Archived
1
0

Adding analog.c lib from teensyduino.

- Mostly for reference, you shouldn't include it verbatim in your module.
This commit is contained in:
Jacob Alexander 2014-04-12 21:13:37 -07:00
parent dc22fa757a
commit 8ee8e3cb55
8 changed files with 778 additions and 6 deletions

View File

@ -53,8 +53,8 @@ void cliFunc_macroDebug ( char* args );
// ----- Variables -----
// Output Module command dictionary
char* macroCLIDictName = "Macro Module Commands";
// Macro Module command dictionary
char* macroCLIDictName = "Macro Module Commands (Not all commands fully work yet...)";
CLIDictItem macroCLIDict[] = {
{ "capList", "Prints an indexed list of all non USB keycode capabilities.", cliFunc_capList },
{ "capSelect", "Triggers the specified capability. U10 - USB Code 0x0A. K11 - Keyboard Capability 0x0B. S10 - Scancode 0x0A", cliFunc_capSelect },

View File

@ -33,8 +33,9 @@
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_)
#include "avr/usb_keyboard_serial.h"
#elif defined(_mk20dx128_) || defined(_mk20dx256_)
#include "arm/usb_keyboard.h"
#include "arm/usb_dev.h"
#include "arm/usb_keyboard.h"
#include "arm/usb_serial.h"
#endif
// Local Includes
@ -54,7 +55,7 @@ void cliFunc_setMod ( char* args );
// ----- Variables -----
// Output Module command dictionary
char* outputCLIDictName = "USB Module Commands";
char* outputCLIDictName = "USB Module Commands (Not all commands fully work yet...)";
CLIDictItem outputCLIDict[] = {
{ "readLEDs", "Read LED byte. See \033[35msetLEDs\033[0m.", cliFunc_readLEDs },
{ "sendKeys", "Send the prepared list of USB codes and modifier byte.", cliFunc_sendKeys },

420
Scan/ADCTest/analog.c Normal file
View File

@ -0,0 +1,420 @@
/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* 1. The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* 2. If the Software is incorporated into a build system that allows
* selection among a list of target devices, then similar target
* devices manufactured by PJRC.COM must be included in the list of
* target devices and selectable in the same manner.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <Lib/ScanLib.h>
static uint8_t calibrating;
static uint8_t analog_right_shift = 0;
static uint8_t analog_config_bits = 10;
static uint8_t analog_num_average = 4;
static uint8_t analog_reference_internal = 0;
// the alternate clock is connected to OSCERCLK (16 MHz).
// datasheet says ADC clock should be 2 to 12 MHz for 16 bit mode
// datasheet says ADC clock should be 1 to 18 MHz for 8-12 bit mode
#if F_BUS == 48000000
#define ADC_CFG1_6MHZ ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1)
#define ADC_CFG1_12MHZ ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1)
#define ADC_CFG1_24MHZ ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1)
#elif F_BUS == 24000000
#define ADC_CFG1_6MHZ ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(0)
#define ADC_CFG1_12MHZ ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0)
#define ADC_CFG1_24MHZ ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0)
#else
#error
#endif
void analog_init(void)
{
uint32_t num;
VREF_TRM = 0x60;
VREF_SC = 0xE1; // enable 1.2 volt ref
if (analog_config_bits == 8) {
ADC0_CFG1 = ADC_CFG1_24MHZ + ADC_CFG1_MODE(0);
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
#if defined(_mk20dx256_)
ADC1_CFG1 = ADC_CFG1_24MHZ + ADC_CFG1_MODE(0);
ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
#endif
} else if (analog_config_bits == 10) {
ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
#if defined(_mk20dx256_)
ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
#endif
} else if (analog_config_bits == 12) {
ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
#if defined(_mk20dx256_)
ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
#endif
} else {
ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
#if defined(_mk20dx256_)
ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
#endif
}
if (analog_reference_internal) {
ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
#if defined(_mk20dx256_)
ADC1_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
#endif
} else {
ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
#if defined(_mk20dx256_)
ADC1_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
#endif
}
num = analog_num_average;
if (num <= 1) {
ADC0_SC3 = ADC_SC3_CAL; // begin cal
#if defined(_mk20dx256_)
ADC1_SC3 = ADC_SC3_CAL; // begin cal
#endif
} else if (num <= 4) {
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
#if defined(_mk20dx256_)
ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
#endif
} else if (num <= 8) {
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
#if defined(_mk20dx256_)
ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
#endif
} else if (num <= 16) {
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
#if defined(_mk20dx256_)
ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
#endif
} else {
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
#if defined(_mk20dx256_)
ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
#endif
}
calibrating = 1;
}
static void wait_for_cal(void)
{
uint16_t sum;
//serial_print("wait_for_cal\n");
#if defined(_mk20dx128_)
while (ADC0_SC3 & ADC_SC3_CAL) {
// wait
}
#elif defined(_mk20dx256_)
while ((ADC0_SC3 & ADC_SC3_CAL) || (ADC1_SC3 & ADC_SC3_CAL)) {
// wait
}
#endif
__disable_irq();
if (calibrating) {
//serial_print("\n");
sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0;
sum = (sum / 2) | 0x8000;
ADC0_PG = sum;
//serial_print("ADC0_PG = ");
//serial_phex16(sum);
//serial_print("\n");
sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0;
sum = (sum / 2) | 0x8000;
ADC0_MG = sum;
//serial_print("ADC0_MG = ");
//serial_phex16(sum);
//serial_print("\n");
#if defined(_mk20dx256_)
sum = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0;
sum = (sum / 2) | 0x8000;
ADC1_PG = sum;
sum = ADC1_CLMS + ADC1_CLM4 + ADC1_CLM3 + ADC1_CLM2 + ADC1_CLM1 + ADC1_CLM0;
sum = (sum / 2) | 0x8000;
ADC1_MG = sum;
#endif
calibrating = 0;
}
__enable_irq();
}
// ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC.
// VREFH/VREFL - connected as the primary reference option
// 1.2 V VREF_OUT - connected as the VALT reference option
#define DEFAULT 0
#define INTERNAL 2
#define INTERNAL1V2 2
#define INTERNAL1V1 2
#define EXTERNAL 0
void analogReference(uint8_t type)
{
if (type) {
// internal reference requested
if (!analog_reference_internal) {
analog_reference_internal = 1;
if (calibrating) {
ADC0_SC3 = 0; // cancel cal
#if defined(_mk20dx256_)
ADC1_SC3 = 0; // cancel cal
#endif
}
analog_init();
}
} else {
// vcc or external reference requested
if (analog_reference_internal) {
analog_reference_internal = 0;
if (calibrating) {
ADC0_SC3 = 0; // cancel cal
#if defined(_mk20dx256_)
ADC1_SC3 = 0; // cancel cal
#endif
}
analog_init();
}
}
}
void analogReadRes(unsigned int bits)
{
unsigned int config;
if (bits >= 13) {
if (bits > 16) bits = 16;
config = 16;
} else if (bits >= 11) {
config = 12;
} else if (bits >= 9) {
config = 10;
} else {
config = 8;
}
analog_right_shift = config - bits;
if (config != analog_config_bits) {
analog_config_bits = config;
if (calibrating) ADC0_SC3 = 0; // cancel cal
analog_init();
}
}
void analogReadAveraging(unsigned int num)
{
if (calibrating) wait_for_cal();
if (num <= 1) {
num = 0;
ADC0_SC3 = 0;
} else if (num <= 4) {
num = 4;
ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0);
} else if (num <= 8) {
num = 8;
ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1);
} else if (num <= 16) {
num = 16;
ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(2);
} else {
num = 32;
ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(3);
}
analog_num_average = num;
}
// The SC1A register is used for both software and hardware trigger modes of operation.
#if defined(_mk20dx128_)
static const uint8_t channel2sc1a[] = {
5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
0, 19, 3, 21, 26, 22, 23
};
#elif defined(_mk20dx256_)
static const uint8_t channel2sc1a[] = {
5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
0, 19, 3, 19+128, 26, 22, 23,
5+192, 5+128, 4+128, 6+128, 7+128, 4+192
// A15 26 E1 ADC1_SE5a 5+64
// A16 27 C9 ADC1_SE5b 5
// A17 28 C8 ADC1_SE4b 4
// A18 29 C10 ADC1_SE6b 6
// A19 30 C11 ADC1_SE7b 7
// A20 31 E0 ADC1_SE4a 4+64
};
#endif
// TODO: perhaps this should store the NVIC priority, so it works recursively?
static volatile uint8_t analogReadBusyADC0 = 0;
#if defined(_mk20dx256_)
static volatile uint8_t analogReadBusyADC1 = 0;
#endif
int analogRead(uint8_t pin)
{
int result;
uint8_t index, channel;
//serial_phex(pin);
//serial_print(" ");
if (pin <= 13) {
index = pin; // 0-13 refer to A0-A13
} else if (pin <= 23) {
index = pin - 14; // 14-23 are A0-A9
#if defined(_mk20dx256_)
} else if (pin >= 26 && pin <= 31) {
index = pin - 9; // 26-31 are A15-A20
#endif
} else if (pin >= 34 && pin <= 40) {
index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor,
// 39 is vref, 40 is unused (A14 on Teensy 3.1)
} else {
return 0; // all others are invalid
}
//serial_phex(index);
//serial_print(" ");
channel = channel2sc1a[index];
//serial_phex(channel);
//serial_print(" ");
//serial_print("analogRead");
//return 0;
if (calibrating) wait_for_cal();
//pin = 5; // PTD1/SE5b, pin 14, analog 0
#if defined(_mk20dx256_)
if (channel & 0x80) goto beginADC1;
#endif
__disable_irq();
startADC0:
//serial_print("startADC0\n");
ADC0_SC1A = channel;
analogReadBusyADC0 = 1;
__enable_irq();
while (1) {
__disable_irq();
if ((ADC0_SC1A & ADC_SC1_COCO)) {
result = ADC0_RA;
analogReadBusyADC0 = 0;
__enable_irq();
result >>= analog_right_shift;
return result;
}
// detect if analogRead was used from an interrupt
// if so, our analogRead got canceled, so it must
// be restarted.
if (!analogReadBusyADC0) goto startADC0;
__enable_irq();
yield();
}
#if defined(_mk20dx256_)
beginADC1:
__disable_irq();
startADC1:
//serial_print("startADC0\n");
// ADC1_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b.
if (channel & 0x40) {
ADC1_CFG2 &= ~ADC_CFG2_MUXSEL;
} else {
ADC1_CFG2 |= ADC_CFG2_MUXSEL;
}
ADC1_SC1A = channel & 0x3F;
analogReadBusyADC1 = 1;
__enable_irq();
while (1) {
__disable_irq();
if ((ADC1_SC1A & ADC_SC1_COCO)) {
result = ADC1_RA;
analogReadBusyADC1 = 0;
__enable_irq();
result >>= analog_right_shift;
return result;
}
// detect if analogRead was used from an interrupt
// if so, our analogRead got canceled, so it must
// be restarted.
if (!analogReadBusyADC1) goto startADC1;
__enable_irq();
yield();
}
#endif
}
void analogWriteDAC0(int val)
{
#if defined(_mk20dx256_)
SIM_SCGC2 |= SIM_SCGC2_DAC0;
if (analog_reference_internal) {
DAC0_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1
} else {
DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
}
if (val < 0) val = 0; // TODO: saturate instruction?
else if (val > 4095) val = 4095;
*(int16_t *)&(DAC0_DAT0L) = val;
#endif
}

120
Scan/ADCTest/defaultMap.h Normal file
View File

@ -0,0 +1,120 @@
/* Copyright (C) 2014 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef __KEYMAP_H
#define __KEYMAP_H
// ----- Variables -----
// Default 1-indexed key mappings
static uint8_t DefaultMap_Lookup[] = {
0, // 0x00
KEY_1, // 0x01
KEY_Q, // 0x02
KEY_A, // 0x03
KEY_2, // 0x04
KEY_Z, // 0x05
KEY_W, // 0x06
KEY_S, // 0x07
KEY_3, // 0x08
KEY_X, // 0x09
KEY_E, // 0x0A
KEY_D, // 0x0B
KEY_4, // 0x0C
KEY_C, // 0x0D
KEY_R, // 0x0E
KEY_F, // 0x0F
KEY_5, // 0x10
KEY_V, // 0x11
KEY_T, // 0x12
KEY_G, // 0x13
KEY_6, // 0x14
KEY_B, // 0x15
KEY_Y, // 0x16
KEY_H, // 0x17
KEY_7, // 0x18
KEY_N, // 0x19
KEY_U, // 0x1A
KEY_J, // 0x1B
KEY_8, // 0x1C
KEY_M, // 0x1D
KEY_I, // 0x1E
KEY_K, // 0x1F
KEY_9, // 0x20
KEY_COMMA, // 0x21
KEY_O, // 0x22
KEY_L, // 0x23
KEY_0, // 0x24
KEY_PERIOD, // 0x25
KEY_P, // 0x26
KEY_SEMICOLON, // 0x27
KEY_MINUS, // 0x28
KEY_SLASH, // 0x29
KEY_LEFT_BRACE, // 0x2A (1/4)
KEY_QUOTE, // 0x2B
KEY_EQUAL, // 0x2C
KEY_RIGHT_BRACE, // 0x2D
0, // 0x2E
0, // 0x2F
KEY_TILDE, // 0x30
KEY_TAB, // 0x31
0, // 0x32
0, // 0x33
KEY_SHIFT, // 0x34
KEY_ENTER, // 0x35
KEY_BACKSPACE, // 0x36
KEY_DELETE, // 0x37
KEY_CTRL, // 0x38 (MAR LEFT)
KEY_SPACE, // 0x39
KEY_ALT, // 0x3A (EXPRESS / MAR RIGHT)
0, // 0x3B
0, // 0x3C
KEY_ESC, // 0x3D (MAR REL)
0, // 0x3E (STORE)
0, // 0x3F (RECALL)
KEY_GUI, // 0x40 (CODE)
0, // 0x41
0, // 0x42
0, // 0x43
0, // 0x44
0, // 0x45
0, // 0x46
0, // 0x47
0, // 0x48 (DEC TAB)
0, // 0x49 (SET TAB)
0, // 0x4A (TAB CLEAR)
0, // 0x4B (INDEX)
0, // 0x4C (RELOC)
0, // 0x4D
0, // 0x4E
0, // 0x4F
0, // 0x50 (REV INDEX)
0, // 0x51
0, // 0x52
0, // 0x53
0, // 0x54
0, // 0x55
};
#endif

133
Scan/ADCTest/scan_loop.c Normal file
View File

@ -0,0 +1,133 @@
/* Copyright (C) 2014 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <cli.h>
#include <led.h>
#include <print.h>
// Local Includes
#include "scan_loop.h"
// ----- Defines -----
// ----- Macros -----
// ----- Function Declarations -----
void cliFunc_echo( char* args );
// ----- Variables -----
// Buffer used to inform the macro processing module which keys have been detected as pressed
volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
volatile uint8_t KeyIndex_BufferUsed;
// Scan Module command dictionary
char* scanCLIDictName = "ADC Test Module Commands";
CLIDictItem scanCLIDict[] = {
{ "echo", "Example command, echos the arguments.", cliFunc_echo },
{ 0, 0, 0 } // Null entry for dictionary end
};
// ----- Functions -----
// Setup
inline void Scan_setup()
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_) // AVR
{
// Register Scan CLI dictionary
CLI_registerDictionary( scanCLIDict, scanCLIDictName );
}
#elif defined(_mk20dx128_) || defined(_mk20dx256_) // ARM
{
// Register Scan CLI dictionary
CLI_registerDictionary( scanCLIDict, scanCLIDictName );
}
#endif
// Main Detection Loop
inline uint8_t Scan_loop()
{
return 0;
}
// Signal KeyIndex_Buffer that it has been properly read
void Scan_finishedWithBuffer( uint8_t sentKeys )
{
}
// Signal that the keys have been properly sent over USB
void Scan_finishedWithUSBBuffer( uint8_t sentKeys )
{
}
// Reset Keyboard
void Scan_resetKeyboard()
{
}
// ----- CLI Command Functions -----
// XXX Just an example command showing how to parse arguments (more complex than generally needed)
void cliFunc_echo( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
print( NL ); // No \n by default after the command is entered
// Parse args until a \0 is found
while ( 1 )
{
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Print out the arg
dPrint( arg1Ptr );
}
}

65
Scan/ADCTest/scan_loop.h Normal file
View File

@ -0,0 +1,65 @@
/* Copyright (C) 2014 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef __SCAN_LOOP_H
#define __SCAN_LOOP_H
// ----- Includes -----
// Compiler Includes
#include <stdint.h>
// Local Includes
// ----- Defines -----
#define KEYBOARD_KEYS 0x7F // 127 - Size of the array space for the keyboard(max index)
#define KEYBOARD_BUFFER 24 // Max number of key signals to buffer
// ----- Variables -----
extern volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
extern volatile uint8_t KeyIndex_BufferUsed;
extern volatile uint8_t KeyIndex_Add_InputSignal;
// ----- Functions -----
// Functions used by main.c
void Scan_setup();
uint8_t Scan_loop();
// Functions available to macro.c
uint8_t Scan_sendData( uint8_t dataPayload );
void Scan_finishedWithBuffer( uint8_t sentKeys );
void Scan_finishedWithUSBBuffer( uint8_t sentKeys );
void Scan_resetKeyboard();
#endif // __SCAN_LOOP_H

33
Scan/ADCTest/setup.cmake Normal file
View File

@ -0,0 +1,33 @@
###| CMake Kiibohd Controller Scan Module |###
#
# Written by Jacob Alexander in 2014 for the Kiibohd Controller
#
# Released into the Public Domain
#
# ADC/DAC example. DAC only works on microcontrollers that support it.
#
###
###
# Module C files
#
set( SCAN_SRCS
scan_loop.c
analog.c
)
###
# Module Specific Options
#
###
# Compiler Family Compatibility
#
set( ScanModuleCompatibility
arm
)

4
main.c
View File

@ -146,7 +146,7 @@ int main(void)
// Setup Modules
Output_setup();
Macro_setup();
//scan_setup();
Scan_setup();
// Setup ISR Timer for flagging a kepress send to USB
usbTimerSetup();
@ -184,7 +184,7 @@ int main(void)
// USB Keyboard Data Send Counter Interrupt
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_) // AVR
ISR( TIMER0_OVF_vect )
#elif defined(_mk20dx128_) // ARM
#elif defined(_mk20dx128_) || defined(_mk20dx256_) // ARM
void pit0_isr(void)
#endif
{