Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
StenoFW/StenoFW.ino

459 lines
12 KiB
C++
Executable File

/**
* StenoFW is a firmware for Stenoboard keyboards.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Copyright 2014 Emanuele Caruso. See LICENSE.txt for details.
*/
#define ROWS 5
#define COLS 6
/* The following matrix is shown here for reference only.
char keys[ROWS][COLS] = {
{'S', 'T', 'P', 'H', '*', Fn1},
{'S', 'K', 'W', 'R', '*', Fn2},
{'a', 'o', 'e', 'u', '#'},
{'f', 'p', 'l', 't', 'd'},
{'r', 'b', 'g', 's', 'z'}
};*/
// Configuration variables
int rowPins[ROWS] = {13, 12, 11, 10, 9};
int colPins[COLS] = {8, 7, 6, 5, 4, 2};
int ledPin = 3;
long debounceMillis = 20;
// Keyboard state variables
boolean isStrokeInProgress = false;
boolean currentChord[ROWS][COLS];
boolean currentKeyReadings[ROWS][COLS];
boolean debouncingKeys[ROWS][COLS];
unsigned long debouncingMicros[ROWS][COLS];
// Other state variables
int ledIntensity = 1; // Min 0 - Max 255
// Protocol state
#define GEMINI 0
#define TXBOLT 1
#define NKRO 2
int protocol = NKRO;
// This is called when the keyboard is connected
void setup() {
Keyboard.begin();
Serial.begin(9600);
for (int i = 0; i < COLS; i++)
pinMode(colPins[i], INPUT_PULLUP);
for (int i = 0; i < ROWS; i++) {
pinMode(rowPins[i], OUTPUT);
digitalWrite(rowPins[i], HIGH);
}
pinMode(ledPin, OUTPUT);
analogWrite(ledPin, ledIntensity);
clearBooleanMatrixes();
}
// Read key states and handle all chord events
void loop() {
readKeys();
boolean isAnyKeyPressed = true;
// If stroke is not in progress, check debouncing keys
if (!isStrokeInProgress) {
checkAlreadyDebouncingKeys();
if (!isStrokeInProgress) checkNewDebouncingKeys();
}
// If any key was pressed, record all pressed keys
if (isStrokeInProgress) {
isAnyKeyPressed = recordCurrentKeys();
}
// If all keys have been released, send the chord and reset global state
if (!isAnyKeyPressed) {
sendChord();
clearBooleanMatrixes();
isStrokeInProgress = false;
}
}
// Record all pressed keys into current chord. Return false if no key is currently pressed
boolean recordCurrentKeys() {
boolean isAnyKeyPressed = false;
for (int i = 0; i < ROWS; i++) {
for (int j = 0; j < COLS; j++) {
if (currentKeyReadings[i][j] == true) {
currentChord[i][j] = true;
isAnyKeyPressed = true;
}
}
}
return isAnyKeyPressed;
}
// If a key is pressed, add it to debouncing keys and record the time
void checkNewDebouncingKeys() {
for (int i = 0; i < ROWS; i++) {
for (int j = 0; j < COLS; j++) {
if (currentKeyReadings[i][j] == true && debouncingKeys[i][j] == false) {
debouncingKeys[i][j] = true;
debouncingMicros[i][j] = micros();
}
}
}
}
// Check already debouncing keys. If a key debounces, start chord recording.
void checkAlreadyDebouncingKeys() {
for (int i = 0; i < ROWS; i++) {
for (int j = 0; j < COLS; j++) {
if (debouncingKeys[i][j] == true && currentKeyReadings[i][j] == false) {
debouncingKeys[i][j] = false;
continue;
}
if (debouncingKeys[i][j] == true && micros() - debouncingMicros[i][j] / 1000 > debounceMillis) {
isStrokeInProgress = true;
currentChord[i][j] = true;
return;
}
}
}
}
// Set all values of all boolean matrixes to false
void clearBooleanMatrixes() {
clearBooleanMatrix(currentChord, false);
clearBooleanMatrix(currentKeyReadings, false);
clearBooleanMatrix(debouncingKeys, false);
}
// Set all values of the passed matrix to the given value
void clearBooleanMatrix(boolean booleanMatrix[][COLS], boolean value) {
for (int i = 0; i < ROWS; i++) {
for (int j = 0; j < COLS; j++) {
booleanMatrix[i][j] = value;
}
}
}
// Read all keys
void readKeys() {
for (int i = 0; i < ROWS; i++) {
digitalWrite(rowPins[i], LOW);
for (int j = 0; j < COLS; j++)
currentKeyReadings[i][j] = digitalRead(colPins[j]) == LOW ? true : false;
digitalWrite(rowPins[i], HIGH);
}
}
// Send current chord using NKRO Keyboard emulation
void sendChordNkro() {
// QWERTY mapping
char qwertyMapping[ROWS][COLS] = {
{'q', 'w', 'e', 'r', 't', ' '},
{'a', 's', 'd', 'f', 'g', ' '},
{'c', 'v', 'n', 'm', '3', ' '},
{'u', 'i', 'o', 'p', '[', ' '},
{'j', 'k', 'l', ';', '\'', ' '}
};
int keyCounter = 0;
char qwertyKeys[ROWS * COLS];
boolean firstKeyPressed = false;
// Calculate qwerty keys array using qwertyMappings[][]
for (int i = 0; i < ROWS; i++)
for (int j = 0; j < COLS; j++)
if (currentChord[i][j]) {
qwertyKeys[keyCounter] = qwertyMapping[i][j];
keyCounter++;
}
// Emulate keyboard key presses
for (int i = 0; i < keyCounter; i++) {
if (qwertyKeys[i] != ' ') {
Keyboard.press(qwertyKeys[i]);
if (!firstKeyPressed) firstKeyPressed = true;
else Keyboard.release(qwertyKeys[i]);
}
}
Keyboard.releaseAll();
}
// Send current chord over serial using the Gemini protocol.
void sendChordGemini() {
// Initialize chord bytes
byte chordBytes[] = {B10000000, B0, B0, B0, B0, B0};
// Byte 0
if (currentChord[2][4]) {
chordBytes[0] = B10000001;
}
// Byte 1
if (currentChord[0][0] || currentChord[1][0]) {
chordBytes[1] += B01000000;
}
if (currentChord[0][1]) {
chordBytes[1] += B00010000;
}
if (currentChord[1][1]) {
chordBytes[1] += B00001000;
}
if (currentChord[0][2]) {
chordBytes[1] += B00000100;
}
if (currentChord[1][2]) {
chordBytes[1] += B00000010;
}
if (currentChord[0][3]) {
chordBytes[1] += B00000001;
}
// Byte 2
if (currentChord[1][3]) {
chordBytes[2] += B01000000;
}
if (currentChord[2][0]) {
chordBytes[2] += B00100000;
}
if (currentChord[2][1]) {
chordBytes[2] += B00010000;
}
if (currentChord[0][4] || currentChord[1][4]) {
chordBytes[2] += B00001000;
}
// Byte 3
if (currentChord[2][2]) {
chordBytes[3] += B00001000;
}
if (currentChord[2][3]) {
chordBytes[3] += B00000100;
}
if (currentChord[3][0]) {
chordBytes[3] += B00000010;
}
if (currentChord[4][0]) {
chordBytes[3] += B00000001;
}
// Byte 4
if (currentChord[3][1]) {
chordBytes[4] += B01000000;
}
if (currentChord[4][1]) {
chordBytes[4] += B00100000;
}
if (currentChord[3][2]) {
chordBytes[4] += B00010000;
}
if (currentChord[4][2]) {
chordBytes[4] += B00001000;
}
if (currentChord[3][3]) {
chordBytes[4] += B00000100;
}
if (currentChord[4][3]) {
chordBytes[4] += B00000010;
}
if (currentChord[3][4]) {
chordBytes[4] += B00000001;
}
// Byte 5
if (currentChord[4][4]) {
chordBytes[5] += B00000001;
}
// Send chord bytes over serial
for (int i = 0; i < 6; i++) {
Serial.write(chordBytes[i]);
}
}
void sendChordTxBolt() {
byte chordBytes[] = {B0, B0, B0, B0, B0};
int index = 0;
// TX Bolt uses a variable length packet. Only those bytes that have active
// keys are sent. The header bytes indicate which keys are being sent. They
// must be sent in order. It is a good idea to send a zero after every packet.
// 00XXXXXX 01XXXXXX 10XXXXXX 110XXXXX
// HWPKTS UE*OAR GLBPRF #ZDST
// byte 1
// S-
if (currentChord[0][0] || currentChord[1][0]) chordBytes[index] |= B00000001;
// T-
if (currentChord[0][1]) chordBytes[index] |= B00000010;
// K-
if (currentChord[1][1]) chordBytes[index] |= B00000100;
// P-
if (currentChord[0][2]) chordBytes[index] |= B00001000;
// W-
if (currentChord[1][2]) chordBytes[index] |= B00010000;
// H-
if (currentChord[0][3]) chordBytes[index] |= B00100000;
// Increment the index if the current byte has any keys set.
if (chordBytes[index]) index++;
// byte 2
// R-
if (currentChord[1][3]) chordBytes[index] |= B01000001;
// A
if (currentChord[2][0]) chordBytes[index] |= B01000010;
// O
if (currentChord[2][1]) chordBytes[index] |= B01000100;
// *
if (currentChord[0][4] || currentChord[1][4]) chordBytes[index] |= B01001000;
// E
if (currentChord[2][2]) chordBytes[index] |= B01010000;
// U
if (currentChord[2][3]) chordBytes[index] |= B01100000;
// Increment the index if the current byte has any keys set.
if (chordBytes[index]) index++;
// byte 3
// -F
if (currentChord[3][0]) chordBytes[index] |= B10000001;
// -R
if (currentChord[4][0]) chordBytes[index] |= B10000010;
// -P
if (currentChord[3][1]) chordBytes[index] |= B10000100;
// -B
if (currentChord[4][1]) chordBytes[index] |= B10001000;
// -L
if (currentChord[3][2]) chordBytes[index] |= B10010000;
// -G
if (currentChord[4][2]) chordBytes[index] |= B10100000;
// Increment the index if the current byte has any keys set.
if (chordBytes[index]) index++;
// byte 4
// -T
if (currentChord[3][3]) chordBytes[index] |= B11000001;
// -S
if (currentChord[4][3]) chordBytes[index] |= B11000010;
// -D
if (currentChord[3][4]) chordBytes[index] |= B11000100;
// -Z
if (currentChord[4][4]) chordBytes[index] |= B11001000;
// #
if (currentChord[2][4]) chordBytes[index] |= B11010000;
// Increment the index if the current byte has any keys set.
if (chordBytes[index]) index++;
// Now we have index bytes followed by a zero byte where 0 < index <= 4.
index++; // Increment index to include the trailing zero byte.
for (int i = 0; i < index; i++) {
Serial.write(chordBytes[i]);
}
}
// Send the chord using the current protocol. If there are fn keys
// pressed, delegate to the corresponding function instead.
// In future versions, there should also be a way to handle fn keys presses before
// they are released, eg. for mouse emulation functionality or custom key presses.
void sendChord() {
// If fn keys have been pressed, delegate to corresponding method and return
if (currentChord[0][5] && currentChord[1][5]) {
fn1fn2();
return;
} else if (currentChord[0][5]) {
fn1();
return;
} else if (currentChord[1][5]) {
fn2();
return;
}
if (protocol == NKRO) {
sendChordNkro();
} else if (protocol == GEMINI) {
sendChordGemini();
} else {
sendChordTxBolt();
}
}
// Fn1 functions
//
// This function is called when "fn1" key has been pressed, but not "fn2".
// Tip: maybe it is better to avoid using "fn1" key alone in order to avoid
// accidental activation?
//
// Current functions:
// PH-PB -> Set NKRO Keyboard emulation mode
// PH-G -> Set Gemini PR protocol mode
// PH-B -> Set TX Bolt protocol mode
void fn1() {
// "PH" -> Set protocol
if (currentChord[0][2] && currentChord[0][3]) {
// "-PB" -> NKRO Keyboard
if (currentChord[3][1] && currentChord[4][1]) {
protocol = NKRO;
}
// "-G" -> Gemini PR
else if (currentChord[4][2]) {
protocol = GEMINI;
}
// "-B" -> TX Bolt
else if (currentChord[4][1]) {
protocol = TXBOLT;
}
}
}
// Fn2 functions
//
// This function is called when "fn2" key has been pressed, but not "fn1".
// Tip: maybe it is better to avoid using "fn2" key alone in order to avoid
// accidental activation?
//
// Current functions: none.
void fn2() {
}
// Fn1-Fn2 functions
//
// This function is called when both "fn1" and "fn1" keys have been pressed.
//
// Current functions:
// HR-P -> LED intensity up
// HR-F -> LED intensity down
void fn1fn2() {
// "HR" -> Change LED intensity
if (currentChord[0][3] && currentChord[1][3]) {
// "-P" -> LED intensity up
if (currentChord[3][1]) {
if (ledIntensity == 0) ledIntensity +=1;
else if(ledIntensity < 50) ledIntensity += 10;
else ledIntensity += 30;
if (ledIntensity > 255) ledIntensity = 0;
analogWrite(ledPin, ledIntensity);
}
// "-F" -> LED intensity down
if (currentChord[3][0]) {
if(ledIntensity == 0) ledIntensity = 255;
else if(ledIntensity < 50) ledIntensity -= 10;
else ledIntensity -= 30;
if (ledIntensity < 1) ledIntensity = 0;
analogWrite(ledPin, ledIntensity);
}
}
}