PROPS_HID_REPORT USB_PROP_IS_DYNAMIC
  347. //#define USB_CFG_DESCR_PROPS_HID_REPORT 0
  348. #define USB_CFG_DESCR_PROPS_UNKNOWN 0
  349. /* ----------------------- Optional MCU Description ------------------------ */
  350. /* The following configurations have working defaults in usbdrv.h. You
  351. * usually don't need to set them explicitly. Only if you want to run
  352. * the driver on a device which is not yet supported or with a compiler
  353. * which is not fully supported (such as IAR C) or if you use a differnt
  354. * interrupt than INT0, you may have to define some of these.
  355. */
  356. /* #define USB_INTR_CFG MCUCR */
  357. /* #define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) */
  358. /* #define USB_INTR_CFG_CLR 0 */
  359. /* #define USB_INTR_ENABLE GIMSK */
  360. /* #define USB_INTR_ENABLE_BIT INT0 */
  361. /* #define USB_INTR_PENDING GIFR */
  362. /* #define USB_INTR_PENDING_BIT INTF0 */
  363. /* #define USB_INTR_VECTOR INT0_vect */
  364. #endif /* __usbconfig_h_included__ */