Adding iGaging support for reading values as mm, um and nm.
- Conversion factor "should" be ok, will require proper verification
This commit is contained in:
parent
8263589e7e
commit
35ae82fff7
@ -284,3 +284,36 @@ int16_t eqStr( char* str1, char* str2 )
|
|||||||
return *--str1 == *--str2 ? -1 : *++str1;
|
return *--str1 == *--str2 ? -1 : *++str1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int decToInt( char* in )
|
||||||
|
{
|
||||||
|
// Pointers to the LSD (Least Significant Digit) and MSD
|
||||||
|
char* lsd = in;
|
||||||
|
char* msd = in;
|
||||||
|
|
||||||
|
int total = 0;
|
||||||
|
int sign = 1; // Default to positive
|
||||||
|
|
||||||
|
// Scan the string once to determine the length
|
||||||
|
while ( *lsd != '\0' )
|
||||||
|
{
|
||||||
|
// Check for positive/negative
|
||||||
|
switch ( *lsd++ )
|
||||||
|
{
|
||||||
|
// Fall through is intentional, only do something on negative, ignore the rest
|
||||||
|
// Update the MSD to remove leading spaces and signs
|
||||||
|
case '-': sign = -1;
|
||||||
|
case '+':
|
||||||
|
case ' ':
|
||||||
|
msd = lsd;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Rescan the string from the LSD to MSD to convert it to a decimal number
|
||||||
|
for ( unsigned int digit = 1; lsd > msd ; digit *= 10 )
|
||||||
|
total += ( (*--lsd) - '0' ) * digit;
|
||||||
|
|
||||||
|
// Propagate sign and return
|
||||||
|
return total * sign;
|
||||||
|
}
|
||||||
|
|
||||||
|
@ -112,6 +112,7 @@ void hexToStr_op( uint16_t in, char* out, uint8_t op );
|
|||||||
void revsStr ( char* in );
|
void revsStr ( char* in );
|
||||||
uint16_t lenStr ( char* in );
|
uint16_t lenStr ( char* in );
|
||||||
int16_t eqStr ( char* str1, char* str2 ); // Returns -1 if identical, last character of str1 comparison (0 if str1 is like str2)
|
int16_t eqStr ( char* str1, char* str2 ); // Returns -1 if identical, last character of str1 comparison (0 if str1 is like str2)
|
||||||
|
int decToInt ( char* in ); // Returns the int representation of a string
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
106
main.c
106
main.c
@ -226,34 +226,25 @@ void pit0_isr(void)
|
|||||||
|
|
||||||
// ----- CLI Command Functions -----
|
// ----- CLI Command Functions -----
|
||||||
|
|
||||||
void cliFunc_distRead( char* args )
|
uint32_t readDistanceGauge()
|
||||||
{
|
{
|
||||||
// Prepare to print output
|
|
||||||
print( NL );
|
|
||||||
info_msg("Distance: ");
|
|
||||||
|
|
||||||
// Data
|
|
||||||
uint32_t distInput = 0;
|
|
||||||
|
|
||||||
// Setup distance read parameters for iGaging Distance Scale
|
// Setup distance read parameters for iGaging Distance Scale
|
||||||
// freq = 9kHz
|
// freq = 9kHz
|
||||||
// duty_cycle = 20%
|
// duty_cycle = 20%
|
||||||
// high_delay = (1/freq) * (duty_cycle/100)
|
// high_delay = (1/freq) * (duty_cycle/100)
|
||||||
// low_delay = (1/freq) * ((100-duty_cycle)/100)
|
// low_delay = (1/freq) * ((100-duty_cycle)/100)
|
||||||
uint8_t bits = 21; // 21 clock pulses, for 21 bits
|
uint8_t bits = 21; // 21 clock pulses, for 21 bits
|
||||||
//uint32_t high_delay = 22; // Clock high time per pulse
|
uint32_t high_delay = 22; // Clock high time per pulse
|
||||||
//uint32_t low_delay = 89; // Clock low time per pulse
|
uint32_t low_delay = 89; // Clock low time per pulse
|
||||||
uint32_t high_delay = 40; // Clock high time per pulse
|
|
||||||
uint32_t low_delay = 60; // Clock low time per pulse
|
// Data
|
||||||
|
uint32_t distInput = 0;
|
||||||
|
|
||||||
// Make sure clock is low initially
|
// Make sure clock is low initially
|
||||||
GPIOC_PCOR |= (1<<2); // Set Clock low
|
GPIOC_PCOR |= (1<<2); // Set Clock low
|
||||||
/*
|
|
||||||
while(1)
|
|
||||||
{
|
|
||||||
*/
|
|
||||||
// Scan each of the bits
|
// Scan each of the bits
|
||||||
for ( uint8_t bit = bits; bit > 0; bit-- )
|
for ( uint8_t bit = 0; bit < bits; bit++ )
|
||||||
{
|
{
|
||||||
// Begin clock pulse
|
// Begin clock pulse
|
||||||
GPIOC_PSOR |= (1<<2); // Set Clock high
|
GPIOC_PSOR |= (1<<2); // Set Clock high
|
||||||
@ -265,21 +256,41 @@ while(1)
|
|||||||
GPIOC_PCOR |= (1<<2); // Set Clock low
|
GPIOC_PCOR |= (1<<2); // Set Clock low
|
||||||
|
|
||||||
// Read Data Bit
|
// Read Data Bit
|
||||||
//distInput |= GPIOD_PDIR & (1<<6) ? (1 << (bit - 1)) : 0;
|
distInput |= GPIOC_PDIR & (1<<1) ? (1 << bit) : 0;
|
||||||
//if ( GPIOD_PDIR )
|
|
||||||
if ( GPIOD_PDIR & (1<<6) )
|
|
||||||
{
|
|
||||||
print("1");
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
print("0");
|
|
||||||
}
|
|
||||||
|
|
||||||
// Delay for duty cycle
|
// Delay for duty cycle
|
||||||
delayMicroseconds( low_delay );
|
delayMicroseconds( low_delay );
|
||||||
}
|
}
|
||||||
print(" ");
|
|
||||||
|
return distInput;
|
||||||
|
}
|
||||||
|
|
||||||
|
void cliFunc_distRead( char* args )
|
||||||
|
{
|
||||||
|
// Parse number from argument
|
||||||
|
// NOTE: Only first argument is used
|
||||||
|
char* arg1Ptr;
|
||||||
|
char* arg2Ptr;
|
||||||
|
argumentIsolation_cli( args, &arg1Ptr, &arg2Ptr );
|
||||||
|
|
||||||
|
// Convert the argument into an int
|
||||||
|
int read_count = decToInt( arg1Ptr ) + 1;
|
||||||
|
|
||||||
|
// If no argument specified, default to 1 read
|
||||||
|
if ( *arg1Ptr == '\0' )
|
||||||
|
{
|
||||||
|
read_count = 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Repeat reading as many times as specified in the argument
|
||||||
|
print( NL );
|
||||||
|
while ( --read_count > 0 )
|
||||||
|
{
|
||||||
|
// Prepare to print output
|
||||||
|
info_msg("Distance: ");
|
||||||
|
|
||||||
|
// Data
|
||||||
|
uint32_t distInput = readDistanceGauge();
|
||||||
|
|
||||||
// Output result
|
// Output result
|
||||||
printInt32( distInput );
|
printInt32( distInput );
|
||||||
@ -291,26 +302,22 @@ while(1)
|
|||||||
// 2560 / 25.4 = 100.7874016... CPMM (C/mm)
|
// 2560 / 25.4 = 100.7874016... CPMM (C/mm)
|
||||||
// Or
|
// Or
|
||||||
// 1 count is 1/2560 = 0.000390625... inches
|
// 1 count is 1/2560 = 0.000390625... inches
|
||||||
// 1 count is (1/2560) * 25.4 = 0.0000153789370078740 mm = 0.0153789370078740 um = 15.3789370078740 nm
|
// 1 count is (1/2560) * 25.4 = 0.00992187500000000 mm = 9.92187500000000 um = 9921.87500000000 nm
|
||||||
// Since there are 21 bits (2 097 152 positions) converting to um is possible by multiplying by 1000
|
// Since there are 21 bits (2 097 152 positions) converting to um is possible by multiplying by 1000
|
||||||
// which is 2 097 152 000, and within 32 bits (4 294 967 295).
|
// which is 2 097 152 000, and within 32 bits (4 294 967 295).
|
||||||
// However, um is still not convenient, so 64 bits (18 446 744 073 709 551 615) is a more accurate alternative.
|
// However, um is still not convenient, so 64 bits (18 446 744 073 709 551 615) is a more accurate alternative.
|
||||||
// For each nm there are 2 097 152 000 000 positions.
|
// For each nm there are 2 097 152 000 000 positions.
|
||||||
// And for shits:
|
// And for shits:
|
||||||
// pm is 2 097 152 : 0.000 015 378 937 007 874 0 mm : 32 bit
|
// mm is 2 097 152 : 0.009 921 875 000 mm : 32 bit
|
||||||
// pm is 2 097 152 000 : 0.015 378 937 007 874 0 um : 32 bit (ideal acc. for 32 bit)
|
// um is 2 097 152 000 : 9.921 875 000 um : 32 bit (ideal acc. for 32 bit)
|
||||||
// pm is 2 097 152 000 000 : 15.378 937 007 874 0 nm : 64 bit
|
// nm is 2 097 152 000 000 : 9 921.875 000 nm : 64 bit
|
||||||
// pm is 2 097 152 000 000 000 : 15 378.937 007 874 0 pm : 64 bit
|
// pm is 2 097 152 000 000 000 : 9 921 875.000 pm : 64 bit (ideal acc. for 64 bit)
|
||||||
// fm is 2 097 152 000 000 000 000 : 15 378 937.007 874 0 fm : 64 bit (ideal acc. for 64 bit)
|
|
||||||
//uint64_t distNM = distInput * 15;
|
|
||||||
//uint64_t distPM = distInput * 15378;
|
|
||||||
uint64_t distFM = distInput * 15378937;
|
|
||||||
|
|
||||||
// Calculate um and mm
|
// XXX Apparently shumatech was sorta wrong about the 21 bits of usage
|
||||||
//uint32_t distNM = distInput * 15; // XXX
|
// Yes there are 21 bits, but the values only go from ~338 to ~30681 which is less than 16 bits...
|
||||||
//uint32_t distUM = distNM / 1000;
|
// This means that the conversion at NM can use 32 bits :D
|
||||||
//uint32_t distMM = distNM / 1000000;
|
// It's been noted that the multiplier should be 100.6 (and that it could vary from scale to scale)
|
||||||
uint32_t distNM = distFM * 1000000;
|
uint32_t distNM = distInput * 9921;;
|
||||||
uint32_t distUM = distNM / 1000;
|
uint32_t distUM = distNM / 1000;
|
||||||
uint32_t distMM = distUM / 1000;
|
uint32_t distMM = distUM / 1000;
|
||||||
|
|
||||||
@ -320,15 +327,14 @@ while(1)
|
|||||||
printInt32( distUM );
|
printInt32( distUM );
|
||||||
print(" um ");
|
print(" um ");
|
||||||
printInt32( distNM );
|
printInt32( distNM );
|
||||||
print(" nm");
|
print(" nm ");
|
||||||
|
|
||||||
/*
|
print( NL );
|
||||||
//Wait
|
|
||||||
print(NL);
|
// Only delay if still counting
|
||||||
delay( 7 );
|
if ( read_count > 1 )
|
||||||
distInput = 0;
|
delay( 50 );
|
||||||
}
|
}
|
||||||
*/
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user