Browse Source

UARTConnect enumeration working!

- Fixed cli reflash mode set
- Cleaned up debugging code
- 4 500 000 baud seems to be reliable
- Fixed master selection (assumes slave node unless USB enumerates)
connect
Jacob Alexander 8 years ago
parent
commit
55d03f448e

+ 0
- 29
Bootloader/main.c View File

@@ -210,35 +210,6 @@ void main()
printHex( memcmp( (uint8_t*)&VBAT, sys_reset_to_loader_magic, sizeof(sys_reset_to_loader_magic) ) == 0 );
print( NL );

// XXX REMOVEME
/*
GPIOB_PDDR |= (1<<16);
PORTB_PCR16 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOB_PSOR |= (1<<16);

// RST
GPIOC_PDDR |= (1<<8);
PORTC_PCR8 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOC_PSOR |= (1<<8);

// CS1B
GPIOC_PDDR |= (1<<4);
PORTC_PCR4 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOC_PCOR |= (1<<4);
*/
// Backlight
/*
GPIOC_PDDR |= (1<<1);
PORTC_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOC_PCOR |= (1<<1);
GPIOC_PDDR |= (1<<2);
PORTC_PCR2 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOC_PCOR |= (1<<2);
GPIOC_PDDR |= (1<<3);
PORTC_PCR3 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOC_PCOR |= (1<<3);
*/

#ifdef FLASH_DEBUG
for ( uint8_t sector = 0; sector < 3; sector++ )
sector_print( &_app_rom, sector, 16 );

+ 9
- 6
Output/pjrcUSB/arm/usb_dev.c View File

@@ -1,7 +1,7 @@
/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
* Modifications by Jacob Alexander (2013-2014)
* Modifications by Jacob Alexander (2013-2015)
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
@@ -204,6 +204,7 @@ static void usb_setup()
print("CONFIGURE - ");
#endif
usb_configuration = setup.wValue;
Output_Available = usb_configuration;
reg = &USB0_ENDPT1;
cfg = usb_endpoint_config_table;
// clear all BDT entries, free any allocated memory...
@@ -861,6 +862,13 @@ void usb_device_reload()
SOFTWARE_RESET();
}

// Kiibohd mk20dx256vlh7
#elif defined(_mk20dx256vlh7_)
// Copies variable into the VBAT register, must be identical to the variable in the bootloader to jump to the bootloader flash mode
for ( int pos = 0; pos < sizeof(sys_reset_to_loader_magic); pos++ )
(&VBAT)[ pos ] = sys_reset_to_loader_magic[ pos ];
SOFTWARE_RESET();

// Teensy 3.0 and 3.1
#else
asm volatile("bkpt");
@@ -1118,11 +1126,6 @@ uint8_t usb_init()
print("USB INIT"NL);
#endif

// If no USB cable is attached, do not initialize usb
// XXX Test -HaaTa
//if ( USB0_OTGISTAT & USB_OTGSTAT_ID )
// return 0;

// Clear out endpoints table
for ( int i = 0; i <= NUM_ENDPOINTS * 4; i++ )
{

+ 17
- 19
Output/pjrcUSB/output_com.c View File

@@ -93,20 +93,20 @@ CLIDict_Def( outputCLIDict, "USB Module Commands" ) = {
// Which modifier keys are currently pressed
// 1=left ctrl, 2=left shift, 4=left alt, 8=left gui
// 16=right ctrl, 32=right shift, 64=right alt, 128=right gui
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer

// Currently pressed keys, max is defined by USB_MAX_KEY_SEND
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer

// System Control and Consumer Control 1KRO containers
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;

// The number of keys sent to the usb in the array
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;

// 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana
volatile uint8_t USBKeys_LEDs = 0;
@@ -122,20 +122,20 @@ USBKeyChangeState USBKeys_Changed = USBKeyChangeState_None;

// the idle configuration, how often we send the report to the
// host (ms * 4) even when it hasn't changed
uint8_t USBKeys_Idle_Config = 125;
uint8_t USBKeys_Idle_Config = 125;

// count until idle timeout
uint8_t USBKeys_Idle_Count = 0;
uint8_t USBKeys_Idle_Count = 0;

// Indicates whether the Output module is fully functional
// 0 - Not fully functional, 1 - Fully functional
// 0 is often used to show that a USB cable is not plugged in (but has power)
uint8_t Output_Available = 0;
volatile uint8_t Output_Available = 0;

// Debug control variable for Output modules
// 0 - Debug disabled (default)
// 1 - Debug enabled
uint8_t Output_DebugMode = 0;
uint8_t Output_DebugMode = 0;



@@ -505,13 +505,11 @@ void Output_flushBuffers()
// USB Module Setup
inline void Output_setup()
{
// Initialize the USB, and then wait for the host to set configuration.
// This will hang forever if USB does not initialize
// If no USB cable is attached, does not try and initialize USB
if ( usb_init() )
{
while ( !usb_configured() );
}
// Initialize the USB
// If a USB connection does not exist, just ignore it
// All usb related functions will non-fatally fail if called
// If the USB initialization is delayed, then functionality will just be delayed
usb_init();

// Register USB Output CLI dictionary
CLI_registerDictionary( outputCLIDict, outputCLIDictName );

+ 1
- 1
Output/pjrcUSB/output_com.h View File

@@ -78,7 +78,7 @@ extern uint8_t USBKeys_Idle_Count;

extern USBKeyChangeState USBKeys_Changed;

extern uint8_t Output_Available; // 0 - Output module not fully functional, 1 - Output module working
extern volatile uint8_t Output_Available; // 0 - Output module not fully functional, 1 - Output module working

extern uint8_t Output_DebugMode; // 0 - Debug disabled, 1 - Debug enabled


+ 100
- 37
Output/usbMuxUart/output_com.c View File

@@ -61,6 +61,7 @@
// ----- Function Declarations -----

void cliFunc_kbdProtocol( char* args );
void cliFunc_outputDebug( char* args );
void cliFunc_readLEDs ( char* args );
void cliFunc_readUART ( char* args );
void cliFunc_sendKeys ( char* args );
@@ -74,6 +75,7 @@ void cliFunc_setMod ( char* args );

// Output Module command dictionary
CLIDict_Entry( kbdProtocol, "Keyboard Protocol Mode: 0 - Boot, 1 - OS/NKRO Mode" );
CLIDict_Entry( outputDebug, "Toggle Output Debug mode." );
CLIDict_Entry( readLEDs, "Read LED byte:" NL "\t\t1 NumLck, 2 CapsLck, 4 ScrlLck, 16 Kana, etc." );
CLIDict_Entry( readUART, "Read UART buffer until empty." );
CLIDict_Entry( sendKeys, "Send the prepared list of USB codes and modifier byte." );
@@ -83,6 +85,7 @@ CLIDict_Entry( setMod, "Set the modfier byte:" NL "\t\t1 LCtrl, 2 LShft, 4

CLIDict_Def( outputCLIDict, "USB Module Commands" ) = {
CLIDict_Item( kbdProtocol ),
CLIDict_Item( outputDebug ),
CLIDict_Item( readLEDs ),
CLIDict_Item( readUART ),
CLIDict_Item( sendKeys ),
@@ -96,20 +99,20 @@ CLIDict_Def( outputCLIDict, "USB Module Commands" ) = {
// Which modifier keys are currently pressed
// 1=left ctrl, 2=left shift, 4=left alt, 8=left gui
// 16=right ctrl, 32=right shift, 64=right alt, 128=right gui
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer

// Currently pressed keys, max is defined by USB_MAX_KEY_SEND
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer

// System Control and Consumer Control 1KRO containers
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;

// The number of keys sent to the usb in the array
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;

// 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana
volatile uint8_t USBKeys_LEDs = 0;
@@ -117,7 +120,7 @@ volatile uint8_t USBKeys_LEDs = 0;
// Protocol setting from the host.
// 0 - Boot Mode
// 1 - NKRO Mode (Default, unless set by a BIOS or boot interface)
volatile uint8_t USBKeys_Protocol = 0;
volatile uint8_t USBKeys_Protocol = 1;

// Indicate if USB should send update
// OS only needs update if there has been a change in state
@@ -125,20 +128,20 @@ USBKeyChangeState USBKeys_Changed = USBKeyChangeState_None;

// the idle configuration, how often we send the report to the
// host (ms * 4) even when it hasn't changed
uint8_t USBKeys_Idle_Config = 125;
uint8_t USBKeys_Idle_Config = 125;

// count until idle timeout
uint8_t USBKeys_Idle_Count = 0;
uint8_t USBKeys_Idle_Count = 0;

// Indicates whether the Output module is fully functional
// 0 - Not fully functional, 1 - Fully functional
// 0 is often used to show that a USB cable is not plugged in (but has power)
uint8_t Output_Available = 0;
volatile uint8_t Output_Available = 0;

// Debug control variable for Output modules
// 0 - Debug disabled (default)
// 1 - Debug enabled
uint8_t Output_DebugMode = 0;
uint8_t Output_DebugMode = 0;



@@ -222,7 +225,10 @@ void Output_consCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *

// Only send keypresses if press or hold state
if ( stateType == 0x00 && state == 0x03 ) // Release state
{
USBKeys_ConsCtrl = 0;
return;
}

// Set consumer control code
USBKeys_ConsCtrl = *(uint16_t*)(&args[0]);
@@ -268,7 +274,10 @@ void Output_sysCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *a

// Only send keypresses if press or hold state
if ( stateType == 0x00 && state == 0x03 ) // Release state
{
USBKeys_SysCtrl = 0;
return;
}

// Set system control code
USBKeys_SysCtrl = args[0];
@@ -317,9 +326,10 @@ void Output_usbCodeSend_capability( uint8_t state, uint8_t stateType, uint8_t *a
// Depending on which mode the keyboard is in, USBKeys_Keys array is used differently
// Boot mode - Maximum of 6 byte codes
// NKRO mode - Each bit of the 26 byte corresponds to a key
// Bits 0 - 160 (first 20 bytes) correspond to USB Codes 4 - 164
// Bits 161 - 205 (last 6 bytes) correspond to USB Codes 176 - 221
// Bits 206 - 208 (last byte) correspond to the 3 padded bits in USB (unused)
// Bits 0 - 45 (bytes 0 - 5) correspond to USB Codes 4 - 49 (Main)
// Bits 48 - 161 (bytes 6 - 20) correspond to USB Codes 51 - 164 (Secondary)
// Bits 168 - 213 (bytes 21 - 26) correspond to USB Codes 176 - 221 (Tertiary)
// Bits 214 - 216 unused
uint8_t bytePosition = 0;
uint8_t byteShift = 0;
switch ( USBKeys_Protocol )
@@ -371,11 +381,12 @@ void Output_usbCodeSend_capability( uint8_t state, uint8_t stateType, uint8_t *a
USBKeys_Changed |= USBKeyChangeState_Modifiers;
break;
}
// First 20 bytes
else if ( key >= 4 && key <= 164 )
// First 6 bytes
else if ( key >= 4 && key <= 49 )
{
// Lookup (otherwise division or multiple checks are needed to do alignment)
uint8_t keyPos = key - 4; // Starting position in array
// Starting at 0th position, each byte has 8 bits, starting at 4th bit
uint8_t keyPos = key + (0 * 8 - 4); // Starting position in array, Ignoring 4 keys
switch ( keyPos )
{
byteLookup( 0 );
@@ -384,6 +395,18 @@ void Output_usbCodeSend_capability( uint8_t state, uint8_t stateType, uint8_t *a
byteLookup( 3 );
byteLookup( 4 );
byteLookup( 5 );
}

USBKeys_Changed |= USBKeyChangeState_MainKeys;
}
// Next 14 bytes
else if ( key >= 51 && key <= 155 )
{
// Lookup (otherwise division or multiple checks are needed to do alignment)
// Starting at 6th byte position, each byte has 8 bits, starting at 51st bit
uint8_t keyPos = key + (6 * 8 - 51); // Starting position in array
switch ( keyPos )
{
byteLookup( 6 );
byteLookup( 7 );
byteLookup( 8 );
@@ -400,29 +423,52 @@ void Output_usbCodeSend_capability( uint8_t state, uint8_t stateType, uint8_t *a
byteLookup( 19 );
}

USBKeys_Changed |= USBKeyChangeState_MainKeys;
USBKeys_Changed |= USBKeyChangeState_SecondaryKeys;
}
// Next byte
else if ( key >= 157 && key <= 164 )
{
// Lookup (otherwise division or multiple checks are needed to do alignment)
uint8_t keyPos = key + (20 * 8 - 157); // Starting position in array, Ignoring 6 keys
switch ( keyPos )
{
byteLookup( 20 );
}

USBKeys_Changed |= USBKeyChangeState_TertiaryKeys;
}
// Last 6 bytes
else if ( key >= 176 && key <= 221 )
{
// Lookup (otherwise division or multiple checks are needed to do alignment)
uint8_t keyPos = key - 176; // Starting position in array
uint8_t keyPos = key + (21 * 8 - 176); // Starting position in array
switch ( keyPos )
{
byteLookup( 20 );
byteLookup( 21 );
byteLookup( 22 );
byteLookup( 23 );
byteLookup( 24 );
byteLookup( 25 );
byteLookup( 26 );
}

USBKeys_Changed |= USBKeyChangeState_SecondaryKeys;
USBKeys_Changed |= USBKeyChangeState_QuartiaryKeys;
}
// Received 0x00
// This is a special USB Code that internally indicates a "break"
// It is used to send "nothing" in order to break up sequences of USB Codes
else if ( key == 0x00 )
{
USBKeys_Changed |= USBKeyChangeState_MainKeys;

// Also flush out buffers just in case
Output_flushBuffers();
break;
}
// Invalid key
else
{
warn_msg("USB Code not within 4-164 (0x4-0xA4) or 176-221 (0xB0-0xDD) NKRO Mode: ");
warn_msg("USB Code not within 4-49 (0x4-0x31), 51-155 (0x33-0x9B), 157-164 (0x9D-0xA4), 176-221 (0xB0-0xDD) or 224-231 (0xE0-0xE7) NKRO Mode: ");
printHex( key );
print( NL );
break;
@@ -467,20 +513,18 @@ inline void Output_setup()
{
// Setup UART
uart_serial_setup();
print("\033[2J"); // Clear screen

// Initialize the USB, and then wait for the host to set configuration.
// This will hang forever if USB does not initialize
// Initialize the USB
// If a USB connection does not exist, just ignore it
// All usb related functions will non-fatally fail if called
// If the USB initialization is delayed, then functionality will just be delayed
usb_init();

while ( !usb_configured() );

// Register USB Output CLI dictionary
CLI_registerDictionary( outputCLIDict, outputCLIDictName );

// Zero out USBKeys_Keys array
for ( uint8_t c = 0; c < USB_NKRO_BITFIELD_SIZE_KEYS; c++ )
USBKeys_Keys[ c ] = 0;
// Flush key buffers
Output_flushBuffers();
}


@@ -496,14 +540,15 @@ inline void Output_send()
while ( USBKeys_Changed )
usb_keyboard_send();

// Clear modifiers and keys
USBKeys_Modifiers = 0;
USBKeys_Sent = 0;
// Clear keys sent
USBKeys_Sent = 0;

// Signal Scan Module we are finished
switch ( USBKeys_Protocol )
{
case 0: // Boot Mode
// Clear modifiers only in boot mode
USBKeys_Modifiers = 0;
Scan_finishedWithOutput( USBKeys_Sent <= USB_BOOT_MAX_KEYS ? USBKeys_Sent : USB_BOOT_MAX_KEYS );
break;
case 1: // NKRO Mode
@@ -514,9 +559,9 @@ inline void Output_send()


// Sets the device into firmware reload mode
inline void Output_firmwareReload()
void Output_firmwareReload()
{
uart_device_reload();
usb_device_reload();
}


@@ -593,6 +638,24 @@ void cliFunc_kbdProtocol( char* args )
}


void cliFunc_outputDebug( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );

// Default to 1 if no argument is given
Output_DebugMode = 1;

if ( arg1Ptr[0] != '\0' )
{
Output_DebugMode = (uint16_t)numToInt( arg1Ptr );
}
}


void cliFunc_readLEDs( char* args )
{
print( NL );

+ 13
- 1
Scan/STLcd/lcd_scan.c View File

@@ -258,7 +258,6 @@ inline void LCD_setup()
// Initialize SPI
SPI_setup();


// Setup Register Control Signal (A0)
// Start in display register mode (1)
GPIOC_PDDR |= (1<<7);
@@ -274,6 +273,19 @@ inline void LCD_setup()

// Run LCD intialization sequence
LCD_initialize();

// Setup Backlight
// TODO Expose default settings
// TODO Setup PWM
GPIOC_PDDR |= (1<<1);
PORTC_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOC_PCOR |= (1<<1);
GPIOC_PDDR |= (1<<2);
PORTC_PCR2 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOC_PCOR |= (1<<2);
GPIOC_PDDR |= (1<<3);
PORTC_PCR3 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOC_PCOR |= (1<<3);
}



+ 12
- 2
Scan/UARTConnect/capabilities.kll View File

@@ -26,6 +26,16 @@ UARTConnectBaudFine => UARTConnectBaudFine_define;
# Thus baud setting = 26
# NOTE: If finer baud adjustment is needed see UARTx_C4 -> BRFA in the datasheet
# Baud fine setting = 0x02
UARTConnectBaud = 26;
UARTConnectBaudFine = 0x02;
UARTConnectBaud = 1; # 4.5 Mbps @ 72 MHz
UARTConnectBaudFine = 0x0;

# Cable Check Command Length
# This defines the length of the cable command
# 0xD2 11010010 is used for each check byte
#
# For example:
# Length: 4
# Args: 0xD2 0xD2 0xD2 0xD2
UARTConnectCableCheckLength => UARTConnectCableCheckLength_define;
UARTConnectCableCheckLength = 2;


+ 108
- 41
Scan/UARTConnect/connect_scan.c View File

@@ -42,8 +42,11 @@ case uartNum: \
} \
for ( uint8_t c = 0; c < count; c++ ) \
{ \
printHex( buffer[ c ] ); \
print( " +" #uartNum NL ); \
if ( Connect_debug ) \
{ \
printHex( buffer[ c ] ); \
print( " +" #uartNum NL ); \
} \
uart##uartNum##_buffer[ uart##uartNum##_buffer_tail++ ] = buffer[ c ]; \
uart##uartNum##_buffer_items++; \
if ( uart##uartNum##_buffer_tail >= uart_buffer_size ) \
@@ -87,23 +90,35 @@ case uartNum: \
while ( available-- > 0 ) \
{ \
uint8_t byteRead = UART##uartNum##_D; \
printHex( byteRead ); \
print( "(" ); \
printInt8( available ); \
print( ") <-" ); \
if ( Connect_debug ) \
{ \
printHex( byteRead ); \
print( "(" ); \
printInt8( available ); \
print( ") <-" ); \
} \
switch ( uart##uartNum##_rx_status ) \
{ \
case UARTStatus_Wait: \
print(" SYN "); \
if ( Connect_debug ) \
{ \
print(" SYN "); \
} \
uart##uartNum##_rx_status = byteRead == 0x16 ? UARTStatus_SYN : UARTStatus_Wait; \
break; \
case UARTStatus_SYN: \
print(" SOH "); \
if ( Connect_debug ) \
{ \
print(" SOH "); \
} \
uart##uartNum##_rx_status = byteRead == 0x01 ? UARTStatus_SOH : UARTStatus_Wait; \
break; \
case UARTStatus_SOH: \
{ \
print(" CMD "); \
if ( Connect_debug ) \
{ \
print(" CMD "); \
} \
uint8_t byte = byteRead; \
if ( byte <= Animation ) \
{ \
@@ -122,14 +137,20 @@ case uartNum: \
uart##uartNum##_rx_status = UARTStatus_Wait; \
break; \
default: \
print("###"); \
if ( Connect_debug ) \
{ \
print("###"); \
} \
break; \
} \
break; \
} \
case UARTStatus_Command: \
{ \
print(" CMD "); \
if ( Connect_debug ) \
{ \
print(" CMD "); \
} \
uint8_t (*rcvFunc)(uint8_t, uint16_t(*), uint8_t) = (uint8_t(*)(uint8_t, uint16_t(*), uint8_t))(Connect_receiveFunctions[ uart##uartNum##_rx_command ]); \
if ( rcvFunc( byteRead, (uint16_t*)&uart##uartNum##_rx_bytes_waiting, uartNum ) ) \
uart##uartNum##_rx_status = UARTStatus_Wait; \
@@ -141,7 +162,10 @@ case uartNum: \
available++; \
continue; \
} \
print( NL ); \
if ( Connect_debug ) \
{ \
print( NL ); \
} \
} \
}

@@ -193,6 +217,11 @@ uint8_t Connect_id = 255; // Invalid, unset
uint8_t Connect_master = 0;


// -- Control Variables --
uint32_t Connect_lastCheck = 0; // Cable Check scheduler
uint8_t Connect_debug = 0; // Set 1 for debug


// -- Rx Status Variables --

volatile UARTStatus uart0_rx_status;
@@ -398,12 +427,16 @@ uint8_t Connect_receive_CableCheck( uint8_t byte, uint16_t *pending_bytes, uint8
// Check if this is the first byte
if ( *pending_bytes == 0xFFFF )
{
dbug_msg("PENDING SET -> ");
printHex( byte );
print(" ");
*pending_bytes = byte;
printHex( *pending_bytes );
print( NL );

if ( Connect_debug )
{
dbug_msg("PENDING SET -> ");
printHex( byte );
print(" ");
printHex( *pending_bytes );
print( NL );
}
}
// Verify byte
else
@@ -448,11 +481,15 @@ uint8_t Connect_receive_CableCheck( uint8_t byte, uint16_t *pending_bytes, uint8
Connect_cableOkSlave = 1;
}
}
dbug_msg("CABLECHECK RECEIVE - ");
printHex( byte );
print(" ");
printHex( *pending_bytes );
print(NL);

if ( Connect_debug )
{
dbug_msg("CABLECHECK RECEIVE - ");
printHex( byte );
print(" ");
printHex( *pending_bytes );
print( NL );
}

// Check whether the cable check has finished
return *pending_bytes == 0 ? 1 : 0;
@@ -462,7 +499,7 @@ uint8_t Connect_receive_IdRequest( uint8_t byte, uint16_t *pending_bytes, uint8_
{
dbug_print("IdRequest");
// Check the directionality
if ( !to_master )
if ( to_master )
{
erro_print("Invalid IdRequest direction...");
}
@@ -487,7 +524,7 @@ uint8_t Connect_receive_IdEnumeration( uint8_t id, uint16_t *pending_bytes, uint
{
dbug_print("IdEnumeration");
// Check the directionality
if ( to_master )
if ( !to_master )
{
erro_print("Invalid IdEnumeration direction...");
}
@@ -511,7 +548,7 @@ uint8_t Connect_receive_IdReport( uint8_t id, uint16_t *pending_bytes, uint8_t t
{
dbug_print("IdReport");
// Check the directionality
if ( !to_master )
if ( to_master )
{
erro_print("Invalid IdRequest direction...");
}
@@ -690,7 +727,10 @@ void Connect_setup( uint8_t master )
// Register Connect CLI dictionary
CLI_registerDictionary( uartConnectCLIDict, uartConnectCLIDictName );

// Check if master
Connect_master = master;
if ( Connect_master )
Connect_id = 0; // 0x00 is always the master Id

// Master / UART0 setup
// Slave / UART1 setup
@@ -699,15 +739,10 @@ void Connect_setup( uint8_t master )
SIM_SCGC4 |= SIM_SCGC4_UART1; // Disable clock gating

// Pin Setup for UART0 / UART1
// XXX TODO Set to actual (Teensy 3.1s don't have the correct pins available)
PORTB_PCR16 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); // RX Pin
PORTB_PCR17 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); // TX Pin
PORTC_PCR3 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); // RX Pin
PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); // TX Pin
//PORTA_PCR1 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); // RX Pin
//PORTA_PCR2 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(2); // TX Pin
//PORTE_PCR0 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); // RX Pin
//PORTE_PCR1 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); // TX Pin
PORTA_PCR1 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); // RX Pin
PORTA_PCR2 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(2); // TX Pin
PORTE_PCR0 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); // RX Pin
PORTE_PCR1 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); // TX Pin

// Baud Rate setting
UART0_BDH = (uint8_t)(Connect_baud >> 8);
@@ -771,12 +806,44 @@ void Connect_setup( uint8_t master )
// - SyncEvent is also blocking until sent
void Connect_scan()
{
// Check if Tx Buffers are empty and the Tx Ring buffers have data to send
// This happens if there was previously nothing to send
if ( uart0_buffer_items > 0 && UART0_TCFIFO == 0 )
uart_fillTxFifo( 0 );
if ( uart1_buffer_items > 0 && UART1_TCFIFO == 0 )
uart_fillTxFifo( 1 );
// Check if initially configured as a slave and usb comes up
// Then reconfigure as a master
if ( !Connect_master && Output_Available )
{
Connect_setup( Output_Available );
}

// Limit how often we do cable checks
uint32_t time_compare = 0x7FF; // Must be all 1's, 0x3FF is valid, 0x4FF is not
uint32_t current_time = systick_millis_count;
if ( Connect_lastCheck != current_time
&& ( current_time & time_compare ) == time_compare
)
{
// Make sure we don't double check if the clock speed is too high
Connect_lastCheck = current_time;

// Send a cable check command of 2 bytes
Connect_send_CableCheck( UARTConnectCableCheckLength_define );

// If this is a slave, and we don't have an id yeth
// Don't bother sending if there are cable issues
if ( !Connect_master && Connect_id == 0xFF && Connect_cableOkMaster )
{
Connect_send_IdRequest();
}
}

// Only process commands if uarts have been configured
if ( uarts_configured )
{
// Check if Tx Buffers are empty and the Tx Ring buffers have data to send
// This happens if there was previously nothing to send
if ( uart0_buffer_items > 0 && UART0_TCFIFO == 0 )
uart_fillTxFifo( 0 );
if ( uart1_buffer_items > 0 && UART1_TCFIFO == 0 )
uart_fillTxFifo( 1 );
}
}


@@ -796,7 +863,7 @@ void cliFunc_connectCmd( char* args )
switch ( numToInt( &arg1Ptr[0] ) )
{
case CableCheck:
Connect_send_CableCheck( 2 );
Connect_send_CableCheck( UARTConnectCableCheckLength_define );
break;

case IdRequest:

+ 1
- 1
Scan/UARTConnect/connect_scan.h View File

@@ -41,7 +41,7 @@ typedef enum UARTStatus {
UARTStatus_SYN = 1, // Rx: SYN Received, waiting for SOH
UARTStatus_SOH = 2, // Rx: SOH Received, waiting for Command
UARTStatus_Command = 3, // Rx: Command Received, waiting for data
UARTStatus_Ready = 4, // Tx: Ready to receive commands
UARTStatus_Ready = 4, // Tx: Ready to send commands
} UARTStatus;