Browse Source

Initial I2C work for ISSI IS31FL3731

simple
Jacob Alexander 9 years ago
parent
commit
7dfca9cc3e
6 changed files with 948 additions and 0 deletions
  1. 73
    0
      Scan/MD2/defaultMap.kll
  2. 63
    0
      Scan/MD2/matrix.h
  3. 75
    0
      Scan/MD2/pinout
  4. 659
    0
      Scan/MD2/scan_loop.c
  5. 44
    0
      Scan/MD2/scan_loop.h
  6. 34
    0
      Scan/MD2/setup.cmake

+ 73
- 0
Scan/MD2/defaultMap.kll View File

@@ -0,0 +1,73 @@
Name = MD1;
Version = 0.2;
Author = "HaaTa (Jacob Alexander) 2014";
KLL = 0.3;

# Modified Date
Date = 2014-09-14;


S0x00 : U"Esc";
S0x01 : U"1";
S0x02 : U"2";
S0x03 : U"3";
S0x04 : U"4";
S0x05 : U"5";
S0x06 : U"6";
S0x07 : U"7";
S0x08 : U"8";
S0x09 : U"9";
S0x0A : U"0";
S0x0B : U"Minus";
S0x0C : U"Equal";
S0x0D : U"Backslash";
S0x0E : U"Tab";
S0x0F : U"Q";
S0x10 : U"W";
S0x11 : U"E";
S0x12 : U"R";
S0x13 : U"T";
S0x14 : U"Y";
S0x15 : U"U";
S0x16 : U"I";
S0x17 : U"O";
S0x18 : U"P";
S0x19 : U"LBrace";
S0x1A : U"RBrace";
S0x1B : U"Backspace";
S0x1C : U"Ctrl";
S0x1D : U"A";
S0x1E : U"S";
S0x1F : U"D";
S0x20 : U"F";
S0x21 : U"G";
S0x22 : U"H";
S0x23 : U"J";
S0x24 : U"K";
S0x25 : U"L";
S0x26 : U"Semicolon";
S0x27 : U"Quote";
S0x28 : U"Enter";
S0x29 : U"LShift";
S0x2A : U"Z";
S0x2B : U"X";
S0x2C : U"C";
S0x2D : U"V";
S0x2E : U"B";
S0x2F : U"N";
S0x30 : U"M";
S0x31 : U"Comma";
S0x32 : U"Period";
S0x33 : U"Slash";
S0x34 : U"RShift";
S0x35 : U"Function1"; # Fun key
S0x36 : U"Function2"; # Left Blank Key
S0x37 : U"LAlt";
S0x38 : U"LGui";
S0x39 : U"Space";
S0x3A : U"RGui";
S0x3B : U"RAlt";
S0x3C : U"Function3"; # Right Blank Key 1
S0x3D : U"Function4"; # Right Blank Key 2
S0x3E : U"BackTick";


+ 63
- 0
Scan/MD2/matrix.h View File

@@ -0,0 +1,63 @@
/* Copyright (C) 2014 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/

#ifndef __MATRIX_H
#define __MATRIX_H

// ----- Macros -----

// Convenience Macros
#define gpio( port, pin ) { Port_##port, Pin_##pin }
#define Matrix_colsNum sizeof( Matrix_cols ) / sizeof( GPIO_Pin )
#define Matrix_rowsNum sizeof( Matrix_rows ) / sizeof( GPIO_Pin )
#define Matrix_maxKeys sizeof( Matrix_scanArray ) / sizeof( KeyState )



// ----- Matrix Definition -----

// Freescale ARM MK20's support GPIO PTA, PTB, PTC, PTD and PTE 0..31
// Not all chips have access to all of these pins (most don't have 160 pins :P)
//
// NOTE:
// Before using a pin, make sure it supports being a GPIO *and* doesn't have a default pull-up/pull-down
// Checking this is completely on the ownness of the user

// MD1
//
// Columns (Strobe)
// PTB0..3,16,17
// PTC4,5
// PTD0
//
// Rows (Sense)
// PTD1..7

// Define Rows (Sense) and Columns (Strobes)
GPIO_Pin Matrix_cols[] = { gpio(B,0), gpio(B,1), gpio(B,2), gpio(B,3), gpio(B,16), gpio(B,17), gpio(C,4), gpio(C,5), gpio(D,0) };
GPIO_Pin Matrix_rows[] = { gpio(D,1), gpio(D,2), gpio(D,3), gpio(D,4), gpio(D,5), gpio(D,6), gpio(D,7) };

// Define type of scan matrix
Config Matrix_type = Config_Pulldown;


#endif // __MATRIX_H


+ 75
- 0
Scan/MD2/pinout View File

@@ -0,0 +1,75 @@
Pin Usage
=========

mk20dx128vlf5

----
|Keys|
----

* Strobe (Columns)

PTB0
PTB1
PTB2
PTB3
PTB16
PTB17
PTC4
PTC5
PTD0


* Sense (Rows)

PTD1
PTD2
PTD3
PTD4
PTD5
PTD6
PTD7


-----
|Debug|
-----

* SWD

PTA0 (Pull-down)
PTA3 (Pull-up)

* LEDs

PTA19 (LED only for PCB, not McHCK) (XTAL)

* UARTs

PTA1 - RX0
PTA2 - TX0


------
|Unused|
------

* GPIO

PTA1 (Not broken out on PCB, available on McHCK) (Pull-up)
PTA2 (")
PTA4 (Pull-up)
PTA18 (EXTAL)

PTC0
PTC1
PTC2
PTC3
PTC6
PTC7

* Analog

ADC0_DP0
ADC0_DM0


+ 659
- 0
Scan/MD2/scan_loop.c View File

@@ -0,0 +1,659 @@
/* Copyright (C) 2014 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/

// ----- Includes -----

// Compiler Includes
#include <Lib/ScanLib.h>

// Project Includes
#include <cli.h>
#include <led.h>
#include <print.h>
#include <matrix_scan.h>

// Local Includes
#include "scan_loop.h"
#include "macro.h"




typedef struct I2C_Buffer {
volatile uint16_t head;
volatile uint16_t tail;
volatile uint8_t sequencePos;
volatile uint16_t size;
volatile uint8_t *buffer;
} I2C_Buffer;

// ----- Function Declarations -----

// CLI Functions
void cliFunc_echo( char* args );
void cliFunc_i2cRecv( char* args );
void cliFunc_i2cSend( char* args );
void cliFunc_ledZero( char* args );

uint8_t I2C_TxBufferPop();
void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer );
uint16_t I2C_BufferLen( I2C_Buffer *buffer );



// ----- Variables -----

// Scan Module command dictionary
CLIDict_Entry( echo, "Example command, echos the arguments." );
CLIDict_Entry( i2cRecv, "Send I2C sequence of bytes and expect a reply of 1 byte." );
CLIDict_Entry( i2cSend, "Send I2C sequence of bytes." );
CLIDict_Entry( ledZero, "Zero out LED register pages (non-configuration)." );

CLIDict_Def( scanCLIDict, "Scan Module Commands" ) = {
CLIDict_Item( echo ),
CLIDict_Item( i2cRecv ),
CLIDict_Item( i2cSend ),
CLIDict_Item( ledZero ),
{ 0, 0, 0 } // Null entry for dictionary end
};

// Number of scans since the last USB send
uint16_t Scan_scanCount = 0;



// Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented
// Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent
#define I2C_TxBufferLength 300
#define I2C_RxBufferLength 8
volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ];
volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ];

volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, I2C_TxBufferPtr };
volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, I2C_RxBufferPtr };

void I2C_setup()
{
// Enable I2C internal clock
SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0

// External pull-up resistor
PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);

// SCL Frequency Divider
// 400kHz -> 120 (0x85) @ 48 MHz F_BUS
I2C0_F = 0x85;
I2C0_FLT = 4;
I2C0_C1 = I2C_C1_IICEN;
I2C0_C2 = I2C_C2_HDRS; // High drive select

// Enable I2C Interrupt
NVIC_ENABLE_IRQ( IRQ_I2C0 );
}



// ----- Interrupt Functions -----

void i2c0_isr()
{
cli(); // Disable Interrupts

uint8_t status = I2C0_S; // Read I2C Bus status

// Master Mode Transmit
if ( I2C0_C1 & I2C_C1_TX )
{
// Check current use of the I2C bus
// Currently sending data
if ( I2C_TxBuffer.sequencePos > 0 )
{
// Make sure slave sent an ACK
if ( status & I2C_S_RXAK )
{
// NACK Detected, disable interrupt
erro_print("I2C NAK detected...");
I2C0_C1 = I2C_C1_IICEN;

// Abort Tx Buffer
I2C_TxBuffer.head = 0;
I2C_TxBuffer.tail = 0;
I2C_TxBuffer.sequencePos = 0;
}
else
{
// Transmit byte
I2C0_D = I2C_TxBufferPop();
}
}
// Receiving data
else if ( I2C_RxBuffer.sequencePos > 0 )
{
// Master Receive, addr sent
if ( status & I2C_S_ARBL )
{
// Arbitration Lost
erro_print("Arbitration lost...");
// TODO Abort Rx

I2C0_C1 = I2C_C1_IICEN;
I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt
}
if ( status & I2C_S_RXAK )
{
// Slave Address NACK Detected, disable interrupt
erro_print("Slave Address I2C NAK detected...");
// TODO Abort Rx

I2C0_C1 = I2C_C1_IICEN;
}
else
{
I2C0_C1 = I2C_RxBuffer.sequencePos == 1
? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read
: I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read
}
}
else
{
dbug_msg("STOP - ");
printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) );
print(NL);

// If there is another sequence, start sending
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size )
{
// Check to see if we already have control of the bus
if ( I2C0_C1 & I2C_C1_MST )
{
// Already the master (ah yeah), send a repeated start
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
}
// Otherwise, seize control
else
{
// Wait...till the master dies
while ( I2C0_S & I2C_S_BUSY );

// Now we're the master (ah yisss), get ready to send stuffs
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
}

// Enable I2C interrupt
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;

// Transmit byte
I2C0_D = I2C_TxBufferPop();
}
// Issue STOP
else
{
delayMicroseconds( 1 ); // Should be enough time before issuing STOP
I2C0_C1 = I2C_C1_IICEN; // Send STOP
}
}
}
// Master Mode Receive
else
{
// XXX Do we need to handle 2nd last byte?
//I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv

// Last byte
if ( I2C_TxBuffer.sequencePos <= 1 )
{
// Change to Tx mode
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;

// Grab last byte
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );

delayMicroseconds( 1 ); // Should be enough time before issuing the stop
I2C0_C1 = I2C_C1_IICEN; // Send STOP
}
else
{
// Retrieve data
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
}
}

I2C0_S = I2C_S_IICIF; // Clear interrupt

sei(); // Re-enable Interrupts
}



// ----- Functions -----

// Setup
inline void LED_setup()
{
I2C_setup();
}


inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer )
{
uint8_t reTurn = 0;

// If sendLen is greater than buffer fail right away
if ( sendLen > buffer->size )
return 0;

// Calculate new tail to determine if buffer has enough space
// The first element specifies the expected number of bytes from the slave (+1)
// The second element in the new buffer is the length of the buffer sequence (+1)
uint16_t newTail = buffer->tail + sendLen + 2;
if ( newTail >= buffer->size )
newTail -= buffer->size;

if ( I2C_BufferLen( buffer ) < sendLen + 2 )
return 0;

/*
print("|");
printHex( sendLen + 2 );
print("|");
printHex( *tail );
print("@");
printHex( newTail );
print("@");
*/

// If buffer is clean, return 1, otherwise 2
reTurn = buffer->head == buffer->tail ? 1 : 2;

// Add to buffer, already know there is enough room (simplifies adding logic)
uint8_t bufferHeaderPos = 0;
for ( uint16_t c = 0; c < sendLen; c++ )
{
// Add data to buffer
switch ( bufferHeaderPos )
{
case 0:
buffer->buffer[ buffer->tail ] = recvLen;
bufferHeaderPos++;
c--;
break;

case 1:
buffer->buffer[ buffer->tail ] = sendLen;
bufferHeaderPos++;
c--;
break;

default:
buffer->buffer[ buffer->tail ] = data[ c ];
break;
}

// Check for wrap-around case
if ( buffer->tail + 1 >= buffer->size )
{
buffer->tail = 0;
}
// Normal case
else
{
buffer->tail++;
}
}

return reTurn;
}


inline uint16_t I2C_BufferLen( I2C_Buffer *buffer )
{
// Tail >= Head
if ( buffer->tail >= buffer->head )
return buffer->head + buffer->size - buffer->tail;

// Head > Tail
return buffer->head - buffer->tail;
}


void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer )
{
// Make sure buffer isn't full
if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) )
{
warn_msg("I2C_BufferPush failed, buffer full: ");
printHex( byte );
print( NL );
return;
}

// Check for wrap-around case
if ( buffer->tail + 1 >= buffer->size )
{
buffer->tail = 0;
}
// Normal case
else
{
buffer->tail++;
}

// Add byte to buffer
buffer->buffer[ buffer->tail ] = byte;
}


uint8_t I2C_TxBufferPop()
{
// Return 0xFF if no buffer left (do not rely on this)
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size )
{
erro_msg("No buffer to pop an entry from... ");
printHex( I2C_TxBuffer.head );
print(" ");
printHex( I2C_TxBuffer.tail );
print(" ");
printHex( I2C_TxBuffer.sequencePos );
print(NL);
return 0xFF;
}

// If there is currently no sequence being sent, the first entry in the RingBuffer is the length
if ( I2C_TxBuffer.sequencePos == 0 )
{
I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop
I2C_RxBuffer.sequencePos = I2C_TxBufferPop();
I2C_TxBuffer.sequencePos = I2C_TxBufferPop();
}

uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ];

// Prune head
I2C_TxBuffer.head++;

// Wrap-around case
if ( I2C_TxBuffer.head >= I2C_TxBuffer.size )
I2C_TxBuffer.head = 0;

// Decrement buffer sequence (until next stop will be sent)
I2C_TxBuffer.sequencePos--;

dbug_msg("Popping: ");
printHex( data );
print(" ");
printHex( I2C_TxBuffer.head );
print(" ");
printHex( I2C_TxBuffer.tail );
print(" ");
printHex( I2C_TxBuffer.sequencePos );
print(NL);
return data;
}


uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen )
{
// Check head and tail pointers
// If full, return 0
// If empty, start up I2C Master Tx
// If buffer is non-empty and non-full, just append to the buffer
switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) )
{
// Not enough buffer space...
case 0:
/*
erro_msg("Not enough Tx buffer space... ");
printHex( I2C_TxBuffer.head );
print(":");
printHex( I2C_TxBuffer.tail );
print("+");
printHex( sendLen );
print("|");
printHex( I2C_TxBuffer.size );
print( NL );
*/
return 0;

// Empty buffer, initialize I2C
case 1:
// Clear status flags
I2C0_S = I2C_S_IICIF | I2C_S_ARBL;

// Check to see if we already have control of the bus
if ( I2C0_C1 & I2C_C1_MST )
{
// Already the master (ah yeah), send a repeated start
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
}
// Otherwise, seize control
else
{
// Wait...till the master dies
while ( I2C0_S & I2C_S_BUSY );

// Now we're the master (ah yisss), get ready to send stuffs
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
}

// Enable I2C interrupt
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;

// Depending on what type of transfer, the first byte is configured for R or W
I2C0_D = I2C_TxBufferPop();
return 1;
}

// Dirty buffer, I2C already initialized
return 2;
}


void LED_zeroPages( uint8_t startPage, uint8_t numPages, uint8_t pageLen )
{
// Page Setup
uint8_t pageSetup[] = { 0xE8, 0xFD, 0x00 };

// Max length of a page + chip id + reg start
uint8_t fullPage[ 0xB3 + 2 ] = { 0 };
fullPage[0] = 0xE8; // Set chip id, starting reg is already 0x00

// Iterate through given pages, zero'ing out the given register regions
for ( uint8_t page = startPage; page < startPage + numPages; page++ )
{
// Set page
pageSetup[2] = page;

// Setup page
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
delay(1);

// Zero out page
while ( I2C_Send( fullPage, pageLen + 2, 0 ) == 0 )
delay(1);
}
}



// LED State processing loop
inline uint8_t LED_loop()
{

// I2C Busy
// S & I2C_S_BUSY
//I2C_S_BUSY
}



// Setup
inline void Scan_setup()
{
// Register Scan CLI dictionary
CLI_registerDictionary( scanCLIDict, scanCLIDictName );

// Setup GPIO pins for matrix scanning
//Matrix_setup();

// Reset scan count
Scan_scanCount = 0;

// Setup LED Drivers
LED_setup();
}


// Main Detection Loop
inline uint8_t Scan_loop()
{
//Matrix_scan( Scan_scanCount++ );
//LED_scan();

return 0;
}


// Signal from Macro Module that all keys have been processed (that it knows about)
inline void Scan_finishedWithMacro( uint8_t sentKeys )
{
}


// Signal from Output Module that all keys have been processed (that it knows about)
inline void Scan_finishedWithOutput( uint8_t sentKeys )
{
// Reset scan loop indicator (resets each key debounce state)
// TODO should this occur after USB send or Macro processing?
Scan_scanCount = 0;
}


// ----- CLI Command Functions -----

// XXX Just an example command showing how to parse arguments (more complex than generally needed)
void cliFunc_echo( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;

// Parse args until a \0 is found
while ( 1 )
{
print( NL ); // No \r\n by default after the command is entered

curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );

// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;

// Print out the arg
dPrint( arg1Ptr );
}
}

void cliFunc_i2cSend( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;

// Buffer used after interpretting the args, will be sent to I2C functions
// NOTE: Limited to 8 bytes currently (can be increased if necessary
#define i2cSend_BuffLenMax 8
uint8_t buffer[ i2cSend_BuffLenMax ];
uint8_t bufferLen = 0;

// No \r\n by default after the command is entered
print( NL );
info_msg("Sending: ");

// Parse args until a \0 is found
while ( bufferLen < i2cSend_BuffLenMax )
{
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );

// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;

// Interpret the argument
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );

// Print out the arg
dPrint( arg1Ptr );
print(" ");
}

print( NL );

I2C_Send( buffer, bufferLen, 0 );
}

void cliFunc_i2cRecv( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;

// Buffer used after interpretting the args, will be sent to I2C functions
// NOTE: Limited to 8 bytes currently (can be increased if necessary
#define i2cSend_BuffLenMax 8
uint8_t buffer[ i2cSend_BuffLenMax ];
uint8_t bufferLen = 0;

// No \r\n by default after the command is entered
print( NL );
info_msg("Sending: ");

// Parse args until a \0 is found
while ( bufferLen < i2cSend_BuffLenMax )
{
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );

// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;

// Interpret the argument
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );

// Print out the arg
dPrint( arg1Ptr );
print(" ");
}

print( NL );

I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip
}

void cliFunc_ledZero( char* args )
{
print( NL ); // No \r\n by default after the command is entered
LED_zeroPages( 0x00, 8, 0xB3 );
}


+ 44
- 0
Scan/MD2/scan_loop.h View File

@@ -0,0 +1,44 @@
/* Copyright (C) 2014 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/

#ifndef __SCAN_LOOP_H
#define __SCAN_LOOP_H

// ----- Includes -----

// Compiler Includes
#include <stdint.h>



// ----- Functions -----

// Functions to be called by main.c
void Scan_setup( void );
uint8_t Scan_loop( void );

// Call-backs
void Scan_finishedWithMacro( uint8_t sentKeys ); // Called by Macro Module
void Scan_finishedWithOutput( uint8_t sentKeys ); // Called by Output Module


#endif // __SCAN_LOOP_H


+ 34
- 0
Scan/MD2/setup.cmake View File

@@ -0,0 +1,34 @@
###| CMake Kiibohd Controller Scan Module |###
#
# Written by Jacob Alexander in 2014 for the Kiibohd Controller
#
# Released into the Public Domain
#
###


###
# Module C files
#

set( SCAN_SRCS
scan_loop.c
../MatrixARM/matrix_scan.c
)


###
# Module Specific Options
#
add_definitions(
-I${HEAD_DIR}/Scan/MatrixARM
)


###
# Compiler Family Compatibility
#
set( ScanModuleCompatibility
arm
)