Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/main.c

370 lines
8.8 KiB
C
Raw Normal View History

/* Copyright (C) 2011-2014 by Jacob Alexander
*
2011-03-04 00:38:32 +00:00
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
2011-03-04 00:38:32 +00:00
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
2011-03-04 00:38:32 +00:00
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/MainLib.h>
// Project Includes
#include <macro.h>
#include <scan_loop.h>
#include <output_com.h>
#include <cli.h>
#include <led.h>
#include <print.h>
2011-03-04 00:38:32 +00:00
// ----- Defines -----
// Verified Keypress Defines
#define USB_TRANSFER_DIVIDER 10 // 1024 == 1 Send of keypresses per second, 1 == 1 Send of keypresses per ~1 millisecond
// ----- Macros -----
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_)
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
#endif
2014-01-24 09:42:43 +00:00
// ----- Function Declarations -----
void cliFunc_distRead ( char* args );
2014-01-24 09:42:43 +00:00
void cliFunc_free ( char* args );
void cliFunc_gaugeHelp ( char* args );
void cliFunc_single ( char* args );
void cliFunc_start ( char* args );
void cliFunc_zeroForce ( char* args );
void cliFunc_zeroPosition( char* args );
// ----- Variables -----
// Timer Interrupt for flagging a send of the sampled key detection data to the USB host
uint16_t sendKeypressCounter = 0;
// Flag generated by the timer interrupt
volatile uint8_t sendKeypresses = 0;
2011-09-23 06:33:56 +00:00
// ----- Functions -----
// Initial Pin Setup, make sure they are sane
inline void pinSetup(void)
{
// AVR
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_)
// For each pin, 0=input, 1=output
#if defined(__AVR_AT90USB1286__)
DDRA = 0x00;
#endif
2011-03-14 02:57:22 +00:00
DDRB = 0x00;
DDRC = 0x00;
DDRD = 0x00;
2011-09-23 06:33:56 +00:00
DDRE = 0x00;
2011-03-14 02:57:22 +00:00
DDRF = 0x00;
// Setting pins to either high or pull-up resistor
#if defined(__AVR_AT90USB1286__)
2011-09-23 06:33:56 +00:00
PORTA = 0x00;
#endif
2011-09-23 06:33:56 +00:00
PORTB = 0x00;
PORTC = 0x00;
PORTD = 0x00;
2011-09-23 06:33:56 +00:00
PORTE = 0x00;
PORTF = 0x00;
// ARM
#elif defined(_mk20dx128_)
// TODO - Should be cleared, but not that necessary due to the pin layout
#endif
}
2011-03-20 08:17:19 +00:00
inline void usbTimerSetup(void)
2011-03-04 00:38:32 +00:00
{
// AVR
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_)
// Setup with 16 MHz clock
2011-03-04 00:38:32 +00:00
CPU_PRESCALE( 0 );
// Setup ISR Timer for flagging a kepress send to USB
// Set to 256 * 1024 (8 bit timer with Clock/1024 prescalar) timer
TCCR0A = 0x00;
TCCR0B = 0x03;
TIMSK0 = (1 << TOIE0);
// ARM
#elif defined(_mk20dx128_)
// 48 MHz clock by default
// System Clock Gating Register Disable
SIM_SCGC6 |= SIM_SCGC6_PIT;
// Enable Timers
PIT_MCR = 0x00;
// Setup ISR Timer for flagging a kepress send to USB
// 1 ms / (1 / 48 MHz) - 1 = 47999 cycles -> 0xBB7F
PIT_LDVAL0 = 0x0000BB7F;
PIT_TCTRL0 = 0x3; // Enable Timer 0 interrupts, and Enable Timer 0
// Insert the required vector for Timer 0
NVIC_ENABLE_IRQ( IRQ_PIT_CH0 );
#endif
}
int main(void)
{
2011-03-04 00:38:32 +00:00
// Configuring Pins
pinSetup();
init_errorLED();
2011-03-04 00:38:32 +00:00
// Setup Output Module
output_setup();
// Enable CLI
init_cli();
2011-03-04 00:38:32 +00:00
// Setup ISR Timer for flagging a kepress send to USB
usbTimerSetup();
2011-03-04 00:38:32 +00:00
// Main Detection Loop
uint8_t ledTimer = F_CPU / 1000000; // Enable LED for a short time
while ( 1 )
{
// Setup the scanning module
scan_setup();
while ( 1 )
{
// Acquire Key Indices
// Loop continuously until scan_loop returns 0
cli();
while ( scan_loop() );
sei();
2011-09-23 06:33:56 +00:00
// Run Macros over Key Indices and convert to USB Keys
process_macros();
// Send keypresses over USB if the ISR has signalled that it's time
if ( !sendKeypresses )
continue;
2011-09-23 06:33:56 +00:00
// Send USB Data
usb_send();
// Clear sendKeypresses Flag
sendKeypresses = 0;
// Indicate Error, if valid
errorLED( ledTimer );
if ( ledTimer > 0 )
ledTimer--;
}
// Loop should never get here (indicate error)
ledTimer = 255;
// HID Debug Error message
erro_print("Detection loop error, this is very bad...bug report!");
2011-09-23 06:33:56 +00:00
}
}
2011-03-04 00:38:32 +00:00
// ----- Interrupts -----
// USB Keyboard Data Send Counter Interrupt
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_) // AVR
ISR( TIMER0_OVF_vect )
#elif defined(_mk20dx128_) // ARM
void pit0_isr(void)
#endif
{
sendKeypressCounter++;
if ( sendKeypressCounter > USB_TRANSFER_DIVIDER ) {
sendKeypressCounter = 0;
sendKeypresses = 1;
}
#if defined(_mk20dx128_) // ARM
// Clear the interrupt flag
PIT_TFLG0 = 1;
#endif
}
2014-01-24 09:42:43 +00:00
// ----- CLI Command Functions -----
uint32_t readDistanceGauge()
{
// Setup distance read parameters for iGaging Distance Scale
// freq = 9kHz
// duty_cycle = 20%
// high_delay = (1/freq) * (duty_cycle/100)
// low_delay = (1/freq) * ((100-duty_cycle)/100)
uint8_t bits = 21; // 21 clock pulses, for 21 bits
uint32_t high_delay = 22; // Clock high time per pulse
uint32_t low_delay = 89; // Clock low time per pulse
// Data
uint32_t distInput = 0;
// Make sure clock is low initially
GPIOC_PCOR |= (1<<2); // Set Clock low
// Scan each of the bits
for ( uint8_t bit = 0; bit < bits; bit++ )
{
// Begin clock pulse
GPIOC_PSOR |= (1<<2); // Set Clock high
// Delay for duty cycle
delayMicroseconds( high_delay );
// End clock pulse
GPIOC_PCOR |= (1<<2); // Set Clock low
// Read Data Bit
distInput |= GPIOC_PDIR & (1<<1) ? (1 << bit) : 0;
// Delay for duty cycle
delayMicroseconds( low_delay );
}
return distInput;
}
void cliFunc_distRead( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
argumentIsolation_cli( args, &arg1Ptr, &arg2Ptr );
// Convert the argument into an int
int read_count = decToInt( arg1Ptr ) + 1;
// If no argument specified, default to 1 read
if ( *arg1Ptr == '\0' )
{
read_count = 2;
}
// Repeat reading as many times as specified in the argument
print( NL );
while ( --read_count > 0 )
{
// Prepare to print output
info_msg("Distance: ");
// Data
uint32_t distInput = readDistanceGauge();
// Output result
printInt32( distInput );
// Convert to mm
// As per http://www.shumatech.com/web/21bit_protocol?page=0,1
// 21 bits is 2560 CPI (counts per inch) (C/inch)
// 1 inch is 25.4 mm
// 2560 / 25.4 = 100.7874016... CPMM (C/mm)
// Or
// 1 count is 1/2560 = 0.000390625... inches
// 1 count is (1/2560) * 25.4 = 0.00992187500000000 mm = 9.92187500000000 um = 9921.87500000000 nm
// Since there are 21 bits (2 097 152 positions) converting to um is possible by multiplying by 1000
// which is 2 097 152 000, and within 32 bits (4 294 967 295).
// However, um is still not convenient, so 64 bits (18 446 744 073 709 551 615) is a more accurate alternative.
// For each nm there are 2 097 152 000 000 positions.
// And for shits:
// mm is 2 097 152 : 0.009 921 875 000 mm : 32 bit
// um is 2 097 152 000 : 9.921 875 000 um : 32 bit (ideal acc. for 32 bit)
// nm is 2 097 152 000 000 : 9 921.875 000 nm : 64 bit
// pm is 2 097 152 000 000 000 : 9 921 875.000 pm : 64 bit (ideal acc. for 64 bit)
// XXX Apparently shumatech was sorta wrong about the 21 bits of usage
// Yes there are 21 bits, but the values only go from ~338 to ~30681 which is less than 16 bits...
// This means that the conversion at NM can use 32 bits :D
// It's been noted that the multiplier should be 100.6 (and that it could vary from scale to scale)
uint32_t distNM = distInput * 9921;;
uint32_t distUM = distNM / 1000;
uint32_t distMM = distUM / 1000;
print(" ");
printInt32( distMM );
print(" mm ");
printInt32( distUM );
print(" um ");
printInt32( distNM );
print(" nm ");
print( NL );
// Only delay if still counting
if ( read_count > 1 )
delay( 50 );
}
}
2014-01-24 09:42:43 +00:00
void cliFunc_free( char* args )
{
}
void cliFunc_gaugeHelp( char* args )
{
}
void cliFunc_single( char* args )
{
}
void cliFunc_start( char* args )
{
}
void cliFunc_zeroForce( char* args )
{
}
void cliFunc_zeroPosition( char* args )
{
}