kolea keyboard matrix
This commit is contained in:
parent
f736088a1b
commit
c65ece96fb
484
kolea.ino
Normal file
484
kolea.ino
Normal file
@ -0,0 +1,484 @@
|
||||
/**
|
||||
* StenoFW is a firmware for Stenoboard keyboards.
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* Copyright 2014 Emanuele Caruso. See LICENSE.txt for details.
|
||||
*/
|
||||
|
||||
/**
|
||||
* Matrix modified for the Kolea keyboard.
|
||||
*/
|
||||
|
||||
#define ROWS 4
|
||||
#define COLS 11
|
||||
|
||||
/* The following matrix is shown here for reference only.
|
||||
char keys[ROWS][COLS] = {
|
||||
{' ', '2', '3', '4', '5', ' ', '7', '8', '9', '0', ' '},
|
||||
{' ', 'q', 'w', 'e', 'r', 't', 'u', 'i', 'o', 'p', '['},
|
||||
{' ', 'a', 's', 'd', 'f', 'g', 'j', 'k', 'l', ';', '\''},
|
||||
{' ', ' ', ' ', 'c', 'v', ' ', 'n', 'm', ' ', ' ', ' '}
|
||||
};*/
|
||||
|
||||
// Configuration variables
|
||||
int rowPins[ROWS] = {4, 5, 6, 7};
|
||||
int colPins[COLS] = {8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20};
|
||||
int ledPin = 3;
|
||||
long debounceMillis = 20;
|
||||
|
||||
// Keyboard state variables
|
||||
boolean isStrokeInProgress = false;
|
||||
boolean currentChord[ROWS][COLS];
|
||||
boolean currentKeyReadings[ROWS][COLS];
|
||||
boolean debouncingKeys[ROWS][COLS];
|
||||
unsigned long debouncingMicros[ROWS][COLS];
|
||||
|
||||
// Other state variables
|
||||
int ledIntensity = 1; // Min 0 - Max 255
|
||||
|
||||
// Protocol state
|
||||
#define GEMINI 0
|
||||
#define TXBOLT 1
|
||||
#define NKRO 2
|
||||
int protocol = GEMINI;
|
||||
|
||||
// This is called when the keyboard is connected
|
||||
void setup() {
|
||||
Keyboard.begin();
|
||||
Serial.begin(9600);
|
||||
for (int i = 0; i < COLS; i++)
|
||||
pinMode(colPins[i], INPUT_PULLUP);
|
||||
for (int i = 0; i < ROWS; i++) {
|
||||
pinMode(rowPins[i], OUTPUT);
|
||||
digitalWrite(rowPins[i], HIGH);
|
||||
}
|
||||
pinMode(ledPin, OUTPUT);
|
||||
analogWrite(ledPin, ledIntensity);
|
||||
clearBooleanMatrixes();
|
||||
}
|
||||
|
||||
// Read key states and handle all chord events
|
||||
void loop() {
|
||||
readKeys();
|
||||
|
||||
boolean isAnyKeyPressed = true;
|
||||
|
||||
// If stroke is not in progress, check debouncing keys
|
||||
if (!isStrokeInProgress) {
|
||||
checkAlreadyDebouncingKeys();
|
||||
if (!isStrokeInProgress) checkNewDebouncingKeys();
|
||||
}
|
||||
|
||||
// If any key was pressed, record all pressed keys
|
||||
if (isStrokeInProgress) {
|
||||
isAnyKeyPressed = recordCurrentKeys();
|
||||
}
|
||||
|
||||
// If all keys have been released, send the chord and reset global state
|
||||
if (!isAnyKeyPressed) {
|
||||
sendChord();
|
||||
clearBooleanMatrixes();
|
||||
isStrokeInProgress = false;
|
||||
}
|
||||
}
|
||||
|
||||
// Record all pressed keys into current chord. Return false if no key is currently pressed
|
||||
boolean recordCurrentKeys() {
|
||||
boolean isAnyKeyPressed = false;
|
||||
for (int i = 0; i < ROWS; i++) {
|
||||
for (int j = 0; j < COLS; j++) {
|
||||
if (currentKeyReadings[i][j] == true) {
|
||||
currentChord[i][j] = true;
|
||||
isAnyKeyPressed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return isAnyKeyPressed;
|
||||
}
|
||||
|
||||
// If a key is pressed, add it to debouncing keys and record the time
|
||||
void checkNewDebouncingKeys() {
|
||||
for (int i = 0; i < ROWS; i++) {
|
||||
for (int j = 0; j < COLS; j++) {
|
||||
if (currentKeyReadings[i][j] == true && debouncingKeys[i][j] == false) {
|
||||
debouncingKeys[i][j] = true;
|
||||
debouncingMicros[i][j] = micros();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check already debouncing keys. If a key debounces, start chord recording.
|
||||
void checkAlreadyDebouncingKeys() {
|
||||
for (int i = 0; i < ROWS; i++) {
|
||||
for (int j = 0; j < COLS; j++) {
|
||||
if (debouncingKeys[i][j] == true && currentKeyReadings[i][j] == false) {
|
||||
debouncingKeys[i][j] = false;
|
||||
continue;
|
||||
}
|
||||
if (debouncingKeys[i][j] == true && micros() - debouncingMicros[i][j] / 1000 > debounceMillis) {
|
||||
isStrokeInProgress = true;
|
||||
currentChord[i][j] = true;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Set all values of all boolean matrixes to false
|
||||
void clearBooleanMatrixes() {
|
||||
clearBooleanMatrix(currentChord, false);
|
||||
clearBooleanMatrix(currentKeyReadings, false);
|
||||
clearBooleanMatrix(debouncingKeys, false);
|
||||
}
|
||||
|
||||
// Set all values of the passed matrix to the given value
|
||||
void clearBooleanMatrix(boolean booleanMatrix[][COLS], boolean value) {
|
||||
for (int i = 0; i < ROWS; i++) {
|
||||
for (int j = 0; j < COLS; j++) {
|
||||
booleanMatrix[i][j] = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Read all keys
|
||||
void readKeys() {
|
||||
for (int i = 0; i < ROWS; i++) {
|
||||
digitalWrite(rowPins[i], LOW);
|
||||
for (int j = 0; j < COLS; j++)
|
||||
currentKeyReadings[i][j] = digitalRead(colPins[j]) == LOW ? true : false;
|
||||
digitalWrite(rowPins[i], HIGH);
|
||||
}
|
||||
}
|
||||
|
||||
// Send current chord using NKRO Keyboard emulation
|
||||
void sendChordNkro() {
|
||||
// QWERTY mapping
|
||||
char qwertyMapping[ROWS][COLS] = {
|
||||
{' ', '2', '3', '4', '5', ' ', '7', '8', '9', '0', ' '},
|
||||
{' ', 'q', 'w', 'e', 'r', 't', 'u', 'i', 'o', 'p', '['},
|
||||
{' ', 'a', 's', 'd', 'f', 'g', 'j', 'k', 'l', ';', '\''},
|
||||
{' ', ' ', ' ', 'c', 'v', ' ', 'n', 'm', ' ', ' ', ' '}
|
||||
};
|
||||
int keyCounter = 0;
|
||||
char qwertyKeys[ROWS * COLS];
|
||||
boolean firstKeyPressed = false;
|
||||
|
||||
// Calculate qwerty keys array using qwertyMappings[][]
|
||||
for (int i = 0; i < ROWS; i++)
|
||||
for (int j = 0; j < COLS; j++)
|
||||
if (currentChord[i][j]) {
|
||||
qwertyKeys[keyCounter] = qwertyMapping[i][j];
|
||||
keyCounter++;
|
||||
}
|
||||
// Emulate keyboard key presses
|
||||
for (int i = 0; i < keyCounter; i++) {
|
||||
if (qwertyKeys[i] != ' ') {
|
||||
Keyboard.press(qwertyKeys[i]);
|
||||
if (!firstKeyPressed) firstKeyPressed = true;
|
||||
else Keyboard.release(qwertyKeys[i]);
|
||||
}
|
||||
}
|
||||
Keyboard.releaseAll();
|
||||
}
|
||||
|
||||
// Send current chord over serial using the Gemini protocol.
|
||||
void sendChordGemini() {
|
||||
// Initialize chord bytes
|
||||
byte chordBytes[] = {B10000000, B0, B0, B0, B0, B0};
|
||||
|
||||
// Byte 0
|
||||
//#
|
||||
if (currentChord[0][1] || currentChord[0][2] || currentChord[0][3] || currentChord[0][4] || currentChord[0][6] || currentChord[0][7] || currentChord[0][8] || currentChord[0][9]) {
|
||||
chordBytes[0] = B10000001;
|
||||
}
|
||||
|
||||
// Byte 1
|
||||
//S
|
||||
if (currentChord[1][1] || currentChord[2][1]) {
|
||||
chordBytes[1] += B01000000;
|
||||
}
|
||||
//T
|
||||
if (currentChord[1][2]) {
|
||||
chordBytes[1] += B00010000;
|
||||
}
|
||||
//K
|
||||
if (currentChord[2][2]) {
|
||||
chordBytes[1] += B00001000;
|
||||
}
|
||||
//P
|
||||
if (currentChord[1][3]) {
|
||||
chordBytes[1] += B00000100;
|
||||
}
|
||||
//W
|
||||
if (currentChord[2][3]) {
|
||||
chordBytes[1] += B00000010;
|
||||
}
|
||||
//H
|
||||
if (currentChord[1][4]) {
|
||||
chordBytes[1] += B00000001;
|
||||
}
|
||||
|
||||
// Byte 2
|
||||
//R
|
||||
if (currentChord[2][4]) {
|
||||
chordBytes[2] += B01000000;
|
||||
}
|
||||
//W
|
||||
if (currentChord[3][3]) {
|
||||
chordBytes[2] += B00100000;
|
||||
}
|
||||
//O
|
||||
if (currentChord[3][4]) {
|
||||
chordBytes[2] += B00010000;
|
||||
}
|
||||
//*
|
||||
if (currentChord[1][5] || currentChord[2][5]) {
|
||||
chordBytes[2] += B00001000;
|
||||
}
|
||||
|
||||
// Byte 3
|
||||
//E
|
||||
if (currentChord[3][6]) {
|
||||
chordBytes[3] += B00001000;
|
||||
}
|
||||
//U
|
||||
if (currentChord[3][7]) {
|
||||
chordBytes[3] += B00000100;
|
||||
}
|
||||
//F
|
||||
if (currentChord[1][6]) {
|
||||
chordBytes[3] += B00000010;
|
||||
}
|
||||
//R
|
||||
if (currentChord[2][6]) {
|
||||
chordBytes[3] += B00000001;
|
||||
}
|
||||
|
||||
// Byte 4
|
||||
//P
|
||||
if (currentChord[1][7]) {
|
||||
chordBytes[4] += B01000000;
|
||||
}
|
||||
//B
|
||||
if (currentChord[2][7]) {
|
||||
chordBytes[4] += B00100000;
|
||||
}
|
||||
//L
|
||||
if (currentChord[1][8]) {
|
||||
chordBytes[4] += B00010000;
|
||||
}
|
||||
//G
|
||||
if (currentChord[2][8]) {
|
||||
chordBytes[4] += B00001000;
|
||||
}
|
||||
//T
|
||||
if (currentChord[1][9]) {
|
||||
chordBytes[4] += B00000100;
|
||||
}
|
||||
//S
|
||||
if (currentChord[2][9]) {
|
||||
chordBytes[4] += B00000010;
|
||||
}
|
||||
//D
|
||||
if (currentChord[1][10]) {
|
||||
chordBytes[4] += B00000001;
|
||||
}
|
||||
|
||||
// Byte 5
|
||||
//Z
|
||||
if (currentChord[2][10]) {
|
||||
chordBytes[5] += B00000001;
|
||||
}
|
||||
|
||||
// Send chord bytes over serial
|
||||
for (int i = 0; i < 6; i++) {
|
||||
Serial.write(chordBytes[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void sendChordTxBolt() {
|
||||
byte chordBytes[] = {B0, B0, B0, B0, B0};
|
||||
int index = 0;
|
||||
|
||||
// TX Bolt uses a variable length packet. Only those bytes that have active
|
||||
// keys are sent. The header bytes indicate which keys are being sent. They
|
||||
// must be sent in order. It is a good idea to send a zero after every packet.
|
||||
// 00XXXXXX 01XXXXXX 10XXXXXX 110XXXXX
|
||||
// HWPKTS UE*OAR GLBPRF #ZDST
|
||||
|
||||
// byte 1
|
||||
// S-
|
||||
if (currentChord[1][1] || currentChord[2][1]) chordBytes[index] |= B00000001;
|
||||
// T-
|
||||
if (currentChord[1][2]) chordBytes[index] |= B00000010;
|
||||
// K-
|
||||
if (currentChord[2][2]) chordBytes[index] |= B00000100;
|
||||
// P-
|
||||
if (currentChord[1][3]) chordBytes[index] |= B00001000;
|
||||
// W-
|
||||
if (currentChord[2][3]) chordBytes[index] |= B00010000;
|
||||
// H-
|
||||
if (currentChord[1][4]) chordBytes[index] |= B00100000;
|
||||
// Increment the index if the current byte has any keys set.
|
||||
if (chordBytes[index]) index++;
|
||||
|
||||
// byte 2
|
||||
// R-
|
||||
if (currentChord[2][4]) chordBytes[index] |= B01000001;
|
||||
// A
|
||||
if (currentChord[3][3]) chordBytes[index] |= B01000010;
|
||||
// O
|
||||
if (currentChord[3][4]) chordBytes[index] |= B01000100;
|
||||
// *
|
||||
if (currentChord[1][5] || currentChord[2][5]) chordBytes[index] |= B01001000;
|
||||
// E
|
||||
if (currentChord[3][6]) chordBytes[index] |= B01010000;
|
||||
// U
|
||||
if (currentChord[3][7]) chordBytes[index] |= B01100000;
|
||||
// Increment the index if the current byte has any keys set.
|
||||
if (chordBytes[index]) index++;
|
||||
|
||||
// byte 3
|
||||
// -F
|
||||
if (currentChord[1][6]) chordBytes[index] |= B10000001;
|
||||
// -R
|
||||
if (currentChord[2][6]) chordBytes[index] |= B10000010;
|
||||
// -P
|
||||
if (currentChord[1][7]) chordBytes[index] |= B10000100;
|
||||
// -B
|
||||
if (currentChord[2][7]) chordBytes[index] |= B10001000;
|
||||
// -L
|
||||
if (currentChord[1][8]) chordBytes[index] |= B10010000;
|
||||
// -G
|
||||
if (currentChord[2][8]) chordBytes[index] |= B10100000;
|
||||
// Increment the index if the current byte has any keys set.
|
||||
if (chordBytes[index]) index++;
|
||||
|
||||
// byte 4
|
||||
// -T
|
||||
if (currentChord[1][9]) chordBytes[index] |= B11000001;
|
||||
// -S
|
||||
if (currentChord[2][9]) chordBytes[index] |= B11000010;
|
||||
// -D
|
||||
if (currentChord[1][10]) chordBytes[index] |= B11000100;
|
||||
// -Z
|
||||
if (currentChord[2][10]) chordBytes[index] |= B11001000;
|
||||
// #
|
||||
if (currentChord[0][1] || currentChord[0][2] || currentChord[0][3] || currentChord[0][4] || currentChord[0][6] || currentChord[0][7] || currentChord[0][8] || currentChord[0][9]) chordBytes[index] |= B11010000;
|
||||
// Increment the index if the current byte has any keys set.
|
||||
if (chordBytes[index]) index++;
|
||||
|
||||
// Now we have index bytes followed by a zero byte where 0 < index <= 4.
|
||||
index++; // Increment index to include the trailing zero byte.
|
||||
for (int i = 0; i < index; i++) {
|
||||
Serial.write(chordBytes[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Send the chord using the current protocol. If there are fn keys
|
||||
// pressed, delegate to the corresponding function instead.
|
||||
// In future versions, there should also be a way to handle fn keys presses before
|
||||
// they are released, eg. for mouse emulation functionality or custom key presses.
|
||||
void sendChord() {
|
||||
// If fn keys have been pressed, delegate to corresponding method and return
|
||||
if (currentChord[1][0] && currentChord[2][0]) {
|
||||
fn1fn2();
|
||||
return;
|
||||
} else if (currentChord[1][0]) {
|
||||
fn1();
|
||||
return;
|
||||
} else if (currentChord[2][0]) {
|
||||
fn2();
|
||||
return;
|
||||
}
|
||||
|
||||
if (protocol == NKRO) {
|
||||
sendChordNkro();
|
||||
} else if (protocol == GEMINI) {
|
||||
sendChordGemini();
|
||||
} else {
|
||||
sendChordTxBolt();
|
||||
}
|
||||
}
|
||||
|
||||
// Fn1 functions
|
||||
//
|
||||
// This function is called when "fn1" key has been pressed, but not "fn2".
|
||||
// Tip: maybe it is better to avoid using "fn1" key alone in order to avoid
|
||||
// accidental activation?
|
||||
//
|
||||
// Current functions:
|
||||
// PH-PB -> Set NKRO Keyboard emulation mode
|
||||
// PH-G -> Set Gemini PR protocol mode
|
||||
// PH-B -> Set TX Bolt protocol mode
|
||||
void fn1() {
|
||||
// "PH" -> Set protocol
|
||||
if (currentChord[1][3] && currentChord[1][4]) {
|
||||
// "-PB" -> NKRO Keyboard
|
||||
if (currentChord[1][7] && currentChord[2][7]) {
|
||||
protocol = NKRO;
|
||||
}
|
||||
// "-G" -> Gemini PR
|
||||
else if (currentChord[2][8]) {
|
||||
protocol = GEMINI;
|
||||
}
|
||||
// "-B" -> TX Bolt
|
||||
else if (currentChord[2][7]) {
|
||||
protocol = TXBOLT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Fn2 functions
|
||||
//
|
||||
// This function is called when "fn2" key has been pressed, but not "fn1".
|
||||
// Tip: maybe it is better to avoid using "fn2" key alone in order to avoid
|
||||
// accidental activation?
|
||||
//
|
||||
// Current functions: none.
|
||||
void fn2() {
|
||||
|
||||
}
|
||||
|
||||
// Fn1-Fn2 functions
|
||||
//
|
||||
// This function is called when both "fn1" and "fn1" keys have been pressed.
|
||||
//
|
||||
// Current functions:
|
||||
// HR-P -> LED intensity up
|
||||
// HR-F -> LED intensity down
|
||||
void fn1fn2() {
|
||||
// "HR" -> Change LED intensity
|
||||
if (currentChord[1][4] && currentChord[2][4]) {
|
||||
// "-P" -> LED intensity up
|
||||
if (currentChord[1][7]) {
|
||||
if (ledIntensity == 0) ledIntensity +=1;
|
||||
else if(ledIntensity < 50) ledIntensity += 10;
|
||||
else ledIntensity += 30;
|
||||
if (ledIntensity > 255) ledIntensity = 0;
|
||||
analogWrite(ledPin, ledIntensity);
|
||||
}
|
||||
// "-F" -> LED intensity down
|
||||
if (currentChord[1][6]) {
|
||||
if(ledIntensity == 0) ledIntensity = 255;
|
||||
else if(ledIntensity < 50) ledIntensity -= 10;
|
||||
else ledIntensity -= 30;
|
||||
if (ledIntensity < 1) ledIntensity = 0;
|
||||
analogWrite(ledPin, ledIntensity);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user