Archived
1
0

Matrix scanning for ARM now functional.

- CLI Debugging options added
- Various bug fixes for the matrix scanning algorithm
- Changed debouncing algorithm
This commit is contained in:
Jacob Alexander 2014-08-02 22:19:33 -07:00
parent d6345c307f
commit 19f42b0a81
6 changed files with 295 additions and 107 deletions

View File

@ -51,15 +51,12 @@
// Rows (Sense)
// PTD1..7
// Debounce threshold
#define DEBOUNCE_THRESHOLD 32
// Define Rows (Sense) and Columns (Strobes)
GPIO_Pin Matrix_cols[] = { gpio(B,0), gpio(B,1), gpio(B,2), gpio(B,3), gpio(B,16), gpio(B,17), gpio(C,4), gpio(C,5) };
GPIO_Pin Matrix_cols[] = { gpio(B,0), gpio(B,1), gpio(B,2), gpio(B,3), gpio(B,16), gpio(B,17), gpio(C,4), gpio(C,5), gpio(D,0) };
GPIO_Pin Matrix_rows[] = { gpio(D,1), gpio(D,2), gpio(D,3), gpio(D,4), gpio(D,5), gpio(D,6), gpio(D,7) };
// Define type of scan matrix
Config Matrix_type = Config_Pullup;
Config Matrix_type = Config_Pulldown;
#endif // __MATRIX_H

View File

@ -28,6 +28,7 @@
#include <cli.h>
#include <led.h>
#include <print.h>
#include <matrix_scan.h>
// Local Includes
#include "scan_loop.h"
@ -35,10 +36,21 @@
// ----- Function Declarations -----
// CLI Functions
void cliFunc_echo( char* args );
// ----- Variables -----
// Indicates if the next scan is the first after a USB send
uint8_t Scan_firstScan = 1;
// Scan Module command dictionary
char* scanCLIDictName = "Scan Module Commands";
CLIDictItem scanCLIDict[] = {
{ "echo", "Example command, echos the arguments.", cliFunc_echo },
{ 0, 0, 0 } // Null entry for dictionary end
};
// Number of scans since the last USB send
uint16_t Scan_scanCount = 0;
@ -50,21 +62,21 @@ uint16_t Scan_scanCount = 0;
// Setup
inline void Scan_setup()
{
// Register Scan CLI dictionary
CLI_registerDictionary( scanCLIDict, scanCLIDictName );
// Setup GPIO pins for matrix scanning
Matrix_setup();
// First scan is next
Scan_firstScan = 1;
// Reset scan count
Scan_scanCount = 0;
}
// Main Detection Loop
inline uint8_t Scan_loop()
{
Matrix_scan( Scan_scanCount++, Scan_firstScan );
// No longer the first scan
Scan_firstScan = 0;
Matrix_scan( Scan_scanCount++ );
return 0;
}
@ -81,7 +93,33 @@ inline void Scan_finishedWithOutput( uint8_t sentKeys )
{
// Reset scan loop indicator (resets each key debounce state)
// TODO should this occur after USB send or Macro processing?
Scan_firstScan = 1;
Scan_scanCount = 0;
}
// ----- CLI Command Functions -----
// XXX Just an example command showing how to parse arguments (more complex than generally needed)
void cliFunc_echo( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Parse args until a \0 is found
while ( 1 )
{
print( NL ); // No \r\n by default after the command is entered
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Print out the arg
dPrint( arg1Ptr );
}
}

View File

@ -27,16 +27,6 @@
// Compiler Includes
#include <stdint.h>
// Local Includes
// ----- Defines -----
// ----- Variables -----
// ----- Functions -----

View File

@ -38,11 +38,39 @@
// ----- Function Declarations -----
// CLI Functions
void cliFunc_matrixDebug( char* args );
void cliFunc_matrixState( char* args );
// ----- Variables -----
// Scan Module command dictionary
char* matrixCLIDictName = "Matrix Module Commands";
CLIDictItem matrixCLIDict[] = {
{ "matrixDebug", "Enables matrix debug mode, prints out each scan code." NL "\t\tIf argument \033[35mT\033[0m is given, prints out each scan code state transition.", cliFunc_matrixDebug },
{ "matrixState", "Prints out the current scan table N times." NL "\t\t \033[1mO\033[0m - Off, \033[1;33mP\033[0m - Press, \033[1;32mH\033[0m - Hold, \033[1;35mR\033[0m - Release, \033[1;31mI\033[0m - Invalid", cliFunc_matrixState },
{ 0, 0, 0 } // Null entry for dictionary end
};
// Debounce Array
KeyState Matrix_scanArray[ Matrix_colsNum * Matrix_rowsNum ];
// Matrix debug flag - If set to 1, for each keypress the scan code is displayed in hex
// If set to 2, for each key state change, the scan code is displayed along with the state
uint8_t matrixDebugMode = 0;
// Matrix State Table Debug Counter - If non-zero display state table after every matrix scan
uint16_t matrixDebugStateCounter = 0;
// Matrix Scan Counters
uint16_t matrixMaxScans = 0;
uint16_t matrixCurScans = 0;
uint16_t matrixPrevScans = 0;
// ----- Functions -----
@ -53,40 +81,40 @@ KeyState Matrix_scanArray[ Matrix_colsNum * Matrix_rowsNum ];
uint8_t Matrix_pin( GPIO_Pin gpio, Type type )
{
// Register width is defined as size of a pointer
uint8_t port_offset = (uint8_t)gpio.port * sizeof(unsigned int*);
unsigned int gpio_offset = gpio.port * 0x40 / sizeof(unsigned int*);
unsigned int port_offset = gpio.port * 0x1000 / sizeof(unsigned int*) + gpio.pin;
// Assumes 6 registers between GPIO Port registers
volatile unsigned int GPIO_PDDR = *(&GPIOA_PDDR + port_offset * 6);
volatile unsigned int GPIO_PSOR = *(&GPIOA_PSOR + port_offset * 6);
volatile unsigned int GPIO_PCOR = *(&GPIOA_PCOR + port_offset * 6);
volatile unsigned int GPIO_PDIR = *(&GPIOA_PDIR + port_offset * 6);
// Assumes 35 registers between PORT pin registers
volatile unsigned int PORT_PCR = *(&PORTA_PCR0 + port_offset * 35);
// Assumes 0x40 between GPIO Port registers and 0x1000 between PORT pin registers
// See Lib/mk20dx.h
volatile unsigned int *GPIO_PDDR = (unsigned int*)(&GPIOA_PDDR) + gpio_offset;
volatile unsigned int *GPIO_PSOR = (unsigned int*)(&GPIOA_PSOR) + gpio_offset;
volatile unsigned int *GPIO_PCOR = (unsigned int*)(&GPIOA_PCOR) + gpio_offset;
volatile unsigned int *GPIO_PDIR = (unsigned int*)(&GPIOA_PDIR) + gpio_offset;
volatile unsigned int *PORT_PCR = (unsigned int*)(&PORTA_PCR0) + port_offset;
// Operation depends on Type
switch ( type )
{
case Type_StrobeOn:
GPIO_PSOR |= (1 << gpio.pin);
*GPIO_PSOR |= (1 << gpio.pin);
break;
case Type_StrobeOff:
GPIO_PCOR |= (1 << gpio.pin);
*GPIO_PCOR |= (1 << gpio.pin);
break;
case Type_StrobeSetup:
// Set as output pin
GPIO_PDDR |= (1 << gpio.pin);
*GPIO_PDDR |= (1 << gpio.pin);
// Configure pin with slow slew, high drive strength and GPIO mux
PORT_PCR = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
*PORT_PCR = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
// Enabling open-drain if specified
switch ( Matrix_type )
{
case Config_Opendrain:
PORT_PCR |= PORT_PCR_ODE;
*PORT_PCR |= PORT_PCR_ODE;
break;
// Do nothing otherwise
@ -96,24 +124,24 @@ uint8_t Matrix_pin( GPIO_Pin gpio, Type type )
break;
case Type_Sense:
return GPIO_PDIR & (1 << gpio.pin) ? 1 : 0;
return *GPIO_PDIR & (1 << gpio.pin) ? 1 : 0;
case Type_SenseSetup:
// Set as input pin
GPIO_PDDR &= ~(1 << gpio.pin);
*GPIO_PDDR &= ~(1 << gpio.pin);
// Configure pin with passive filter and GPIO mux
PORT_PCR = PORT_PCR_PFE | PORT_PCR_MUX(1);
*PORT_PCR = PORT_PCR_PFE | PORT_PCR_MUX(1);
// Pull resistor config
switch ( Matrix_type )
{
case Config_Pullup:
PORT_PCR |= PORT_PCR_PE | PORT_PCR_PS;
*PORT_PCR |= PORT_PCR_PE | PORT_PCR_PS;
break;
case Config_Pulldown:
PORT_PCR |= PORT_PCR_PE;
*PORT_PCR |= PORT_PCR_PE;
break;
// Do nothing otherwise
@ -129,32 +157,91 @@ uint8_t Matrix_pin( GPIO_Pin gpio, Type type )
// Setup GPIO pins for matrix scanning
void Matrix_setup()
{
// Register Matrix CLI dictionary
CLI_registerDictionary( matrixCLIDict, matrixCLIDictName );
info_msg("Columns: ");
printHex( Matrix_colsNum );
// Setup Strobe Pins
for ( uint8_t pin = 0; pin < Matrix_colsNum; pin++ )
{
Matrix_pin( Matrix_cols[ pin ], Type_StrobeSetup );
}
print( NL );
info_msg("Rows: ");
printHex( Matrix_rowsNum );
// Setup Sense Pins
for ( uint8_t pin = 0; pin < Matrix_rowsNum; pin++ )
{
Matrix_pin( Matrix_rows[ pin ], Type_SenseSetup );
}
print( NL );
info_msg("Max Keys: ");
printHex( Matrix_maxKeys );
// Clear out Debounce Array
for ( uint8_t item = 0; item < Matrix_maxKeys; item++ )
{
Matrix_scanArray[ item ].prevState = KeyState_Off;
Matrix_scanArray[ item ].curState = KeyState_Off;
Matrix_scanArray[ item ].activeCount = 0;
Matrix_scanArray[ item ].inactiveCount = 0;
Matrix_scanArray[ item ].inactiveCount = 0xFFFF; // Start at 'off' steady state
}
// Clear scan stats counters
matrixMaxScans = 0;
matrixPrevScans = 0;
}
void Matrix_keyPositionDebug( KeyPosition pos )
{
// Depending on the state, use a different flag + color
switch ( pos )
{
case KeyState_Off:
print("\033[1mO\033[0m");
break;
case KeyState_Press:
print("\033[1;33mP\033[0m");
break;
case KeyState_Hold:
print("\033[1;32mH\033[0m");
break;
case KeyState_Release:
print("\033[1;35mR\033[0m");
break;
case KeyState_Invalid:
default:
print("\033[1;31mI\033[0m");
break;
}
}
// Scan the matrix for keypresses
// NOTE: firstScan should be set on the first scan after a USB send (to reset all the counters)
void Matrix_scan( uint16_t scanNum, uint8_t firstScan )
// NOTE: scanNum should be reset to 0 after a USB send (to reset all the counters)
void Matrix_scan( uint16_t scanNum )
{
// Increment stats counters
if ( scanNum > matrixMaxScans ) matrixMaxScans = scanNum;
if ( scanNum == 0 )
{
matrixPrevScans = matrixCurScans;
matrixCurScans = 0;
}
else
{
matrixCurScans++;
}
// For each strobe, scan each of the sense pins
for ( uint8_t strobe = 0; strobe < Matrix_colsNum; strobe++ )
{
@ -165,11 +252,11 @@ void Matrix_scan( uint16_t scanNum, uint8_t firstScan )
for ( uint8_t sense = 0; sense < Matrix_rowsNum; sense++ )
{
// Key position
uint8_t key = Matrix_rowsNum * strobe + sense;
uint8_t key = Matrix_colsNum * sense + strobe;
KeyState *state = &Matrix_scanArray[ key ];
// If first scan, reset state
if ( firstScan )
if ( scanNum == 0 )
{
// Set previous state, and reset current state
state->prevState = state->curState;
@ -177,33 +264,37 @@ void Matrix_scan( uint16_t scanNum, uint8_t firstScan )
}
// Signal Detected
// Increment count and right shift opposing count
// This means there is a maximum of scan 13 cycles on a perfect off to on transition
// (coming from a steady state 0xFFFF off scans)
// Somewhat longer with switch bounciness
// The advantage of this is that the count is ongoing and never needs to be reset
// State still needs to be kept track of to deal with what to send to the Macro module
if ( Matrix_pin( Matrix_rows[ sense ], Type_Sense ) )
{
// Only update if not going to wrap around
state->activeCount += state->activeCount < 255 ? 1 : 0;
state->inactiveCount -= state->inactiveCount > 0 ? 1 : 0;
if ( state->activeCount < 0xFFFF ) state->activeCount += 1;
state->inactiveCount >>= 1;
}
// Signal Not Detected
else
{
// Only update if not going to wrap around
state->inactiveCount += state->inactiveCount < 255 ? 1 : 0;
state->activeCount -= state->activeCount > 0 ? 1 : 0;
if ( state->inactiveCount < 0xFFFF ) state->inactiveCount += 1;
state->activeCount >>= 1;
}
// Check for state change if it hasn't been set
// Only check if the minimum number of scans has been met
// the current state is invalid
// and either active or inactive count is over the debounce threshold
if ( scanNum > DEBOUNCE_THRESHOLD
&& state->curState != KeyState_Invalid
&& ( state->activeCount > DEBOUNCE_THRESHOLD || state->inactiveCount > DEBOUNCE_THRESHOLD ) )
if ( state->curState == KeyState_Invalid )
{
switch ( state->prevState )
{
case KeyState_Press:
case KeyState_Hold:
if ( state->activeCount > DEBOUNCE_THRESHOLD )
if ( state->activeCount > state->inactiveCount )
{
state->curState = KeyState_Hold;
}
@ -215,28 +306,145 @@ void Matrix_scan( uint16_t scanNum, uint8_t firstScan )
case KeyState_Release:
case KeyState_Off:
if ( state->activeCount > DEBOUNCE_THRESHOLD )
if ( state->activeCount > state->inactiveCount )
{
state->curState = KeyState_Press;
}
else if ( state->inactiveCount > DEBOUNCE_THRESHOLD )
else
{
state->curState = KeyState_Off;
}
break;
case KeyState_Invalid:
default:
erro_print("Matrix scan bug!! Report me!");
break;
}
// Send keystate to macro module
Macro_keyState( key, state->curState );
// Matrix Debug, only if there is a state change
if ( matrixDebugMode && state->curState != state->prevState )
{
// Basic debug output
if ( matrixDebugMode == 1 && state->curState == KeyState_Press )
{
printHex( key );
print(" ");
}
// State transition debug output
else if ( matrixDebugMode == 2 )
{
printHex( key );
Matrix_keyPositionDebug( state->curState );
print(" ");
}
}
}
}
// Unstrobe Pin
Matrix_pin( Matrix_cols[ strobe ], Type_StrobeOff );
}
// State Table Output Debug
if ( matrixDebugStateCounter > 0 )
{
// Decrement counter
matrixDebugStateCounter--;
// Output stats on number of scans being done per USB send
print( NL );
info_msg("Max scans: ");
printHex( matrixMaxScans );
print( NL );
info_msg("Previous scans: ");
printHex( matrixPrevScans );
print( NL );
// Output current scan number
info_msg("Scan Number: ");
printHex( scanNum );
print( NL );
// Display the state info for each key
print("<key>:<previous state><current state> <active count> <inactive count>");
for ( uint8_t key = 0; key < Matrix_maxKeys; key++ )
{
// Every 4 keys, put a newline
if ( key % 4 == 0 )
print( NL );
print("\033[1m0x");
printHex_op( key, 2 );
print("\033[0m");
print(":");
Matrix_keyPositionDebug( Matrix_scanArray[ key ].prevState );
Matrix_keyPositionDebug( Matrix_scanArray[ key ].curState );
print(" 0x");
printHex_op( Matrix_scanArray[ key ].activeCount, 4 );
print(" 0x");
printHex_op( Matrix_scanArray[ key ].inactiveCount, 4 );
print(" ");
}
print( NL );
}
}
// ----- CLI Command Functions -----
void cliFunc_matrixDebug ( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// Set the matrix debug flag depending on the argument
// If no argument, set to scan code only
// If set to T, set to state transition
switch ( arg1Ptr[0] )
{
// T as argument
case 'T':
case 't':
matrixDebugMode = matrixDebugMode != 2 ? 2 : 0;
break;
// No argument
case '\0':
matrixDebugMode = matrixDebugMode != 1 ? 1 : 0;
break;
// Invalid argument
default:
return;
}
print( NL );
info_msg("Matrix Debug Mode: ");
printInt8( matrixDebugMode );
}
void cliFunc_matrixState ( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// Default to 1 if no argument is given
matrixDebugStateCounter = 1;
if ( arg1Ptr[0] != '\0' )
{
matrixDebugStateCounter = (uint16_t)decToInt( arg1Ptr );
}
}

View File

@ -112,8 +112,8 @@ typedef struct GPIO_Pin {
typedef struct KeyState {
KeyPosition prevState;
KeyPosition curState;
uint8_t activeCount;
uint8_t inactiveCount;
uint16_t activeCount;
uint16_t inactiveCount;
} KeyState;
@ -121,7 +121,7 @@ typedef struct KeyState {
// ----- Functions -----
void Matrix_setup();
void Matrix_scan( uint16_t scanNum, uint8_t firstScan );
void Matrix_scan( uint16_t scanNum );
#endif // __MATRIX_SCAN_H

47
main.c
View File

@ -49,10 +49,6 @@
// ----- Function Declarations -----
// ----- Variables -----
// Timer Interrupt for flagging a send of the sampled key detection data to the USB host
@ -65,41 +61,6 @@ volatile uint8_t sendKeypresses = 0;
// ----- Functions -----
// Initial Pin Setup, make sure they are sane
inline void pinSetup()
{
// AVR
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_)
// For each pin, 0=input, 1=output
#if defined(__AVR_AT90USB1286__)
DDRA = 0x00;
#endif
DDRB = 0x00;
DDRC = 0x00;
DDRD = 0x00;
DDRE = 0x00;
DDRF = 0x00;
// Setting pins to either high or pull-up resistor
#if defined(__AVR_AT90USB1286__)
PORTA = 0x00;
#endif
PORTB = 0x00;
PORTC = 0x00;
PORTD = 0x00;
PORTE = 0x00;
PORTF = 0x00;
// ARM
#elif defined(_mk20dx128_) || defined(_mk20dx128vlf5_) || defined(_mk20dx256_) // ARM
// TODO - Should be cleared, but not that necessary due to the pin layout
#endif
}
inline void usbTimerSetup()
{
// AVR
@ -134,11 +95,9 @@ inline void usbTimerSetup()
#endif
}
int main()
{
// Configuring Pins
pinSetup();
// Enable CLI
CLI_init();
@ -199,7 +158,3 @@ void pit0_isr()
#endif
}
// ----- CLI Command Functions -----