Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Output/pjrcUSB/output_com.c

856 lines
22 KiB
C
Raw Permalink Normal View History

/* Copyright (C) 2011-2016 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/OutputLib.h>
// Project Includes
#include <cli.h>
#include <led.h>
#include <print.h>
#include <scan_loop.h>
// USB Includes
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_)
#include "avr/usb_keyboard_serial.h"
#elif defined(_mk20dx128_) || defined(_mk20dx128vlf5_) || defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
#include "arm/usb_dev.h"
#include "arm/usb_keyboard.h"
#include "arm/usb_serial.h"
#include "arm/usb_mouse.h"
#endif
// KLL
#include <kll_defs.h>
// Local Includes
#include "output_com.h"
// ----- Macros -----
// Used to build a bitmap lookup table from a byte addressable array
#define byteLookup( byte ) \
case (( byte ) * ( 8 )): bytePosition = byte; byteShift = 0; break; \
case (( byte ) * ( 8 ) + ( 1 )): bytePosition = byte; byteShift = 1; break; \
case (( byte ) * ( 8 ) + ( 2 )): bytePosition = byte; byteShift = 2; break; \
case (( byte ) * ( 8 ) + ( 3 )): bytePosition = byte; byteShift = 3; break; \
case (( byte ) * ( 8 ) + ( 4 )): bytePosition = byte; byteShift = 4; break; \
case (( byte ) * ( 8 ) + ( 5 )): bytePosition = byte; byteShift = 5; break; \
case (( byte ) * ( 8 ) + ( 6 )): bytePosition = byte; byteShift = 6; break; \
case (( byte ) * ( 8 ) + ( 7 )): bytePosition = byte; byteShift = 7; break
// ----- Function Declarations -----
void cliFunc_kbdProtocol( char* args );
void cliFunc_outputDebug( char* args );
void cliFunc_readLEDs ( char* args );
void cliFunc_sendKeys ( char* args );
void cliFunc_setKeys ( char* args );
void cliFunc_setMod ( char* args );
// ----- Variables -----
// Output Module command dictionary
CLIDict_Entry( kbdProtocol, "Keyboard Protocol Mode: 0 - Boot, 1 - OS/NKRO Mode" );
CLIDict_Entry( outputDebug, "Toggle Output Debug mode." );
CLIDict_Entry( readLEDs, "Read LED byte:" NL "\t\t1 NumLck, 2 CapsLck, 4 ScrlLck, 16 Kana, etc." );
CLIDict_Entry( sendKeys, "Send the prepared list of USB codes and modifier byte." );
CLIDict_Entry( setKeys, "Prepare a space separated list of USB codes (decimal). Waits until \033[35msendKeys\033[0m." );
CLIDict_Entry( setMod, "Set the modfier byte:" NL "\t\t1 LCtrl, 2 LShft, 4 LAlt, 8 LGUI, 16 RCtrl, 32 RShft, 64 RAlt, 128 RGUI" );
CLIDict_Def( outputCLIDict, "USB Module Commands" ) = {
CLIDict_Item( kbdProtocol ),
CLIDict_Item( outputDebug ),
CLIDict_Item( readLEDs ),
CLIDict_Item( sendKeys ),
CLIDict_Item( setKeys ),
CLIDict_Item( setMod ),
{ 0, 0, 0 } // Null entry for dictionary end
};
// Which modifier keys are currently pressed
// 1=left ctrl, 2=left shift, 4=left alt, 8=left gui
// 16=right ctrl, 32=right shift, 64=right alt, 128=right gui
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer
// Currently pressed keys, max is defined by USB_MAX_KEY_SEND
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer
// System Control and Consumer Control 1KRO containers
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;
// The number of keys sent to the usb in the array
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;
// 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana
volatile uint8_t USBKeys_LEDs = 0;
// Currently pressed mouse buttons, bitmask, 0 represents no buttons pressed
volatile uint16_t USBMouse_Buttons = 0;
// Relative mouse axis movement, stores pending movement
volatile uint16_t USBMouse_Relative_x = 0;
volatile uint16_t USBMouse_Relative_y = 0;
// Protocol setting from the host.
// 0 - Boot Mode
// 1 - NKRO Mode (Default, unless set by a BIOS or boot interface)
volatile uint8_t USBKeys_Protocol = USBProtocol_define;
// Indicate if USB should send update
// OS only needs update if there has been a change in state
USBKeyChangeState USBKeys_Changed = USBKeyChangeState_None;
// Indicate if USB should send update
USBMouseChangeState USBMouse_Changed = 0;
// the idle configuration, how often we send the report to the
// host (ms * 4) even when it hasn't changed
uint8_t USBKeys_Idle_Config = 125;
// count until idle timeout
uint8_t USBKeys_Idle_Count = 0;
// Indicates whether the Output module is fully functional
// 0 - Not fully functional, 1 - Fully functional
// 0 is often used to show that a USB cable is not plugged in (but has power)
volatile uint8_t Output_Available = 0;
// Debug control variable for Output modules
// 0 - Debug disabled (default)
// 1 - Debug enabled
uint8_t Output_DebugMode = 0;
// mA - Set by outside module if not using USB (i.e. Interconnect)
// Generally set to 100 mA (low power) or 500 mA (high power)
uint16_t Output_ExtCurrent_Available = 0;
// mA - Set by USB module (if exists)
// Initially 100 mA, but may be negotiated higher (e.g. 500 mA)
uint16_t Output_USBCurrent_Available = 0;
// ----- Capabilities -----
// Set Boot Keyboard Protocol
void Output_kbdProtocolBoot_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Output_kbdProtocolBoot()");
return;
}
// Only set if necessary
if ( USBKeys_Protocol == 0 )
return;
// TODO Analog inputs
// Only set on key press
if ( stateType != 0x01 )
return;
// Flush the key buffers
Output_flushBuffers();
// Set the keyboard protocol to Boot Mode
USBKeys_Protocol = 0;
}
// Set NKRO Keyboard Protocol
void Output_kbdProtocolNKRO_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Output_kbdProtocolNKRO()");
return;
}
// Only set if necessary
if ( USBKeys_Protocol == 1 )
return;
// TODO Analog inputs
// Only set on key press
if ( stateType != 0x01 )
return;
// Flush the key buffers
Output_flushBuffers();
// Set the keyboard protocol to NKRO Mode
USBKeys_Protocol = 1;
}
// Sends a Consumer Control code to the USB Output buffer
void Output_consCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Output_consCtrlSend(consCode)");
return;
}
// Not implemented in Boot Mode
if ( USBKeys_Protocol == 0 )
{
warn_print("Consumer Control is not implemented for Boot Mode");
return;
}
// TODO Analog inputs
// Only indicate USB has changed if either a press or release has occured
if ( state == 0x01 || state == 0x03 )
USBKeys_Changed |= USBKeyChangeState_Consumer;
// Only send keypresses if press or hold state
if ( stateType == 0x00 && state == 0x03 ) // Release state
{
USBKeys_ConsCtrl = 0;
return;
}
// Set consumer control code
USBKeys_ConsCtrl = *(uint16_t*)(&args[0]);
}
// Ignores the given key status update
// Used to prevent fall-through, this is the None keyword in KLL
void Output_noneSend_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Output_noneSend()");
return;
}
// Nothing to do, because that's the point :P
}
// Sends a System Control code to the USB Output buffer
void Output_sysCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Output_sysCtrlSend(sysCode)");
return;
}
// Not implemented in Boot Mode
if ( USBKeys_Protocol == 0 )
{
warn_print("System Control is not implemented for Boot Mode");
return;
}
// TODO Analog inputs
// Only indicate USB has changed if either a press or release has occured
if ( state == 0x01 || state == 0x03 )
USBKeys_Changed |= USBKeyChangeState_System;
// Only send keypresses if press or hold state
if ( stateType == 0x00 && state == 0x03 ) // Release state
{
USBKeys_SysCtrl = 0;
return;
}
// Set system control code
USBKeys_SysCtrl = args[0];
}
// Adds a single USB Code to the USB Output buffer
// Argument #1: USB Code
void Output_usbCodeSend_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Output_usbCodeSend(usbCode)");
return;
}
// Depending on which mode the keyboard is in the USB needs Press/Hold/Release events
uint8_t keyPress = 0; // Default to key release, only used for NKRO
switch ( USBKeys_Protocol )
{
case 0: // Boot Mode
// TODO Analog inputs
// Only indicate USB has changed if either a press or release has occured
if ( state == 0x01 || state == 0x03 )
USBKeys_Changed = USBKeyChangeState_MainKeys;
// Only send keypresses if press or hold state
if ( stateType == 0x00 && state == 0x03 ) // Release state
return;
break;
case 1: // NKRO Mode
// Only send press and release events
if ( stateType == 0x00 && state == 0x02 ) // Hold state
return;
// Determine if setting or unsetting the bitfield (press == set)
if ( stateType == 0x00 && state == 0x01 ) // Press state
keyPress = 1;
break;
}
// Get the keycode from arguments
uint8_t key = args[0];
// Depending on which mode the keyboard is in, USBKeys_Keys array is used differently
// Boot mode - Maximum of 6 byte codes
// NKRO mode - Each bit of the 26 byte corresponds to a key
// Bits 0 - 45 (bytes 0 - 5) correspond to USB Codes 4 - 49 (Main)
// Bits 48 - 161 (bytes 6 - 20) correspond to USB Codes 51 - 164 (Secondary)
// Bits 168 - 213 (bytes 21 - 26) correspond to USB Codes 176 - 221 (Tertiary)
// Bits 214 - 216 unused
uint8_t bytePosition = 0;
uint8_t byteShift = 0;
switch ( USBKeys_Protocol )
{
case 0: // Boot Mode
// Set the modifier bit if this key is a modifier
if ( (key & 0xE0) == 0xE0 ) // AND with 0xE0 (Left Ctrl, first modifier)
{
USBKeys_Modifiers |= 1 << (key ^ 0xE0); // Left shift 1 by key XOR 0xE0
}
// Normal USB Code
else
{
// USB Key limit reached
if ( USBKeys_Sent >= USB_BOOT_MAX_KEYS )
{
warn_print("USB Key limit reached");
return;
}
// Make sure key is within the USB HID range
if ( key <= 104 )
{
USBKeys_Keys[USBKeys_Sent++] = key;
}
// Invalid key
else
{
warn_msg("USB Code above 104/0x68 in Boot Mode: ");
printHex( key );
print( NL );
}
}
break;
case 1: // NKRO Mode
// Set the modifier bit if this key is a modifier
if ( (key & 0xE0) == 0xE0 ) // AND with 0xE0 (Left Ctrl, first modifier)
{
if ( keyPress )
{
USBKeys_Modifiers |= 1 << (key ^ 0xE0); // Left shift 1 by key XOR 0xE0
}
else // Release
{
USBKeys_Modifiers &= ~(1 << (key ^ 0xE0)); // Left shift 1 by key XOR 0xE0
}
USBKeys_Changed |= USBKeyChangeState_Modifiers;
break;
}
// First 6 bytes
else if ( key >= 4 && key <= 49 )
{
// Lookup (otherwise division or multiple checks are needed to do alignment)
// Starting at 0th position, each byte has 8 bits, starting at 4th bit
uint8_t keyPos = key + (0 * 8 - 4); // Starting position in array, Ignoring 4 keys
switch ( keyPos )
{
byteLookup( 0 );
byteLookup( 1 );
byteLookup( 2 );
byteLookup( 3 );
byteLookup( 4 );
byteLookup( 5 );
}
USBKeys_Changed |= USBKeyChangeState_MainKeys;
}
// Next 14 bytes
else if ( key >= 51 && key <= 155 )
{
// Lookup (otherwise division or multiple checks are needed to do alignment)
// Starting at 6th byte position, each byte has 8 bits, starting at 51st bit
uint8_t keyPos = key + (6 * 8 - 51); // Starting position in array
switch ( keyPos )
{
byteLookup( 6 );
byteLookup( 7 );
byteLookup( 8 );
byteLookup( 9 );
byteLookup( 10 );
byteLookup( 11 );
byteLookup( 12 );
byteLookup( 13 );
byteLookup( 14 );
byteLookup( 15 );
byteLookup( 16 );
byteLookup( 17 );
byteLookup( 18 );
byteLookup( 19 );
}
USBKeys_Changed |= USBKeyChangeState_SecondaryKeys;
}
// Next byte
else if ( key >= 157 && key <= 164 )
{
// Lookup (otherwise division or multiple checks are needed to do alignment)
uint8_t keyPos = key + (20 * 8 - 157); // Starting position in array, Ignoring 6 keys
switch ( keyPos )
{
byteLookup( 20 );
}
USBKeys_Changed |= USBKeyChangeState_TertiaryKeys;
}
// Last 6 bytes
else if ( key >= 176 && key <= 221 )
{
// Lookup (otherwise division or multiple checks are needed to do alignment)
uint8_t keyPos = key + (21 * 8 - 176); // Starting position in array
switch ( keyPos )
{
byteLookup( 21 );
byteLookup( 22 );
byteLookup( 23 );
byteLookup( 24 );
byteLookup( 25 );
byteLookup( 26 );
}
USBKeys_Changed |= USBKeyChangeState_QuartiaryKeys;
}
// Received 0x00
// This is a special USB Code that internally indicates a "break"
// It is used to send "nothing" in order to break up sequences of USB Codes
else if ( key == 0x00 )
{
USBKeys_Changed |= USBKeyChangeState_MainKeys;
// Also flush out buffers just in case
Output_flushBuffers();
break;
}
// Invalid key
else
{
warn_msg("USB Code not within 4-49 (0x4-0x31), 51-155 (0x33-0x9B), 157-164 (0x9D-0xA4), 176-221 (0xB0-0xDD) or 224-231 (0xE0-0xE7) NKRO Mode: ");
printHex( key );
print( NL );
break;
}
// Set/Unset
if ( keyPress )
{
USBKeys_Keys[bytePosition] |= (1 << byteShift);
USBKeys_Sent++;
}
else // Release
{
USBKeys_Keys[bytePosition] &= ~(1 << byteShift);
USBKeys_Sent++;
}
break;
}
}
void Output_flashMode_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Output_flashMode()");
return;
}
// Start flash mode
Output_firmwareReload();
}
// Sends a mouse command over the USB Output buffer
// XXX This function *will* be changing in the future
// If you use it, be prepared that your .kll files will break in the future (post KLL 0.5)
// Argument #1: USB Mouse Button (16 bit)
// Argument #2: USB X Axis (16 bit) relative
// Argument #3: USB Y Axis (16 bit) relative
void Output_usbMouse_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Output_usbMouse(mouseButton,relX,relY)");
return;
}
// Determine which mouse button was sent
// The USB spec defines up to a max of 0xFFFF buttons
// The usual are:
// 1 - Button 1 - (Primary)
// 2 - Button 2 - (Secondary)
// 3 - Button 3 - (Tertiary)
uint16_t mouse_button = *(uint16_t*)(&args[0]);
// X/Y Relative Axis
uint16_t mouse_x = *(uint16_t*)(&args[2]);
uint16_t mouse_y = *(uint16_t*)(&args[4]);
// Adjust for bit shift
uint16_t mouse_button_shift = mouse_button - 1;
// Only send mouse button if in press or hold state
if ( stateType == 0x00 && state == 0x03 ) // Release state
{
// Release
if ( mouse_button )
USBMouse_Buttons &= ~(1 << mouse_button_shift);
}
else
{
// Press or hold
if ( mouse_button )
USBMouse_Buttons |= (1 << mouse_button_shift);
if ( mouse_x )
USBMouse_Relative_x = mouse_x;
if ( mouse_y )
USBMouse_Relative_y = mouse_y;
}
// Trigger updates
if ( mouse_button )
USBMouse_Changed |= USBMouseChangeState_Buttons;
if ( mouse_x || mouse_y )
USBMouse_Changed |= USBMouseChangeState_Relative;
}
// ----- Functions -----
// Flush Key buffers
void Output_flushBuffers()
{
// Zero out USBKeys_Keys array
for ( uint8_t c = 0; c < USB_NKRO_BITFIELD_SIZE_KEYS; c++ )
USBKeys_Keys[ c ] = 0;
// Zero out other key buffers
USBKeys_ConsCtrl = 0;
USBKeys_Modifiers = 0;
USBKeys_SysCtrl = 0;
}
// USB Module Setup
inline void Output_setup()
{
// Initialize the USB
// If a USB connection does not exist, just ignore it
// All usb related functions will non-fatally fail if called
// If the USB initialization is delayed, then functionality will just be delayed
usb_init();
// Register USB Output CLI dictionary
CLI_registerDictionary( outputCLIDict, outputCLIDictName );
// Flush key buffers
Output_flushBuffers();
}
// USB Data Send
inline void Output_send()
{
// USB status checks
// Non-standard USB state manipulation, usually does nothing
usb_device_check();
// Boot Mode Only, unset stale keys
if ( USBKeys_Protocol == 0 )
for ( uint8_t c = USBKeys_Sent; c < USB_BOOT_MAX_KEYS; c++ )
USBKeys_Keys[c] = 0;
// Process mouse actions
while ( USBMouse_Changed )
usb_mouse_send();
// Send keypresses while there are pending changes
while ( USBKeys_Changed )
usb_keyboard_send();
// Clear keys sent
USBKeys_Sent = 0;
// Signal Scan Module we are finished
switch ( USBKeys_Protocol )
{
case 0: // Boot Mode
// Clear modifiers only in boot mode
USBKeys_Modifiers = 0;
Scan_finishedWithOutput( USBKeys_Sent <= USB_BOOT_MAX_KEYS ? USBKeys_Sent : USB_BOOT_MAX_KEYS );
break;
case 1: // NKRO Mode
Scan_finishedWithOutput( USBKeys_Sent );
break;
}
}
// Sets the device into firmware reload mode
inline void Output_firmwareReload()
{
usb_device_reload();
}
// USB Input buffer available
inline unsigned int Output_availablechar()
{
return usb_serial_available();
}
// USB Get Character from input buffer
inline int Output_getchar()
{
// XXX Make sure to check output_availablechar() first! Information is lost with the cast (error codes) (AVR)
return (int)usb_serial_getchar();
}
// USB Send Character to output buffer
inline int Output_putchar( char c )
{
return usb_serial_putchar( c );
}
// USB Send String to output buffer, null terminated
inline int Output_putstr( char* str )
{
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_) // AVR
uint16_t count = 0;
#elif defined(_mk20dx128_) || defined(_mk20dx128vlf5_) || defined(_mk20dx256_) || defined(_mk20dx256vlh7_) // ARM
uint32_t count = 0;
#endif
// Count characters until NULL character, then send the amount counted
while ( str[count] != '\0' )
count++;
return usb_serial_write( str, count );
}
// Soft Chip Reset
inline void Output_softReset()
{
usb_device_software_reset();
}
// Update USB current (mA)
// Triggers power change event
void Output_update_usb_current( unsigned int current )
{
// Only signal if changed
if ( current == Output_USBCurrent_Available )
return;
// Update USB current
Output_USBCurrent_Available = current;
unsigned int total_current = Output_current_available();
info_msg("USB Available Current Changed. Total Available: ");
printInt32( total_current );
print(" mA" NL);
// Send new total current to the Scan Modules
Scan_currentChange( Output_current_available() );
}
// Update external current (mA)
// Triggers power change event
void Output_update_external_current( unsigned int current )
{
// Only signal if changed
if ( current == Output_ExtCurrent_Available )
return;
// Update external current
Output_ExtCurrent_Available = current;
unsigned int total_current = Output_current_available();
info_msg("External Available Current Changed. Total Available: ");
printInt32( total_current );
print(" mA" NL);
// Send new total current to the Scan Modules
Scan_currentChange( Output_current_available() );
}
// Power/Current Available
unsigned int Output_current_available()
{
unsigned int total_current = 0;
// Check for USB current source
total_current += Output_USBCurrent_Available;
// Check for external current source
total_current += Output_ExtCurrent_Available;
// XXX If the total available current is still 0
// Set to 100 mA, which is generally a safe assumption at startup
// before we've been able to determine actual available current
if ( total_current == 0 )
{
total_current = 100;
}
return total_current;
}
// ----- CLI Command Functions -----
void cliFunc_kbdProtocol( char* args )
{
print( NL );
info_msg("Keyboard Protocol: ");
printInt8( USBKeys_Protocol );
}
void cliFunc_outputDebug( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// Default to 1 if no argument is given
Output_DebugMode = 1;
if ( arg1Ptr[0] != '\0' )
{
Output_DebugMode = (uint16_t)numToInt( arg1Ptr );
}
}
void cliFunc_readLEDs( char* args )
{
print( NL );
info_msg("LED State: ");
printInt8( USBKeys_LEDs );
}
void cliFunc_sendKeys( char* args )
{
// Copy USBKeys_KeysCLI to USBKeys_Keys
for ( uint8_t key = 0; key < USBKeys_SentCLI; ++key )
{
// TODO
//USBKeys_Keys[key] = USBKeys_KeysCLI[key];
}
USBKeys_Sent = USBKeys_SentCLI;
// Set modifier byte
USBKeys_Modifiers = USBKeys_ModifiersCLI;
}
void cliFunc_setKeys( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Parse up to USBKeys_MaxSize args (whichever is least)
for ( USBKeys_SentCLI = 0; USBKeys_SentCLI < USB_BOOT_MAX_KEYS; ++USBKeys_SentCLI )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Add the USB code to be sent
// TODO
//USBKeys_KeysCLI[USBKeys_SentCLI] = numToInt( arg1Ptr );
}
}
void cliFunc_setMod( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
USBKeys_ModifiersCLI = numToInt( arg1Ptr );
}