388 rivejä
10 KiB
C++
388 rivejä
10 KiB
C++
/**
|
|
* StenoFW is a firmware for Stenoboard keyboards.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Copyright 2014 Emanuele Caruso. See LICENSE.txt for details.
|
|
*/
|
|
|
|
#define ROWS 5
|
|
#define COLS 6
|
|
|
|
/* The following matrix is shown here for reference only.
|
|
char keys[ROWS][COLS] = {
|
|
{'S', 'T', 'P', 'H', '*', Fn1},
|
|
{'S', 'K', 'W', 'R', '*', Fn2},
|
|
{'a', 'o', 'e', 'u', '#'},
|
|
{'f', 'p', 'l', 't', 'd'},
|
|
{'r', 'b', 'g', 's', 'z'}
|
|
};*/
|
|
|
|
// Configuration variables
|
|
int rowPins[ROWS] = {13, 12, 11, 10, 9};
|
|
int colPins[COLS] = {8, 7, 6, 5, 4, 2};
|
|
int ledPin = 3;
|
|
long debounceMillis = 20;
|
|
|
|
// Keyboard state variables
|
|
boolean isStrokeInProgress = false;
|
|
boolean currentChord[ROWS][COLS];
|
|
boolean currentKeyReadings[ROWS][COLS];
|
|
boolean debouncingKeys[ROWS][COLS];
|
|
unsigned long debouncingMicros[ROWS][COLS];
|
|
|
|
// Other state variables
|
|
int ledIntensity = 1; // Min 0 - Max 255
|
|
|
|
// Protocol state
|
|
#define GEMINI 0
|
|
#define TXBOLT 1
|
|
int protocol = GEMINI;
|
|
|
|
// This is called when the keyboard is connected
|
|
void setup() {
|
|
Serial.begin(9600);
|
|
for (int i = 0; i < COLS; i++)
|
|
pinMode(colPins[i], INPUT_PULLUP);
|
|
for (int i = 0; i < ROWS; i++) {
|
|
pinMode(rowPins[i], OUTPUT);
|
|
digitalWrite(rowPins[i], HIGH);
|
|
}
|
|
pinMode(ledPin, OUTPUT);
|
|
analogWrite(ledPin, ledIntensity);
|
|
clearBooleanMatrixes();
|
|
}
|
|
|
|
// Read key states and handle all chord events
|
|
void loop() {
|
|
readKeys();
|
|
|
|
boolean isAnyKeyPressed = true;
|
|
|
|
// If stroke is not in progress, check debouncing keys
|
|
if (!isStrokeInProgress) {
|
|
checkAlreadyDebouncingKeys();
|
|
if (!isStrokeInProgress) checkNewDebouncingKeys();
|
|
}
|
|
|
|
// If any key was pressed, record all pressed keys
|
|
if (isStrokeInProgress) {
|
|
isAnyKeyPressed = recordCurrentKeys();
|
|
}
|
|
|
|
// If all keys have been released, send the chord and reset global state
|
|
if (!isAnyKeyPressed) {
|
|
sendChord();
|
|
clearBooleanMatrixes();
|
|
isStrokeInProgress = false;
|
|
}
|
|
}
|
|
|
|
// Record all pressed keys into current chord. Return false if no key is currently pressed
|
|
boolean recordCurrentKeys() {
|
|
boolean isAnyKeyPressed = false;
|
|
for (int i = 0; i < ROWS; i++) {
|
|
for (int j = 0; j < COLS; j++) {
|
|
if (currentKeyReadings[i][j] == true) {
|
|
currentChord[i][j] = true;
|
|
isAnyKeyPressed = true;
|
|
}
|
|
}
|
|
}
|
|
return isAnyKeyPressed;
|
|
}
|
|
|
|
// If a key is pressed, add it to debouncing keys and record the time
|
|
void checkNewDebouncingKeys() {
|
|
for (int i = 0; i < ROWS; i++) {
|
|
for (int j = 0; j < COLS; j++) {
|
|
if (currentKeyReadings[i][j] == true && debouncingKeys[i][j] == false) {
|
|
debouncingKeys[i][j] = true;
|
|
debouncingMicros[i][j] = micros();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check already debouncing keys. If a key debounces, start chord recording.
|
|
void checkAlreadyDebouncingKeys() {
|
|
for (int i = 0; i < ROWS; i++) {
|
|
for (int j = 0; j < COLS; j++) {
|
|
if (debouncingKeys[i][j] == true && currentKeyReadings[i][j] == false) {
|
|
debouncingKeys[i][j] = false;
|
|
continue;
|
|
}
|
|
if (debouncingKeys[i][j] == true && micros() - debouncingMicros[i][j] / 1000 > debounceMillis) {
|
|
isStrokeInProgress = true;
|
|
currentChord[i][j] = true;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set all values of all boolean matrixes to false
|
|
void clearBooleanMatrixes() {
|
|
clearBooleanMatrix(currentChord, false);
|
|
clearBooleanMatrix(currentKeyReadings, false);
|
|
clearBooleanMatrix(debouncingKeys, false);
|
|
}
|
|
|
|
// Set all values of the passed matrix to the given value
|
|
void clearBooleanMatrix(boolean booleanMatrix[][COLS], boolean value) {
|
|
for (int i = 0; i < ROWS; i++) {
|
|
for (int j = 0; j < COLS; j++) {
|
|
booleanMatrix[i][j] = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Read all keys
|
|
void readKeys() {
|
|
for (int i = 0; i < ROWS; i++) {
|
|
digitalWrite(rowPins[i], LOW);
|
|
for (int j = 0; j < COLS; j++)
|
|
currentKeyReadings[i][j] = digitalRead(colPins[j]) == LOW ? true : false;
|
|
digitalWrite(rowPins[i], HIGH);
|
|
}
|
|
}
|
|
|
|
// Send current chord over serial using the Gemini protocol.
|
|
void sendChordGemini() {
|
|
// Initialize chord bytes
|
|
byte chordBytes[] = {B10000000, B0, B0, B0, B0, B0};
|
|
|
|
// Byte 0
|
|
if (currentChord[2][4]) {
|
|
chordBytes[0] = B10000001;
|
|
}
|
|
|
|
// Byte 1
|
|
if (currentChord[0][0] || currentChord[1][0]) {
|
|
chordBytes[1] += B01000000;
|
|
}
|
|
if (currentChord[0][1]) {
|
|
chordBytes[1] += B00010000;
|
|
}
|
|
if (currentChord[1][1]) {
|
|
chordBytes[1] += B00001000;
|
|
}
|
|
if (currentChord[0][2]) {
|
|
chordBytes[1] += B00000100;
|
|
}
|
|
if (currentChord[1][2]) {
|
|
chordBytes[1] += B00000010;
|
|
}
|
|
if (currentChord[0][3]) {
|
|
chordBytes[1] += B00000001;
|
|
}
|
|
|
|
// Byte 2
|
|
if (currentChord[1][3]) {
|
|
chordBytes[2] += B01000000;
|
|
}
|
|
if (currentChord[2][0]) {
|
|
chordBytes[2] += B00100000;
|
|
}
|
|
if (currentChord[2][1]) {
|
|
chordBytes[2] += B00010000;
|
|
}
|
|
if (currentChord[0][4] || currentChord[1][4]) {
|
|
chordBytes[2] += B00001000;
|
|
}
|
|
|
|
// Byte 3
|
|
if (currentChord[2][2]) {
|
|
chordBytes[3] += B00001000;
|
|
}
|
|
if (currentChord[2][3]) {
|
|
chordBytes[3] += B00000100;
|
|
}
|
|
if (currentChord[3][0]) {
|
|
chordBytes[3] += B00000010;
|
|
}
|
|
if (currentChord[4][0]) {
|
|
chordBytes[3] += B00000001;
|
|
}
|
|
|
|
// Byte 4
|
|
if (currentChord[3][1]) {
|
|
chordBytes[4] += B01000000;
|
|
}
|
|
if (currentChord[4][1]) {
|
|
chordBytes[4] += B00100000;
|
|
}
|
|
if (currentChord[3][2]) {
|
|
chordBytes[4] += B00010000;
|
|
}
|
|
if (currentChord[4][2]) {
|
|
chordBytes[4] += B00001000;
|
|
}
|
|
if (currentChord[3][3]) {
|
|
chordBytes[4] += B00000100;
|
|
}
|
|
if (currentChord[4][3]) {
|
|
chordBytes[4] += B00000010;
|
|
}
|
|
if (currentChord[3][4]) {
|
|
chordBytes[4] += B00000001;
|
|
}
|
|
|
|
// Byte 5
|
|
if (currentChord[4][4]) {
|
|
chordBytes[5] += B00000001;
|
|
}
|
|
|
|
// Send chord bytes over serial
|
|
for (int i = 0; i < 6; i++) {
|
|
Serial.write(chordBytes[i]);
|
|
}
|
|
}
|
|
|
|
void sendChordTxBolt() {
|
|
byte chordBytes[] = {B0, B0, B0, B0, B0};
|
|
int index = 0;
|
|
|
|
// TX Bolt uses a variable length packet. Only those bytes that have active
|
|
// keys are sent. The header bytes indicate which keys are being sent. They
|
|
// must be sent in order. It is a good idea to send a zero after every packet.
|
|
// 00XXXXXX 01XXXXXX 10XXXXXX 110XXXXX
|
|
// HWPKTS UE*OAR GLBPRF #ZDST
|
|
|
|
// byte 1
|
|
// S-
|
|
if (currentChord[0][0] || currentChord[1][0]) chordBytes[0] += B00000001;
|
|
// T-
|
|
if (currentChord[0][1]) chordBytes[index] += B00000010;
|
|
// K-
|
|
if (currentChord[1][1]) chordBytes[index] += B00000100;
|
|
// P-
|
|
if (currentChord[0][2]) chordBytes[index] += B00001000;
|
|
// W-
|
|
if (currentChord[1][2]) chordBytes[index] += B00010000;
|
|
// H-
|
|
if (currentChord[0][3]) chordBytes[index] += B00100000;
|
|
// Increment the index if the current byte has any keys set.
|
|
if (chordBytes[index]) index++;
|
|
|
|
// byte 2
|
|
// R-
|
|
if (currentChord[1][3]) chordBytes[index] += B01000001;
|
|
// A
|
|
if (currentChord[2][0]) chordBytes[index] += B01000010;
|
|
// O
|
|
if (currentChord[2][1]) chordBytes[index] += B01000100;
|
|
// *
|
|
if (currentChord[0][4] || currentChord[1][4]) chordBytes[index] += B01001000;
|
|
// E
|
|
if (currentChord[2][2]) chordBytes[index] += B01010000;
|
|
// U
|
|
if (currentChord[2][3]) chordBytes[index] += B01100000;
|
|
// Increment the index if the current byte has any keys set.
|
|
if (chordBytes[index]) index++;
|
|
|
|
// byte 3
|
|
// -F
|
|
if (currentChord[3][0]) chordBytes[index] += B10000001;
|
|
// -R
|
|
if (currentChord[4][0]) chordBytes[index] += B10000010;
|
|
// -P
|
|
if (currentChord[3][1]) chordBytes[index] += B10000100;
|
|
// -B
|
|
if (currentChord[4][1]) chordBytes[index] += B10001000;
|
|
// -L
|
|
if (currentChord[3][2]) chordBytes[index] += B10010000;
|
|
// -G
|
|
if (currentChord[4][2]) chordBytes[index] += B10100000;
|
|
// Increment the index if the current byte has any keys set.
|
|
if (chordBytes[index]) index++;
|
|
|
|
// byte 4
|
|
// -T
|
|
if (currentChord[3][3]) chordBytes[index] += B11000001;
|
|
// -S
|
|
if (currentChord[4][3]) chordBytes[index] += B11000010;
|
|
// -D
|
|
if (currentChord[3][4]) chordBytes[index] += B11000100;
|
|
// -Z
|
|
if (currentChord[4][3]) chordBytes[index] += B11001000;
|
|
// #
|
|
if (currentChord[2][4]) chordBytes[index] += B11010000;
|
|
// Increment the index if the current byte has any keys set.
|
|
if (chordBytes[index]) index++;
|
|
|
|
// Now we have index bytes followed by a zero byte where 0 < index <= 4.
|
|
index++; // Increment index to include the trailing zero byte.
|
|
for (int i = 0; i < index; i++) {
|
|
Serial.write(chordBytes[i]);
|
|
}
|
|
}
|
|
|
|
// Send the chord using the current protocol. If there are fn keys
|
|
// pressed, delegate to the corresponding function instead.
|
|
// In future versions, there should also be a way to handle fn keys presses before
|
|
// they are released, eg. for mouse emulation functionality or custom key presses.
|
|
void sendChord() {
|
|
// If fn keys have been pressed, delegate to corresponding method and return
|
|
if (currentChord[0][5] && currentChord[1][5]) {
|
|
fn1fn2();
|
|
return;
|
|
} else if (currentChord[0][5]) {
|
|
fn1();
|
|
return;
|
|
} else if (currentChord[1][5]) {
|
|
fn2();
|
|
return;
|
|
}
|
|
|
|
if (protocol == GEMINI) {
|
|
sendChordGemini();
|
|
} else {
|
|
sendChordTxBolt();
|
|
}
|
|
}
|
|
|
|
// This function is called when only "fn1" key has been pressed.
|
|
void fn1() {
|
|
protocol = GEMINI;
|
|
}
|
|
|
|
// This function is called when only "fn2" key has been pressed.
|
|
void fn2() {
|
|
protocol = TXBOLT;
|
|
}
|
|
|
|
// This function is called when both "fn1" and "fn1" key has been pressed.
|
|
void fn1fn2() {
|
|
// "HR" -> Change LED intensity
|
|
if (currentChord[0][3] && currentChord[1][3]) {
|
|
// "P" -> LED intensity up
|
|
if (currentChord[3][1]) {
|
|
if (ledIntensity == 0) ledIntensity +=1;
|
|
else if(ledIntensity < 50) ledIntensity += 10;
|
|
else ledIntensity += 30;
|
|
if (ledIntensity > 255) ledIntensity = 0;
|
|
analogWrite(ledPin, ledIntensity);
|
|
}
|
|
// "F" -> LED intensity down
|
|
if (currentChord[3][0]) {
|
|
if(ledIntensity == 0) ledIntensity = 255;
|
|
else if(ledIntensity < 50) ledIntensity -= 10;
|
|
else ledIntensity -= 30;
|
|
if (ledIntensity < 1) ledIntensity = 0;
|
|
analogWrite(ledPin, ledIntensity);
|
|
}
|
|
}
|
|
}
|