Parcourir la source

Merge branch 'master' of https://github.com/smasher816/controller into smasher816-master

bringup
Jacob Alexander il y a 9 ans
Parent
révision
96e785b571
46 fichiers modifiés avec 3306 ajouts et 3306 suppressions
  1. 3
    3
      Bootloader/CMakeLists.txt
  2. 114
    114
      Bootloader/dfu.c
  3. 98
    98
      Bootloader/dfu.h
  4. 35
    35
      Bootloader/flash.c
  5. 178
    178
      Bootloader/ftfl.h
  6. 191
    191
      Bootloader/kinetis.c
  7. 34
    34
      Bootloader/main.c
  8. 30
    30
      Bootloader/mchck-cdefs.h
  9. 294
    294
      Bootloader/sim.h
  10. 3
    3
      Bootloader/usb.c
  11. 74
    74
      Bootloader/usb.h
  12. 205
    205
      Bootloader/usbotg.h
  13. 9
    9
      CMakeLists.txt
  14. 3
    3
      Debug/print/print.h
  15. 2
    2
      Lib/_buildvars.h
  16. 3
    3
      Lib/delay.h
  17. 8
    8
      Lib/mk20dx.c
  18. 1179
    1179
      Lib/mk20dx.h
  19. 30
    30
      LoadFile/teensy_loader_cli.c
  20. 2
    2
      Macro/buffer/Keymap/usb_keys.h
  21. 346
    346
      Output/pjrcUSB/arm/usb_desc.c
  22. 15
    15
      Output/pjrcUSB/arm/usb_desc.h
  23. 32
    32
      Output/pjrcUSB/arm/usb_dev.c
  24. 3
    3
      Output/pjrcUSB/arm/usb_dev.h
  25. 1
    1
      Output/pjrcUSB/arm/usb_serial.c
  26. 31
    31
      Output/pjrcUSB/avr/usb_keyboard_serial.c
  27. 314
    314
      Output/pjrcUSB/avr/usb_keyboard_serial.h
  28. 12
    12
      Output/pjrcUSB/output_com.c
  29. 11
    11
      Output/uartOut/output_com.c
  30. 12
    12
      Output/usbMuxUart/output_com.c
  31. 1
    1
      Output/usbMuxUart/setup.cmake
  32. 1
    1
      README.markdown
  33. 1
    1
      Scan/ADCTest/analog.c
  34. 4
    4
      Scan/ADCTest/scan_loop.c
  35. 4
    4
      Scan/BudKeypad/matrix.h
  36. 2
    2
      Scan/DPH/scan_loop.c
  37. 1
    1
      Scan/EpsonQX-10/scan_loop.c
  38. 2
    2
      Scan/FACOM6684/scan_loop.c
  39. 1
    1
      Scan/HP150/scan_loop.c
  40. 3
    3
      Scan/HeathZenith/matrix.h
  41. 3
    3
      Scan/IBMConvertible/matrix.h
  42. 1
    1
      Scan/MicroSwitch8304/scan_loop.c
  43. 1
    1
      Scan/SonyNEWS/scan_loop.c
  44. 7
    7
      Scan/matrix/matrix_scan.c
  45. 1
    1
      Scan/matrix/scan_loop.h
  46. 1
    1
      buildall.bash

+ 3
- 3
Bootloader/CMakeLists.txt Voir le fichier

#| #|
set( CHIP set( CHIP
"mk20dx128vlf5" # McHCK mk20dx128vlf5 "mk20dx128vlf5" # McHCK mk20dx128vlf5
# "mk20dx256vlh7" # Kiibohd-dfu mk20dx256vlh7
# "mk20dx256vlh7" # Kiibohd-dfu mk20dx256vlh7
) )




#| Stick with gcc unless you know what you're doing #| Stick with gcc unless you know what you're doing
#| Currently only arm is supported with clang #| Currently only arm is supported with clang
set( COMPILER set( COMPILER
"gcc" # arm-none-eabi-gcc / avr-gcc - Default
# "clang" # arm-none-eabi
"gcc" # arm-none-eabi-gcc / avr-gcc - Default
# "clang" # arm-none-eabi
CACHE STRING "Compiler Type" ) CACHE STRING "Compiler Type" )





+ 114
- 114
Bootloader/dfu.c Voir le fichier



void dfu_write_done( enum dfu_status err, struct dfu_ctx *ctx ) void dfu_write_done( enum dfu_status err, struct dfu_ctx *ctx )
{ {
ctx->status = err;
if (ctx->status == DFU_STATUS_OK) {
switch (ctx->state) {
case DFU_STATE_dfuDNBUSY:
ctx->state = DFU_STATE_dfuDNLOAD_IDLE;
break;
default:
break;
}
} else {
ctx->state = DFU_STATE_dfuERROR;
}
ctx->status = err;
if (ctx->status == DFU_STATUS_OK) {
switch (ctx->state) {
case DFU_STATE_dfuDNBUSY:
ctx->state = DFU_STATE_dfuDNLOAD_IDLE;
break;
default:
break;
}
} else {
ctx->state = DFU_STATE_dfuERROR;
}
} }


static void dfu_dnload_complete( void *buf, ssize_t len, void *cbdata ) static void dfu_dnload_complete( void *buf, ssize_t len, void *cbdata )
{ {
struct dfu_ctx *ctx = cbdata;
struct dfu_ctx *ctx = cbdata;


if (len > 0)
ctx->state = DFU_STATE_dfuDNBUSY;
else
ctx->state = DFU_STATE_dfuMANIFEST;
ctx->status = ctx->finish_write(buf, ctx->off, len);
ctx->off += len;
ctx->len = len;
if (len > 0)
ctx->state = DFU_STATE_dfuDNBUSY;
else
ctx->state = DFU_STATE_dfuMANIFEST;
ctx->status = ctx->finish_write(buf, ctx->off, len);
ctx->off += len;
ctx->len = len;


if (ctx->status != DFU_STATUS_async)
dfu_write_done(ctx->status, ctx);
if (ctx->status != DFU_STATUS_async)
dfu_write_done(ctx->status, ctx);


usb_handle_control_status(ctx->state == DFU_STATE_dfuERROR);
usb_handle_control_status(ctx->state == DFU_STATE_dfuERROR);
} }


static void dfu_reset_system( void *buf, ssize_t len, void *cbdata ) static void dfu_reset_system( void *buf, ssize_t len, void *cbdata )
{ {
SOFTWARE_RESET();
SOFTWARE_RESET();
} }


static int dfu_handle_control( struct usb_ctrl_req_t *req, void *data ) static int dfu_handle_control( struct usb_ctrl_req_t *req, void *data )
{ {
struct dfu_ctx *ctx = data;
int fail = 1;
switch ((enum dfu_ctrl_req_code)req->bRequest) {
case USB_CTRL_REQ_DFU_DNLOAD: {
void *buf;
switch (ctx->state) {
case DFU_STATE_dfuIDLE:
ctx->off = 0;
break;
case DFU_STATE_dfuDNLOAD_IDLE:
break;
default:
goto err;
}
/**
* XXX we are not allowed to STALL here, and we need to eat all transferred data.
* better not allow setup_write to break the protocol.
*/
ctx->status = ctx->setup_write(ctx->off, req->wLength, &buf);
if (ctx->status != DFU_STATUS_OK) {
ctx->state = DFU_STATE_dfuERROR;
goto err_have_status;
}
if (req->wLength > 0)
usb_ep0_rx(buf, req->wLength, dfu_dnload_complete, ctx);
else
dfu_dnload_complete(NULL, 0, ctx);
goto out_no_status;
}
case USB_CTRL_REQ_DFU_GETSTATUS: {
struct dfu_status_t st;
st.bState = ctx->state;
st.bStatus = ctx->status;
st.bwPollTimeout = 1000; /* XXX */
/**
* If we're in DFU_STATE_dfuMANIFEST, we just finished
* the download, and we're just about to send our last
* status report. Once the report has been sent, go
* and reset the system to put the new firmware into
* effect.
*/
usb_ep0_tx_cp(&st, sizeof(st), req->wLength, NULL, NULL);
if (ctx->state == DFU_STATE_dfuMANIFEST) {
usb_handle_control_status_cb(dfu_reset_system);
goto out_no_status;
}
break;
}
case USB_CTRL_REQ_DFU_CLRSTATUS:
ctx->state = DFU_STATE_dfuIDLE;
ctx->status = DFU_STATUS_OK;
break;
case USB_CTRL_REQ_DFU_GETSTATE: {
uint8_t st = ctx->state;
usb_ep0_tx_cp(&st, sizeof(st), req->wLength, NULL, NULL);
break;
}
case USB_CTRL_REQ_DFU_ABORT:
switch (ctx->state) {
case DFU_STATE_dfuIDLE:
case DFU_STATE_dfuDNLOAD_IDLE:
/* case DFU_STATE_dfuUPLOAD_IDLE: */
ctx->state = DFU_STATE_dfuIDLE;
break;
default:
goto err;
}
break;
/* case USB_CTRL_REQ_DFU_UPLOAD: */
default:
return (0);
}
fail = 0;
goto out;
struct dfu_ctx *ctx = data;
int fail = 1;
switch ((enum dfu_ctrl_req_code)req->bRequest) {
case USB_CTRL_REQ_DFU_DNLOAD: {
void *buf;
switch (ctx->state) {
case DFU_STATE_dfuIDLE:
ctx->off = 0;
break;
case DFU_STATE_dfuDNLOAD_IDLE:
break;
default:
goto err;
}
/**
* XXX we are not allowed to STALL here, and we need to eat all transferred data.
* better not allow setup_write to break the protocol.
*/
ctx->status = ctx->setup_write(ctx->off, req->wLength, &buf);
if (ctx->status != DFU_STATUS_OK) {
ctx->state = DFU_STATE_dfuERROR;
goto err_have_status;
}
if (req->wLength > 0)
usb_ep0_rx(buf, req->wLength, dfu_dnload_complete, ctx);
else
dfu_dnload_complete(NULL, 0, ctx);
goto out_no_status;
}
case USB_CTRL_REQ_DFU_GETSTATUS: {
struct dfu_status_t st;
st.bState = ctx->state;
st.bStatus = ctx->status;
st.bwPollTimeout = 1000; /* XXX */
/**
* If we're in DFU_STATE_dfuMANIFEST, we just finished
* the download, and we're just about to send our last
* status report. Once the report has been sent, go
* and reset the system to put the new firmware into
* effect.
*/
usb_ep0_tx_cp(&st, sizeof(st), req->wLength, NULL, NULL);
if (ctx->state == DFU_STATE_dfuMANIFEST) {
usb_handle_control_status_cb(dfu_reset_system);
goto out_no_status;
}
break;
}
case USB_CTRL_REQ_DFU_CLRSTATUS:
ctx->state = DFU_STATE_dfuIDLE;
ctx->status = DFU_STATUS_OK;
break;
case USB_CTRL_REQ_DFU_GETSTATE: {
uint8_t st = ctx->state;
usb_ep0_tx_cp(&st, sizeof(st), req->wLength, NULL, NULL);
break;
}
case USB_CTRL_REQ_DFU_ABORT:
switch (ctx->state) {
case DFU_STATE_dfuIDLE:
case DFU_STATE_dfuDNLOAD_IDLE:
/* case DFU_STATE_dfuUPLOAD_IDLE: */
ctx->state = DFU_STATE_dfuIDLE;
break;
default:
goto err;
}
break;
/* case USB_CTRL_REQ_DFU_UPLOAD: */
default:
return (0);
}
fail = 0;
goto out;


err: err:
ctx->status = DFU_STATUS_errSTALLEDPKT;
ctx->status = DFU_STATUS_errSTALLEDPKT;
err_have_status: err_have_status:
ctx->state = DFU_STATE_dfuERROR;
ctx->state = DFU_STATE_dfuERROR;
out: out:
usb_handle_control_status(fail);
usb_handle_control_status(fail);
out_no_status: out_no_status:
return (1);
return (1);
} }


void dfu_init( dfu_setup_write_t setup_write, dfu_finish_write_t finish_write, struct dfu_ctx *ctx ) void dfu_init( dfu_setup_write_t setup_write, dfu_finish_write_t finish_write, struct dfu_ctx *ctx )
{ {
ctx->state = DFU_STATE_dfuIDLE;
ctx->setup_write = setup_write;
ctx->finish_write = finish_write;
usb_attach_function(&dfu_function, &ctx->header);
ctx->state = DFU_STATE_dfuIDLE;
ctx->setup_write = setup_write;
ctx->finish_write = finish_write;
usb_attach_function(&dfu_function, &ctx->header);
} }


const struct usbd_function dfu_function = { const struct usbd_function dfu_function = {
.control = dfu_handle_control,
.interface_count = USB_FUNCTION_DFU_IFACE_COUNT,
.control = dfu_handle_control,
.interface_count = USB_FUNCTION_DFU_IFACE_COUNT,
}; };



+ 98
- 98
Bootloader/dfu.h Voir le fichier





#ifndef USB_DFU_TRANSFER_SIZE #ifndef USB_DFU_TRANSFER_SIZE
#define USB_DFU_TRANSFER_SIZE FLASH_SECTOR_SIZE
#define USB_DFU_TRANSFER_SIZE FLASH_SECTOR_SIZE
#endif #endif


#define USB_FUNCTION_DESC_DFU_DECL \ #define USB_FUNCTION_DESC_DFU_DECL \
struct dfu_function_desc
struct dfu_function_desc


#define USB_FUNCTION_DFU_IFACE_COUNT 1
#define USB_FUNCTION_DFU_RX_EP_COUNT 0
#define USB_FUNCTION_DFU_TX_EP_COUNT 0
#define USB_FUNCTION_DFU_IFACE_COUNT 1
#define USB_FUNCTION_DFU_RX_EP_COUNT 0
#define USB_FUNCTION_DFU_TX_EP_COUNT 0






// ----- Macros ----- // ----- Macros -----


#define USB_FUNCTION_DESC_DFU(state...) \ #define USB_FUNCTION_DESC_DFU(state...) \
{ \
.iface = { \
.bLength = sizeof(struct usb_desc_iface_t), \
.bDescriptorType = USB_DESC_IFACE, \
.bInterfaceNumber = USB_FUNCTION_IFACE(0, state), \
.bAlternateSetting = 0, \
.bNumEndpoints = 0, \
.bInterfaceClass = USB_DEV_CLASS_APP, \
.bInterfaceSubClass = USB_DEV_SUBCLASS_APP_DFU, \
.bInterfaceProtocol = USB_DEV_PROTO_DFU_DFU, \
.iInterface = 0, \
}, \
.dfu = { \
.bLength = sizeof(struct dfu_desc_functional), \
.bDescriptorType = { \
.id = 0x1, \
.type_type = USB_DESC_TYPE_CLASS \
}, \
.will_detach = 1, \
.manifestation_tolerant = 0, \
.can_upload = 0, \
.can_download = 1, \
.wDetachTimeOut = 0, \
.wTransferSize = USB_DFU_TRANSFER_SIZE, \
.bcdDFUVersion = { .maj = 1, .min = 1 } \
} \
}
{ \
.iface = { \
.bLength = sizeof(struct usb_desc_iface_t), \
.bDescriptorType = USB_DESC_IFACE, \
.bInterfaceNumber = USB_FUNCTION_IFACE(0, state), \
.bAlternateSetting = 0, \
.bNumEndpoints = 0, \
.bInterfaceClass = USB_DEV_CLASS_APP, \
.bInterfaceSubClass = USB_DEV_SUBCLASS_APP_DFU, \
.bInterfaceProtocol = USB_DEV_PROTO_DFU_DFU, \
.iInterface = 0, \
}, \
.dfu = { \
.bLength = sizeof(struct dfu_desc_functional), \
.bDescriptorType = { \
.id = 0x1, \
.type_type = USB_DESC_TYPE_CLASS \
}, \
.will_detach = 1, \
.manifestation_tolerant = 0, \
.can_upload = 0, \
.can_download = 1, \
.wDetachTimeOut = 0, \
.wTransferSize = USB_DFU_TRANSFER_SIZE, \
.bcdDFUVersion = { .maj = 1, .min = 1 } \
} \
}






// ----- Enumerations ----- // ----- Enumerations -----


enum dfu_dev_subclass { enum dfu_dev_subclass {
USB_DEV_SUBCLASS_APP_DFU = 0x01
USB_DEV_SUBCLASS_APP_DFU = 0x01
}; };


enum dfu_dev_proto { enum dfu_dev_proto {
USB_DEV_PROTO_DFU_APP = 0x01,
USB_DEV_PROTO_DFU_DFU = 0x02
USB_DEV_PROTO_DFU_APP = 0x01,
USB_DEV_PROTO_DFU_DFU = 0x02
}; };


enum dfu_ctrl_req_code { enum dfu_ctrl_req_code {
USB_CTRL_REQ_DFU_DETACH = 0,
USB_CTRL_REQ_DFU_DNLOAD = 1,
USB_CTRL_REQ_DFU_UPLOAD = 2,
USB_CTRL_REQ_DFU_GETSTATUS = 3,
USB_CTRL_REQ_DFU_CLRSTATUS = 4,
USB_CTRL_REQ_DFU_GETSTATE = 5,
USB_CTRL_REQ_DFU_ABORT = 6
USB_CTRL_REQ_DFU_DETACH = 0,
USB_CTRL_REQ_DFU_DNLOAD = 1,
USB_CTRL_REQ_DFU_UPLOAD = 2,
USB_CTRL_REQ_DFU_GETSTATUS = 3,
USB_CTRL_REQ_DFU_CLRSTATUS = 4,
USB_CTRL_REQ_DFU_GETSTATE = 5,
USB_CTRL_REQ_DFU_ABORT = 6
}; };


enum dfu_status { enum dfu_status {
DFU_STATUS_async = 0xff,
DFU_STATUS_OK = 0x00,
DFU_STATUS_errTARGET = 0x01,
DFU_STATUS_errFILE = 0x02,
DFU_STATUS_errWRITE = 0x03,
DFU_STATUS_errERASE = 0x04,
DFU_STATUS_errCHECK_ERASED = 0x05,
DFU_STATUS_errPROG = 0x06,
DFU_STATUS_errVERIFY = 0x07,
DFU_STATUS_errADDRESS = 0x08,
DFU_STATUS_errNOTDONE = 0x09,
DFU_STATUS_errFIRMWARE = 0x0a,
DFU_STATUS_errVENDOR = 0x0b,
DFU_STATUS_errUSBR = 0x0c,
DFU_STATUS_errPOR = 0x0d,
DFU_STATUS_errUNKNOWN = 0x0e,
DFU_STATUS_errSTALLEDPKT = 0x0f
DFU_STATUS_async = 0xff,
DFU_STATUS_OK = 0x00,
DFU_STATUS_errTARGET = 0x01,
DFU_STATUS_errFILE = 0x02,
DFU_STATUS_errWRITE = 0x03,
DFU_STATUS_errERASE = 0x04,
DFU_STATUS_errCHECK_ERASED = 0x05,
DFU_STATUS_errPROG = 0x06,
DFU_STATUS_errVERIFY = 0x07,
DFU_STATUS_errADDRESS = 0x08,
DFU_STATUS_errNOTDONE = 0x09,
DFU_STATUS_errFIRMWARE = 0x0a,
DFU_STATUS_errVENDOR = 0x0b,
DFU_STATUS_errUSBR = 0x0c,
DFU_STATUS_errPOR = 0x0d,
DFU_STATUS_errUNKNOWN = 0x0e,
DFU_STATUS_errSTALLEDPKT = 0x0f
}; };


enum dfu_state { enum dfu_state {
DFU_STATE_appIDLE = 0,
DFU_STATE_appDETACH = 1,
DFU_STATE_dfuIDLE = 2,
DFU_STATE_dfuDNLOAD_SYNC = 3,
DFU_STATE_dfuDNBUSY = 4,
DFU_STATE_dfuDNLOAD_IDLE = 5,
DFU_STATE_dfuMANIFEST_SYNC = 6,
DFU_STATE_dfuMANIFEST = 7,
DFU_STATE_dfuMANIFEST_WAIT_RESET = 8,
DFU_STATE_dfuUPLOAD_IDLE = 9,
DFU_STATE_dfuERROR = 10
DFU_STATE_appIDLE = 0,
DFU_STATE_appDETACH = 1,
DFU_STATE_dfuIDLE = 2,
DFU_STATE_dfuDNLOAD_SYNC = 3,
DFU_STATE_dfuDNBUSY = 4,
DFU_STATE_dfuDNLOAD_IDLE = 5,
DFU_STATE_dfuMANIFEST_SYNC = 6,
DFU_STATE_dfuMANIFEST = 7,
DFU_STATE_dfuMANIFEST_WAIT_RESET = 8,
DFU_STATE_dfuUPLOAD_IDLE = 9,
DFU_STATE_dfuERROR = 10
}; };




// ----- Structs ----- // ----- Structs -----


struct dfu_status_t { struct dfu_status_t {
enum dfu_status bStatus : 8;
uint32_t bwPollTimeout : 24;
enum dfu_state bState : 8;
uint8_t iString;
enum dfu_status bStatus : 8;
uint32_t bwPollTimeout : 24;
enum dfu_state bState : 8;
uint8_t iString;
} __packed; } __packed;
CTASSERT_SIZE_BYTE(struct dfu_status_t, 6); CTASSERT_SIZE_BYTE(struct dfu_status_t, 6);


typedef void (*dfu_detach_t)(void); typedef void (*dfu_detach_t)(void);


struct dfu_ctx { struct dfu_ctx {
struct usbd_function_ctx_header header;
enum dfu_state state;
enum dfu_status status;
dfu_setup_write_t setup_write;
dfu_finish_write_t finish_write;
size_t off;
size_t len;
struct usbd_function_ctx_header header;
enum dfu_state state;
enum dfu_status status;
dfu_setup_write_t setup_write;
dfu_finish_write_t finish_write;
size_t off;
size_t len;
}; };




struct dfu_desc_functional { struct dfu_desc_functional {
uint8_t bLength;
struct usb_desc_type_t bDescriptorType; /* = class DFU/0x1 FUNCTIONAL */
union {
struct {
uint8_t can_download : 1;
uint8_t can_upload : 1;
uint8_t manifestation_tolerant : 1;
uint8_t will_detach : 1;
uint8_t _rsvd0 : 4;
};
uint8_t bmAttributes;
};
uint16_t wDetachTimeOut;
uint16_t wTransferSize;
struct usb_bcd_t bcdDFUVersion;
uint8_t bLength;
struct usb_desc_type_t bDescriptorType; /* = class DFU/0x1 FUNCTIONAL */
union {
struct {
uint8_t can_download : 1;
uint8_t can_upload : 1;
uint8_t manifestation_tolerant : 1;
uint8_t will_detach : 1;
uint8_t _rsvd0 : 4;
};
uint8_t bmAttributes;
};
uint16_t wDetachTimeOut;
uint16_t wTransferSize;
struct usb_bcd_t bcdDFUVersion;
} __packed; } __packed;
CTASSERT_SIZE_BYTE(struct dfu_desc_functional, 9); CTASSERT_SIZE_BYTE(struct dfu_desc_functional, 9);


struct dfu_function_desc { struct dfu_function_desc {
struct usb_desc_iface_t iface;
struct dfu_desc_functional dfu;
struct usb_desc_iface_t iface;
struct dfu_desc_functional dfu;
}; };





+ 35
- 35
Bootloader/flash.c Voir le fichier

__attribute__((section(".ramtext.ftfl_submit_cmd"), long_call)) __attribute__((section(".ramtext.ftfl_submit_cmd"), long_call))
int ftfl_submit_cmd(void) int ftfl_submit_cmd(void)
{ {
FTFL.fstat.raw = ((struct FTFL_FSTAT_t){
.ccif = 1,
.rdcolerr = 1,
.accerr = 1,
.fpviol = 1
}).raw;
struct FTFL_FSTAT_t stat;
while (!(stat = FTFL.fstat).ccif)
/* NOTHING */; /* XXX maybe WFI? */
return (!!stat.mgstat0);
FTFL.fstat.raw = ((struct FTFL_FSTAT_t){
.ccif = 1,
.rdcolerr = 1,
.accerr = 1,
.fpviol = 1
}).raw;
struct FTFL_FSTAT_t stat;
while (!(stat = FTFL.fstat).ccif)
/* NOTHING */; /* XXX maybe WFI? */
return (!!stat.mgstat0);
} }


int flash_prepare_flashing(void) int flash_prepare_flashing(void)
{ {
/* switch to FlexRAM */
if (!FTFL.fcnfg.ramrdy) {
FTFL.fccob.set_flexram.fcmd = FTFL_FCMD_SET_FLEXRAM;
FTFL.fccob.set_flexram.flexram_function = FTFL_FLEXRAM_RAM;
return (ftfl_submit_cmd());
}
return (0);
/* switch to FlexRAM */
if (!FTFL.fcnfg.ramrdy) {
FTFL.fccob.set_flexram.fcmd = FTFL_FCMD_SET_FLEXRAM;
FTFL.fccob.set_flexram.flexram_function = FTFL_FLEXRAM_RAM;
return (ftfl_submit_cmd());
}
return (0);
} }


int flash_erase_sector(uintptr_t addr) int flash_erase_sector(uintptr_t addr)
{ {
if (addr < (uintptr_t)&_app_rom &&
flash_ALLOW_BRICKABLE_ADDRESSES != 0x00023420)
return (-1);
FTFL.fccob.erase.fcmd = FTFL_FCMD_ERASE_SECTOR;
FTFL.fccob.erase.addr = addr;
return (ftfl_submit_cmd());
if (addr < (uintptr_t)&_app_rom &&
flash_ALLOW_BRICKABLE_ADDRESSES != 0x00023420)
return (-1);
FTFL.fccob.erase.fcmd = FTFL_FCMD_ERASE_SECTOR;
FTFL.fccob.erase.addr = addr;
return (ftfl_submit_cmd());
} }


int flash_program_section(uintptr_t addr, size_t num_words) int flash_program_section(uintptr_t addr, size_t num_words)
{ {
FTFL.fccob.program_section.fcmd = FTFL_FCMD_PROGRAM_SECTION;
FTFL.fccob.program_section.addr = addr;
FTFL.fccob.program_section.num_words = num_words;
return (ftfl_submit_cmd());
FTFL.fccob.program_section.fcmd = FTFL_FCMD_PROGRAM_SECTION;
FTFL.fccob.program_section.addr = addr;
FTFL.fccob.program_section.num_words = num_words;
return (ftfl_submit_cmd());
} }


int flash_program_sector(uintptr_t addr, size_t len) int flash_program_sector(uintptr_t addr, size_t len)
{ {
return (len != FLASH_SECTOR_SIZE ||
(addr & (FLASH_SECTOR_SIZE - 1)) != 0 ||
flash_erase_sector(addr) ||
flash_program_section(addr, FLASH_SECTOR_SIZE/4));
return (len != FLASH_SECTOR_SIZE ||
(addr & (FLASH_SECTOR_SIZE - 1)) != 0 ||
flash_erase_sector(addr) ||
flash_program_section(addr, FLASH_SECTOR_SIZE/4));
} }


void *flash_get_staging_area(uintptr_t addr, size_t len) void *flash_get_staging_area(uintptr_t addr, size_t len)
{ {
if ((addr & (FLASH_SECTOR_SIZE - 1)) != 0 ||
len != FLASH_SECTOR_SIZE)
return (NULL);
return (FlexRAM);
if ((addr & (FLASH_SECTOR_SIZE - 1)) != 0 ||
len != FLASH_SECTOR_SIZE)
return (NULL);
return (FlexRAM);
} }



+ 178
- 178
Bootloader/ftfl.h Voir le fichier

// ----- Structs ----- // ----- Structs -----


struct FTFL_FSTAT_t { struct FTFL_FSTAT_t {
UNION_STRUCT_START(8);
uint8_t mgstat0 : 1;
uint8_t _rsvd0 : 3;
uint8_t fpviol : 1;
uint8_t accerr : 1;
uint8_t rdcolerr : 1;
uint8_t ccif : 1;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t mgstat0 : 1;
uint8_t _rsvd0 : 3;
uint8_t fpviol : 1;
uint8_t accerr : 1;
uint8_t rdcolerr : 1;
uint8_t ccif : 1;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct FTFL_FSTAT_t, 8); CTASSERT_SIZE_BIT(struct FTFL_FSTAT_t, 8);


struct FTFL_FCNFG_t { struct FTFL_FCNFG_t {
UNION_STRUCT_START(8);
uint8_t eeerdy : 1;
uint8_t ramrdy : 1;
uint8_t pflsh : 1;
uint8_t _rsvd0 : 1;
uint8_t erssusp : 1;
uint8_t ersareq : 1;
uint8_t rdcollie : 1;
uint8_t ccie : 1;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t eeerdy : 1;
uint8_t ramrdy : 1;
uint8_t pflsh : 1;
uint8_t _rsvd0 : 1;
uint8_t erssusp : 1;
uint8_t ersareq : 1;
uint8_t rdcollie : 1;
uint8_t ccie : 1;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct FTFL_FCNFG_t, 8); CTASSERT_SIZE_BIT(struct FTFL_FCNFG_t, 8);


struct FTFL_FSEC_t { struct FTFL_FSEC_t {
UNION_STRUCT_START(8);
enum {
FTFL_FSEC_SEC_UNSECURE = 2,
FTFL_FSEC_SEC_SECURE = 3
} sec : 2;
enum {
FTFL_FSEC_FSLACC_DENY = 1,
FTFL_FSEC_FSLACC_GRANT = 3
} fslacc : 2;
enum {
FTFL_FSEC_MEEN_DISABLE = 2,
FTFL_FSEC_MEEN_ENABLE = 3
} meen : 2;
enum {
FTFL_FSEC_KEYEN_DISABLE = 1,
FTFL_FSEC_KEYEN_ENABLE = 2
} keyen : 2;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
enum {
FTFL_FSEC_SEC_UNSECURE = 2,
FTFL_FSEC_SEC_SECURE = 3
} sec : 2;
enum {
FTFL_FSEC_FSLACC_DENY = 1,
FTFL_FSEC_FSLACC_GRANT = 3
} fslacc : 2;
enum {
FTFL_FSEC_MEEN_DISABLE = 2,
FTFL_FSEC_MEEN_ENABLE = 3
} meen : 2;
enum {
FTFL_FSEC_KEYEN_DISABLE = 1,
FTFL_FSEC_KEYEN_ENABLE = 2
} keyen : 2;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct FTFL_FSEC_t, 8); CTASSERT_SIZE_BIT(struct FTFL_FSEC_t, 8);


struct FTFL_FOPT_t { struct FTFL_FOPT_t {
UNION_STRUCT_START(8);
uint8_t lpboot : 1;
uint8_t ezport_dis : 1;
uint8_t nmi_dis : 1;
uint8_t _rsvd0 : 5;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t lpboot : 1;
uint8_t ezport_dis : 1;
uint8_t nmi_dis : 1;
uint8_t _rsvd0 : 5;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct FTFL_FOPT_t, 8); CTASSERT_SIZE_BIT(struct FTFL_FOPT_t, 8);


* some that is little endian. * some that is little endian.
*/ */
union FTFL_FCCOB_t { union FTFL_FCCOB_t {
struct ftfl_generic {
uint32_t addr : 24;
enum FTFL_FCMD {
FTFL_FCMD_READ_1s_BLOCK = 0x00,
FTFL_FCMD_READ_1s_SECTION = 0x01,
FTFL_FCMD_PROGRAM_CHECK = 0x02,
FTFL_FCMD_READ_RESOURCE = 0x03,
FTFL_FCMD_PROGRAM_LONGWORD = 0x06,
FTFL_FCMD_ERASE_BLOCK = 0x08,
FTFL_FCMD_ERASE_SECTOR = 0x09,
FTFL_FCMD_PROGRAM_SECTION = 0x0b,
FTFL_FCMD_READ_1s_ALL_BLOCKS = 0x40,
FTFL_FCMD_READ_ONCE = 0x41,
FTFL_FCMD_PROGRAM_ONCE = 0x43,
FTFL_FCMD_ERASE_ALL_BLOCKS = 0x44,
FTFL_FCMD_VERIFY_KEY = 0x45,
FTFL_FCMD_PROGRAM_PARTITION = 0x80,
FTFL_FCMD_SET_FLEXRAM = 0x81
} fcmd : 8;
uint8_t data_be[8];
} generic;
struct {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
uint8_t _rsvd0[3];
enum FTFL_MARGIN_CHOICE {
FTFL_MARGIN_NORMAL = 0x00,
FTFL_MARGIN_USER = 0x01,
FTFL_MARGIN_FACTORY = 0x02
} margin : 8;
} read_1s_block;
struct ftfl_data_num_words {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
uint8_t _rsvd0;
enum FTFL_MARGIN_CHOICE margin : 8;
uint16_t num_words;
} read_1s_section;
struct {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
uint8_t _rsvd0[3];
enum FTFL_MARGIN_CHOICE margin : 8;
uint8_t data_be[4];
} program_check;
struct {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
uint32_t data;
uint8_t _rsvd0[3];
enum FTFL_RESOURCE_SELECT {
FTFL_RESOURCE_IFR = 0x00,
FTFL_RESOURCE_VERSION = 0x01
} resource_select : 8;
} read_resource;
struct {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
uint8_t data_be[4];
} program_longword;
struct {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
} erase;
struct ftfl_data_num_words program_section;
struct {
uint8_t _rsvd0[2];
enum FTFL_MARGIN_CHOICE margin : 8;
enum FTFL_FCMD fcmd : 8;
} read_1s_all_blocks;
struct ftfl_cmd_once {
uint8_t _rsvd0[2];
uint8_t idx;
enum FTFL_FCMD fcmd : 8;
uint8_t data_be[4];
} read_once;
struct ftfl_cmd_once program_once;
struct {
uint8_t _rsvd0[3];
enum FTFL_FCMD fcmd : 8;
} erase_all;
struct {
uint8_t _rsvd0[3];
enum FTFL_FCMD fcmd : 8;
uint8_t key_be[8];
} verify_key;
struct {
uint8_t _rsvd0[3];
enum FTFL_FCMD fcmd : 8;
uint8_t _rsvd1[2];
/* the following enum is analogous to enum
* SIM_FLEXNVM_PARTITION in sim.h, but this one is padded
* with four 1-bits to make an 8-bit value.
*/
enum FTFL_FLEXNVM_PARTITION {
FTFL_FLEXNVM_DATA_32_EEPROM_0 = 0xF0,
FTFL_FLEXNVM_DATA_24_EEPROM_8 = 0xF1,
FTFL_FLEXNVM_DATA_16_EEPROM_16 = 0xF2,
FTFL_FLEXNVM_DATA_8_EEPROM_24 = 0xF9,
FTFL_FLEXNVM_DATA_0_EEPROM_32 = 0xF3
} flexnvm_partition : 8;
enum FTFL_EEPROM_SIZE {
FTFL_EEPROM_SIZE_0 = 0x3f,
FTFL_EEPROM_SIZE_32 = 0x39,
FTFL_EEPROM_SIZE_64 = 0x38,
FTFL_EEPROM_SIZE_128 = 0x37,
FTFL_EEPROM_SIZE_256 = 0x36,
FTFL_EEPROM_SIZE_512 = 0x35,
FTFL_EEPROM_SIZE_1024 = 0x34,
FTFL_EEPROM_SIZE_2048 = 0x33
} eeprom_size : 8;
} program_partition;
struct {
uint8_t _rsvd0[2];
enum FTFL_FLEXRAM_FUNCTION {
FTFL_FLEXRAM_EEPROM = 0x00,
FTFL_FLEXRAM_RAM = 0xff
} flexram_function : 8;
enum FTFL_FCMD fcmd : 8;
} set_flexram;
struct ftfl_generic {
uint32_t addr : 24;
enum FTFL_FCMD {
FTFL_FCMD_READ_1s_BLOCK = 0x00,
FTFL_FCMD_READ_1s_SECTION = 0x01,
FTFL_FCMD_PROGRAM_CHECK = 0x02,
FTFL_FCMD_READ_RESOURCE = 0x03,
FTFL_FCMD_PROGRAM_LONGWORD = 0x06,
FTFL_FCMD_ERASE_BLOCK = 0x08,
FTFL_FCMD_ERASE_SECTOR = 0x09,
FTFL_FCMD_PROGRAM_SECTION = 0x0b,
FTFL_FCMD_READ_1s_ALL_BLOCKS = 0x40,
FTFL_FCMD_READ_ONCE = 0x41,
FTFL_FCMD_PROGRAM_ONCE = 0x43,
FTFL_FCMD_ERASE_ALL_BLOCKS = 0x44,
FTFL_FCMD_VERIFY_KEY = 0x45,
FTFL_FCMD_PROGRAM_PARTITION = 0x80,
FTFL_FCMD_SET_FLEXRAM = 0x81
} fcmd : 8;
uint8_t data_be[8];
} generic;
struct {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
uint8_t _rsvd0[3];
enum FTFL_MARGIN_CHOICE {
FTFL_MARGIN_NORMAL = 0x00,
FTFL_MARGIN_USER = 0x01,
FTFL_MARGIN_FACTORY = 0x02
} margin : 8;
} read_1s_block;
struct ftfl_data_num_words {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
uint8_t _rsvd0;
enum FTFL_MARGIN_CHOICE margin : 8;
uint16_t num_words;
} read_1s_section;
struct {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
uint8_t _rsvd0[3];
enum FTFL_MARGIN_CHOICE margin : 8;
uint8_t data_be[4];
} program_check;
struct {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
uint32_t data;
uint8_t _rsvd0[3];
enum FTFL_RESOURCE_SELECT {
FTFL_RESOURCE_IFR = 0x00,
FTFL_RESOURCE_VERSION = 0x01
} resource_select : 8;
} read_resource;
struct {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
uint8_t data_be[4];
} program_longword;
struct {
uint32_t addr : 24;
enum FTFL_FCMD fcmd : 8;
} erase;
struct ftfl_data_num_words program_section;
struct {
uint8_t _rsvd0[2];
enum FTFL_MARGIN_CHOICE margin : 8;
enum FTFL_FCMD fcmd : 8;
} read_1s_all_blocks;
struct ftfl_cmd_once {
uint8_t _rsvd0[2];
uint8_t idx;
enum FTFL_FCMD fcmd : 8;
uint8_t data_be[4];
} read_once;
struct ftfl_cmd_once program_once;
struct {
uint8_t _rsvd0[3];
enum FTFL_FCMD fcmd : 8;
} erase_all;
struct {
uint8_t _rsvd0[3];
enum FTFL_FCMD fcmd : 8;
uint8_t key_be[8];
} verify_key;
struct {
uint8_t _rsvd0[3];
enum FTFL_FCMD fcmd : 8;
uint8_t _rsvd1[2];
/* the following enum is analogous to enum
* SIM_FLEXNVM_PARTITION in sim.h, but this one is padded
* with four 1-bits to make an 8-bit value.
*/
enum FTFL_FLEXNVM_PARTITION {
FTFL_FLEXNVM_DATA_32_EEPROM_0 = 0xF0,
FTFL_FLEXNVM_DATA_24_EEPROM_8 = 0xF1,
FTFL_FLEXNVM_DATA_16_EEPROM_16 = 0xF2,
FTFL_FLEXNVM_DATA_8_EEPROM_24 = 0xF9,
FTFL_FLEXNVM_DATA_0_EEPROM_32 = 0xF3
} flexnvm_partition : 8;
enum FTFL_EEPROM_SIZE {
FTFL_EEPROM_SIZE_0 = 0x3f,
FTFL_EEPROM_SIZE_32 = 0x39,
FTFL_EEPROM_SIZE_64 = 0x38,
FTFL_EEPROM_SIZE_128 = 0x37,
FTFL_EEPROM_SIZE_256 = 0x36,
FTFL_EEPROM_SIZE_512 = 0x35,
FTFL_EEPROM_SIZE_1024 = 0x34,
FTFL_EEPROM_SIZE_2048 = 0x33
} eeprom_size : 8;
} program_partition;
struct {
uint8_t _rsvd0[2];
enum FTFL_FLEXRAM_FUNCTION {
FTFL_FLEXRAM_EEPROM = 0x00,
FTFL_FLEXRAM_RAM = 0xff
} flexram_function : 8;
enum FTFL_FCMD fcmd : 8;
} set_flexram;
}; };
CTASSERT_SIZE_BYTE(union FTFL_FCCOB_t, 12); CTASSERT_SIZE_BYTE(union FTFL_FCCOB_t, 12);


struct FTFL_t { struct FTFL_t {
struct FTFL_FSTAT_t fstat;
struct FTFL_FCNFG_t fcnfg;
struct FTFL_FSEC_t fsec;
struct FTFL_FOPT_t fopt;
union FTFL_FCCOB_t fccob;
uint8_t fprot_be[4];
uint8_t feprot;
uint8_t fdprot;
struct FTFL_FSTAT_t fstat;
struct FTFL_FCNFG_t fcnfg;
struct FTFL_FSEC_t fsec;
struct FTFL_FOPT_t fopt;
union FTFL_FCCOB_t fccob;
uint8_t fprot_be[4];
uint8_t feprot;
uint8_t fdprot;
}; };
CTASSERT_SIZE_BYTE(struct FTFL_t, 0x18); CTASSERT_SIZE_BYTE(struct FTFL_t, 0x18);


/* Flash Configuration Field, see Sub-Family Reference Manual, section 28.3.1 */ /* Flash Configuration Field, see Sub-Family Reference Manual, section 28.3.1 */
struct FTFL_CONFIG_t { struct FTFL_CONFIG_t {
uint8_t key[8];
uint8_t fprot[4];
struct FTFL_FSEC_t fsec;
struct FTFL_FOPT_t fopt;
uint8_t feprot;
uint8_t fdprot;
uint8_t key[8];
uint8_t fprot[4];
struct FTFL_FSEC_t fsec;
struct FTFL_FOPT_t fopt;
uint8_t feprot;
uint8_t fdprot;
}; };
CTASSERT_SIZE_BYTE(struct FTFL_CONFIG_t, 16); CTASSERT_SIZE_BYTE(struct FTFL_CONFIG_t, 16);



+ 191
- 191
Bootloader/kinetis.c Voir le fichier

static struct USB_BD_t * static struct USB_BD_t *
usb_get_bd(struct usbd_ep_pipe_state_t *s) usb_get_bd(struct usbd_ep_pipe_state_t *s)
{ {
return (&bdt[(s->ep_num << 2) | (s->ep_dir << 1) | s->pingpong]);
return (&bdt[(s->ep_num << 2) | (s->ep_dir << 1) | s->pingpong]);
} }


static struct USB_BD_t * static struct USB_BD_t *
usb_get_bd_stat(struct USB_STAT_t *stat) usb_get_bd_stat(struct USB_STAT_t *stat)
{ {
return (((void *)(uintptr_t)bdt + (stat->raw << 1)));
return (((void *)(uintptr_t)bdt + (stat->raw << 1)));
} }


void *usb_get_xfer_data(struct usb_xfer_info *i) void *usb_get_xfer_data(struct usb_xfer_info *i)
{ {
return (usb_get_bd_stat(i)->addr);
return (usb_get_bd_stat(i)->addr);
} }


enum usb_tok_pid usb_get_xfer_pid(struct usb_xfer_info *i) enum usb_tok_pid usb_get_xfer_pid(struct usb_xfer_info *i)
{ {
return (usb_get_bd_stat(i)->tok_pid);
return (usb_get_bd_stat(i)->tok_pid);
} }


int usb_get_xfer_ep(struct usb_xfer_info *i) int usb_get_xfer_ep(struct usb_xfer_info *i)
{ {
return (i->ep);
return (i->ep);
} }


enum usb_ep_dir usb_get_xfer_dir(struct usb_xfer_info *i) enum usb_ep_dir usb_get_xfer_dir(struct usb_xfer_info *i)
{ {
return (i->dir);
return (i->dir);
} }


void usb_enable_xfers(void) void usb_enable_xfers(void)
{ {
USB0.ctl.raw = ((struct USB_CTL_t){
.txd_suspend = 0,
.usben = 1
}).raw;
USB0.ctl.raw = ((struct USB_CTL_t){
.txd_suspend = 0,
.usben = 1
}).raw;
} }


void usb_set_addr(int addr) void usb_set_addr(int addr)
{ {
USB0.addr.raw = addr;
USB0.addr.raw = addr;
} }




void usb_pipe_stall(struct usbd_ep_pipe_state_t *s) void usb_pipe_stall(struct usbd_ep_pipe_state_t *s)
{ {
volatile struct USB_BD_t *bd = usb_get_bd(s);
bd->raw = ((struct USB_BD_BITS_t){
.stall = 1,
.own = 1
}).raw;
volatile struct USB_BD_t *bd = usb_get_bd(s);
bd->raw = ((struct USB_BD_BITS_t){
.stall = 1,
.own = 1
}).raw;
} }


void usb_pipe_unstall(struct usbd_ep_pipe_state_t *s) void usb_pipe_unstall(struct usbd_ep_pipe_state_t *s)
{ {
volatile struct USB_BD_t *bd = usb_get_bd(s);
struct USB_BD_BITS_t state = { .raw = bd->raw };
volatile struct USB_BD_t *bd = usb_get_bd(s);
struct USB_BD_BITS_t state = { .raw = bd->raw };


if (state.own && state.stall)
bd->raw = 0;
if (state.own && state.stall)
bd->raw = 0;
} }


void usb_pipe_enable(struct usbd_ep_pipe_state_t *s) void usb_pipe_enable(struct usbd_ep_pipe_state_t *s)
{ {
USB0.endpt[s->ep_num].raw |= ((struct USB_ENDPT_t){
.eptxen = s->ep_dir == USB_EP_TX,
.eprxen = s->ep_dir == USB_EP_RX,
.ephshk = 1, /* XXX ISO */
.epctldis = s->ep_num != 0
}).raw;
USB0.endpt[s->ep_num].raw |= ((struct USB_ENDPT_t){
.eptxen = s->ep_dir == USB_EP_TX,
.eprxen = s->ep_dir == USB_EP_RX,
.ephshk = 1, /* XXX ISO */
.epctldis = s->ep_num != 0
}).raw;
} }


void usb_pipe_disable(struct usbd_ep_pipe_state_t *s) void usb_pipe_disable(struct usbd_ep_pipe_state_t *s)
{ {
USB0.endpt[s->ep_num].raw &= ~((struct USB_ENDPT_t){
.eptxen = s->ep_dir == USB_EP_TX,
.eprxen = s->ep_dir == USB_EP_RX,
.epctldis = 1
}).raw;
USB0.endpt[s->ep_num].raw &= ~((struct USB_ENDPT_t){
.eptxen = s->ep_dir == USB_EP_TX,
.eprxen = s->ep_dir == USB_EP_RX,
.epctldis = 1
}).raw;
} }


size_t usb_ep_get_transfer_size(struct usbd_ep_pipe_state_t *s) size_t usb_ep_get_transfer_size(struct usbd_ep_pipe_state_t *s)
{ {
struct USB_BD_t *bd = usb_get_bd(s);
return (bd->bc);
struct USB_BD_t *bd = usb_get_bd(s);
return (bd->bc);
} }


void usb_queue_next(struct usbd_ep_pipe_state_t *s, void *addr, size_t len) void usb_queue_next(struct usbd_ep_pipe_state_t *s, void *addr, size_t len)
{ {
volatile struct USB_BD_t *bd = usb_get_bd(s);
bd->addr = addr;
/* damn you bitfield problems */
bd->raw = ((struct USB_BD_BITS_t){
.dts = 1,
.own = 1,
.data01 = s->data01,
.bc = len,
}).raw;
volatile struct USB_BD_t *bd = usb_get_bd(s);
bd->addr = addr;
/* damn you bitfield problems */
bd->raw = ((struct USB_BD_BITS_t){
.dts = 1,
.own = 1,
.data01 = s->data01,
.bc = len,
}).raw;
} }


static void usb_reset(void) static void usb_reset(void)
{ {
/* reset pingpong state */
/* For some obscure reason, we need to use or here. */
USB0.ctl.raw |= ((struct USB_CTL_t){
.txd_suspend = 1,
.oddrst = 1,
}).raw;
/* clear all interrupt bits - not sure if needed */
USB0.istat.raw = 0xff;
USB0.errstat.raw = 0xff;
USB0.otgistat.raw = 0xff;
/* zap also BDT pingpong & queued transactions */
memset(bdt, 0, sizeof(bdt));
USB0.addr.raw = 0;
usb_restart();
USB0.ctl.raw = ((struct USB_CTL_t){
.txd_suspend = 0,
.usben = 1
}).raw;
/* we're only interested in reset and transfers */
USB0.inten.raw = ((struct USB_ISTAT_t){
.tokdne = 1,
.usbrst = 1,
.stall = 1,
.sleep = 1,
}).raw;
USB0.usbtrc0.usbresmen = 0;
USB0.usbctrl.susp = 0;
/* reset pingpong state */
/* For some obscure reason, we need to use or here. */
USB0.ctl.raw |= ((struct USB_CTL_t){
.txd_suspend = 1,
.oddrst = 1,
}).raw;
/* clear all interrupt bits - not sure if needed */
USB0.istat.raw = 0xff;
USB0.errstat.raw = 0xff;
USB0.otgistat.raw = 0xff;
/* zap also BDT pingpong & queued transactions */
memset(bdt, 0, sizeof(bdt));
USB0.addr.raw = 0;
usb_restart();
USB0.ctl.raw = ((struct USB_CTL_t){
.txd_suspend = 0,
.usben = 1
}).raw;
/* we're only interested in reset and transfers */
USB0.inten.raw = ((struct USB_ISTAT_t){
.tokdne = 1,
.usbrst = 1,
.stall = 1,
.sleep = 1,
}).raw;
USB0.usbtrc0.usbresmen = 0;
USB0.usbctrl.susp = 0;
} }


void usb_enable(void) void usb_enable(void)
{ {
SIM.sopt2.usbsrc = 1; /* usb from mcg */
SIM.scgc4.usbotg = 1; /* enable usb clock */
/* reset module - not sure if needed */
USB0.usbtrc0.raw = ((struct USB_USBTRC0_t){
.usbreset = 1,
.usbresmen = 1
}).raw;
while (USB0.usbtrc0.usbreset)
/* NOTHING */;
USB0.bdtpage1 = (uintptr_t)bdt >> 8;
USB0.bdtpage2 = (uintptr_t)bdt >> 16;
USB0.bdtpage3 = (uintptr_t)bdt >> 24;
USB0.control.raw = ((struct USB_CONTROL_t){
.dppullupnonotg = 1 /* enable pullup */
}).raw;
USB0.usbctrl.raw = 0; /* resume peripheral & disable pulldowns */
usb_reset(); /* this will start usb processing */
/* really only one thing we want */
USB0.inten.raw = ((struct USB_ISTAT_t){
.usbrst = 1,
}).raw;
/**
* Suspend transceiver now - we'll wake up at reset again.
*/
SIM.sopt2.usbsrc = 1; /* usb from mcg */
SIM.scgc4.usbotg = 1; /* enable usb clock */
/* reset module - not sure if needed */
USB0.usbtrc0.raw = ((struct USB_USBTRC0_t){
.usbreset = 1,
.usbresmen = 1
}).raw;
while (USB0.usbtrc0.usbreset)
/* NOTHING */;
USB0.bdtpage1 = (uintptr_t)bdt >> 8;
USB0.bdtpage2 = (uintptr_t)bdt >> 16;
USB0.bdtpage3 = (uintptr_t)bdt >> 24;
USB0.control.raw = ((struct USB_CONTROL_t){
.dppullupnonotg = 1 /* enable pullup */
}).raw;
USB0.usbctrl.raw = 0; /* resume peripheral & disable pulldowns */
usb_reset(); /* this will start usb processing */
/* really only one thing we want */
USB0.inten.raw = ((struct USB_ISTAT_t){
.usbrst = 1,
}).raw;
/**
* Suspend transceiver now - we'll wake up at reset again.
*/
// TODO - Possible removal // TODO - Possible removal
USB0.usbctrl.susp = 1;
USB0.usbtrc0.usbresmen = 1;
USB0.usbctrl.susp = 1;
USB0.usbtrc0.usbresmen = 1;
} }


void USB0_Handler(void) void USB0_Handler(void)
{ {
struct USB_ISTAT_t stat = {.raw = USB0.istat.raw };
if (stat.usbrst) {
usb_reset();
return;
}
if (stat.stall) {
/* XXX need more work for non-0 ep */
volatile struct USB_BD_t *bd = usb_get_bd(&usb.ep_state[0].rx);
if (bd->stall)
usb_setup_control();
}
if (stat.tokdne) {
struct usb_xfer_info stat = USB0.stat;
usb_handle_transaction(&stat);
}
if (stat.sleep) {
USB0.inten.sleep = 0;
USB0.inten.resume = 1;
USB0.usbctrl.susp = 1;
USB0.usbtrc0.usbresmen = 1;
/**
* Clear interrupts now so that we can detect a fresh
* resume later on.
*/
USB0.istat.raw = stat.raw;
const struct usbd_config *c = usb_get_config_data(-1);
if (c && c->suspend)
c->suspend();
}
/**
* XXX it is unclear whether we will receive a synchronous
* resume interrupt if we were in sleep. This code assumes we
* do.
*/
if (stat.resume || USB0.usbtrc0.usb_resume_int) {
USB0.inten.resume = 0;
USB0.inten.sleep = 1;
USB0.usbtrc0.usbresmen = 0;
USB0.usbctrl.susp = 0;
const struct usbd_config *c = usb_get_config_data(-1);
if (c && c->resume)
c->resume();
stat.resume = 1; /* always clear bit */
}
USB0.istat.raw = stat.raw;
struct USB_ISTAT_t stat = {.raw = USB0.istat.raw };
if (stat.usbrst) {
usb_reset();
return;
}
if (stat.stall) {
/* XXX need more work for non-0 ep */
volatile struct USB_BD_t *bd = usb_get_bd(&usb.ep_state[0].rx);
if (bd->stall)
usb_setup_control();
}
if (stat.tokdne) {
struct usb_xfer_info stat = USB0.stat;
usb_handle_transaction(&stat);
}
if (stat.sleep) {
USB0.inten.sleep = 0;
USB0.inten.resume = 1;
USB0.usbctrl.susp = 1;
USB0.usbtrc0.usbresmen = 1;
/**
* Clear interrupts now so that we can detect a fresh
* resume later on.
*/
USB0.istat.raw = stat.raw;
const struct usbd_config *c = usb_get_config_data(-1);
if (c && c->suspend)
c->suspend();
}
/**
* XXX it is unclear whether we will receive a synchronous
* resume interrupt if we were in sleep. This code assumes we
* do.
*/
if (stat.resume || USB0.usbtrc0.usb_resume_int) {
USB0.inten.resume = 0;
USB0.inten.sleep = 1;
USB0.usbtrc0.usbresmen = 0;
USB0.usbctrl.susp = 0;
const struct usbd_config *c = usb_get_config_data(-1);
if (c && c->resume)
c->resume();
stat.resume = 1; /* always clear bit */
}
USB0.istat.raw = stat.raw;
} }


void usb_poll(void) void usb_poll(void)
{ {
USB0_Handler();
USB0_Handler();
} }


int usb_tx_serialno(size_t reqlen) int usb_tx_serialno(size_t reqlen)
{ {
struct usb_desc_string_t *d;
const size_t nregs = 3;
/**
* actually 4, but UIDH is 0xffffffff. Also our output buffer
* is only 64 bytes, and 128 bit + desc header exceeds this by
* 2 bytes.
*/
const size_t len = nregs * 4 * 2 * 2 + sizeof(*d);
d = usb_ep0_tx_inplace_prepare(len);
if (d == NULL)
return (-1);
d->bLength = len;
d->bDescriptorType = USB_DESC_STRING;
size_t bufpos = 0;
for (size_t reg = 0; reg < nregs; ++reg) {
/* registers run MSW first */
uint32_t val = (&SIM.uidmh)[reg];
for (size_t bits = 32; bits > 0; bits -= 4, val <<= 4) {
int nibble = val >> 28;
if (nibble > 9)
nibble += 'a' - '9' - 1;
((char16_t *)d->bString)[bufpos++] = nibble + '0';
}
}
usb_ep0_tx(d, len, reqlen, NULL, NULL);
return (0);
struct usb_desc_string_t *d;
const size_t nregs = 3;
/**
* actually 4, but UIDH is 0xffffffff. Also our output buffer
* is only 64 bytes, and 128 bit + desc header exceeds this by
* 2 bytes.
*/
const size_t len = nregs * 4 * 2 * 2 + sizeof(*d);
d = usb_ep0_tx_inplace_prepare(len);
if (d == NULL)
return (-1);
d->bLength = len;
d->bDescriptorType = USB_DESC_STRING;
size_t bufpos = 0;
for (size_t reg = 0; reg < nregs; ++reg) {
/* registers run MSW first */
uint32_t val = (&SIM.uidmh)[reg];
for (size_t bits = 32; bits > 0; bits -= 4, val <<= 4) {
int nibble = val >> 28;
if (nibble > 9)
nibble += 'a' - '9' - 1;
((char16_t *)d->bString)[bufpos++] = nibble + '0';
}
}
usb_ep0_tx(d, len, reqlen, NULL, NULL);
return (0);
} }



+ 34
- 34
Bootloader/main.c Voir le fichier



static enum dfu_status setup_write(size_t off, size_t len, void **buf) static enum dfu_status setup_write(size_t off, size_t len, void **buf)
{ {
static int last = 0;
if (len > sizeof(staging))
return (DFU_STATUS_errADDRESS);
// We only allow the last write to be less than one sector size.
if (off == 0)
last = 0;
if (last && len != 0)
return (DFU_STATUS_errADDRESS);
if (len != FLASH_SECTOR_SIZE) {
last = 1;
memset(staging, 0xff, sizeof(staging));
}
*buf = staging;
return (DFU_STATUS_OK);
static int last = 0;
if (len > sizeof(staging))
return (DFU_STATUS_errADDRESS);
// We only allow the last write to be less than one sector size.
if (off == 0)
last = 0;
if (last && len != 0)
return (DFU_STATUS_errADDRESS);
if (len != FLASH_SECTOR_SIZE) {
last = 1;
memset(staging, 0xff, sizeof(staging));
}
*buf = staging;
return (DFU_STATUS_OK);
} }


static enum dfu_status finish_write( void *buf, size_t off, size_t len ) static enum dfu_status finish_write( void *buf, size_t off, size_t len )
{ {
void *target;
if (len == 0)
return (DFU_STATUS_OK);
target = flash_get_staging_area(off + (uintptr_t)&_app_rom, FLASH_SECTOR_SIZE);
if (!target)
return (DFU_STATUS_errADDRESS);
memcpy(target, buf, len);
if (flash_program_sector(off + (uintptr_t)&_app_rom, FLASH_SECTOR_SIZE) != 0)
return (DFU_STATUS_errADDRESS);
return (DFU_STATUS_OK);
void *target;
if (len == 0)
return (DFU_STATUS_OK);
target = flash_get_staging_area(off + (uintptr_t)&_app_rom, FLASH_SECTOR_SIZE);
if (!target)
return (DFU_STATUS_errADDRESS);
memcpy(target, buf, len);
if (flash_program_sector(off + (uintptr_t)&_app_rom, FLASH_SECTOR_SIZE) != 0)
return (DFU_STATUS_errADDRESS);
return (DFU_STATUS_OK);
} }






void init_usb_bootloader( int config ) void init_usb_bootloader( int config )
{ {
dfu_init(setup_write, finish_write, &dfu_ctx);
dfu_init(setup_write, finish_write, &dfu_ctx);
} }


void main() void main()


#endif #endif


flash_prepare_flashing();
flash_prepare_flashing();


usb_init( &dfu_device );
for (;;)
usb_init( &dfu_device );
for (;;)
{ {
usb_poll();
}
usb_poll();
}
} }



+ 30
- 30
Bootloader/mchck-cdefs.h Voir le fichier

#define CTASSERT_SIZE_BIT(t, s) CTASSERT(sizeof(t) * 8 == (s)) #define CTASSERT_SIZE_BIT(t, s) CTASSERT(sizeof(t) * 8 == (s))


#define UNION_STRUCT_START(size) \ #define UNION_STRUCT_START(size) \
union { \
_CONCAT(_CONCAT(uint, size), _t) raw; \
struct { \
/* just to swallow the following semicolon */ \
struct _CONCAT(_CONCAT(__dummy_, __COUNTER__), _t) {}
union { \
_CONCAT(_CONCAT(uint, size), _t) raw; \
struct { \
/* just to swallow the following semicolon */ \
struct _CONCAT(_CONCAT(__dummy_, __COUNTER__), _t) {}


#define UNION_STRUCT_END \ #define UNION_STRUCT_END \
}; /* struct */ \
}; /* union */
}; /* struct */ \
}; /* union */




/** /**
* <https://groups.google.com/forum/#!topic/comp.std.c/d-6Mj5Lko_s> * <https://groups.google.com/forum/#!topic/comp.std.c/d-6Mj5Lko_s>
*/ */
#define __PP_NARG(...) \ #define __PP_NARG(...) \
__PP_NARG_(__0, ## __VA_ARGS__, __PP_RSEQ_N())
__PP_NARG_(__0, ## __VA_ARGS__, __PP_RSEQ_N())
#define __PP_NARG_(...) \ #define __PP_NARG_(...) \
__PP_ARG_N(__VA_ARGS__)
__PP_ARG_N(__VA_ARGS__)
#define __PP_ARG_N( \ #define __PP_ARG_N( \
_1, _2, _3, _4, _5, _6, _7, _8, _9,_10, \
_11,_12,_13,_14,_15,_16,_17,_18,_19,_20, \
_21,_22,_23,_24,_25,_26,_27,_28,_29,_30, \
_31,_32,_33,_34,_35,_36,_37,_38,_39,_40, \
_41,_42,_43,_44,_45,_46,_47,_48,_49,_50, \
_51,_52,_53,_54,_55,_56,_57,_58,_59,_60, \
_61,_62,_63,N,...) N
_1, _2, _3, _4, _5, _6, _7, _8, _9,_10, \
_11,_12,_13,_14,_15,_16,_17,_18,_19,_20, \
_21,_22,_23,_24,_25,_26,_27,_28,_29,_30, \
_31,_32,_33,_34,_35,_36,_37,_38,_39,_40, \
_41,_42,_43,_44,_45,_46,_47,_48,_49,_50, \
_51,_52,_53,_54,_55,_56,_57,_58,_59,_60, \
_61,_62,_63,N,...) N
#define __PP_RSEQ_N() \ #define __PP_RSEQ_N() \
62,61,60, \
59,58,57,56,55,54,53,52,51,50, \
49,48,47,46,45,44,43,42,41,40, \
39,38,37,36,35,34,33,32,31,30, \
29,28,27,26,25,24,23,22,21,20, \
19,18,17,16,15,14,13,12,11,10, \
9,8,7,6,5,4,3,2,1,0
62,61,60, \
59,58,57,56,55,54,53,52,51,50, \
49,48,47,46,45,44,43,42,41,40, \
39,38,37,36,35,34,33,32,31,30, \
29,28,27,26,25,24,23,22,21,20, \
19,18,17,16,15,14,13,12,11,10, \
9,8,7,6,5,4,3,2,1,0


/** /**
* From <https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms> * From <https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms>
#define __REPEAT_INNER(...) __OBSTRUCT(__REPEAT_INDIRECT) () (__VA_ARGS__) #define __REPEAT_INNER(...) __OBSTRUCT(__REPEAT_INDIRECT) () (__VA_ARGS__)
#define __REPEAT_INDIRECT() __REPEAT_ #define __REPEAT_INDIRECT() __REPEAT_
#define __REPEAT_(iter, itermacro, macro, a, ...) \ #define __REPEAT_(iter, itermacro, macro, a, ...) \
__OBSTRUCT(macro)(iter, a) \
__WHEN(__PP_NARG(__VA_ARGS__)) \
( \
__OBSTRUCT(__REPEAT_INDIRECT) () ( \
itermacro(iter, a), itermacro, macro, __VA_ARGS__ \
) \
)
__OBSTRUCT(macro)(iter, a) \
__WHEN(__PP_NARG(__VA_ARGS__)) \
( \
__OBSTRUCT(__REPEAT_INDIRECT) () ( \
itermacro(iter, a), itermacro, macro, __VA_ARGS__ \
) \
)


#endif #endif



+ 294
- 294
Bootloader/sim.h Voir le fichier

// ----- Structs ----- // ----- Structs -----


struct SIM_t { struct SIM_t {
struct SIM_SOPT1_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 12;
enum {
SIM_RAMSIZE_8KB = 1,
SIM_RAMSIZE_16KB = 3
} ramsize : 4;
uint32_t _rsvd1 : 2;
enum {
SIM_OSC32KSEL_SYSTEM = 0,
SIM_OSC32KSEL_RTC = 2,
SIM_OSC32KSEL_LPO = 3
} osc32ksel : 2;
uint32_t _rsvd2 : 9;
uint32_t usbvstby : 1;
uint32_t usbsstby : 1;
uint32_t usbregen : 1;
UNION_STRUCT_END;
} sopt1;
struct SIM_SOPT1CFG_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 24;
uint32_t urwe : 1;
uint32_t uvswe : 1;
uint32_t usswe : 1;
uint32_t _rsvd1 : 5;
UNION_STRUCT_END;
} sopt1cfg;
uint32_t _pad0[(0x1004 - 0x8) / 4];
struct SIM_SOPT2_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 4;
enum {
SIM_RTCCLKOUTSEL_1HZ = 0,
SIM_RTCCLKOUTSEL_32KHZ = 1
} rtcclkoutsel : 1;
enum {
SIM_CLKOUTSEL_FLASH = 2,
SIM_CLKOUTSEL_LPO = 3,
SIM_CLKOUTSEL_MCG = 4,
SIM_CLKOUTSEL_RTC = 5,
SIM_CLKOUTSEL_OSC = 6
} clkoutsel : 3;
uint32_t _rsvd1 : 3;
enum {
SIM_PTD7PAD_SINGLE = 0,
SIM_PTD7PAD_DOUBLE = 1
} ptd7pad : 1;
enum {
SIM_TRACECLKSEL_MCG = 0,
SIM_TRACECLKSEL_CORE = 1
} traceclksel : 1;
uint32_t _rsvd2 : 3;
enum {
SIM_PLLFLLSEL_FLL = 0,
SIM_PLLFLLSEL_PLL = 1
} pllfllsel : 1;
uint32_t _rsvd3 : 1;
enum {
SIM_USBSRC_EXTERNAL = 0,
SIM_USBSRC_MCG = 1
} usbsrc : 1;
uint32_t _rsvd4 : 13;
UNION_STRUCT_END;
} sopt2;
uint32_t _pad1;
struct SIM_SOPT4_t {
UNION_STRUCT_START(32);
enum sim_ftmflt {
SIM_FTMFLT_FTM = 0,
SIM_FTMFLT_CMP = 1
} ftm0flt0 : 1;
enum sim_ftmflt ftm0flt1 : 1;
uint32_t _rsvd0 : 2;
enum sim_ftmflt ftm1flt0 : 1;
uint32_t _rsvd1 : 13;
enum {
SIM_FTMCHSRC_FTM = 0,
SIM_FTMCHSRC_CMP0 = 1,
SIM_FTMCHSRC_CMP1 = 2,
SIM_FTMCHSRC_USBSOF = 3
} ftm1ch0src : 2;
uint32_t _rsvd2 : 4;
enum sim_ftmclksel {
SIM_FTMCLKSEL_CLK0 = 0,
SIM_FTMCLKSEL_CLK1 = 1
} ftm0clksel : 1;
enum sim_ftmclksel ftm1clksel : 1;
uint32_t _rsvd3 : 2;
enum {
SIM_FTMTRGSRC_HSCMP0 = 0,
SIM_FTMTRGSRC_FTM1 = 1
} ftm0trg0src : 1;
uint32_t _rsvd4 : 3;
UNION_STRUCT_END;
} sopt4;
struct SIM_SOPT5_t {
UNION_STRUCT_START(32);
enum sim_uarttxsrc {
SIM_UARTTXSRC_UART = 0,
SIM_UARTTXSRC_FTM = 1
} uart0txsrc : 1;
uint32_t _rsvd0 : 1;
enum sim_uartrxsrc {
SIM_UARTRXSRC_UART = 0,
SIM_UARTRXSRC_CMP0 = 1,
SIM_UARTRXSRC_CMP1 = 2
} uart0rxsrc : 2;
enum sim_uarttxsrc uart1txsrc : 1;
uint32_t _rsvd1 : 1;
enum sim_uartrxsrc uart1rxsrc : 2;
uint32_t _rsvd2 : 24;
UNION_STRUCT_END;
} sopt5;
uint32_t _pad2;
struct SIM_SOPT7_t {
UNION_STRUCT_START(32);
enum {
SIM_ADCTRGSEL_PDB = 0,
SIM_ADCTRGSEL_HSCMP0 = 1,
SIM_ADCTRGSEL_HSCMP1 = 2,
SIM_ADCTRGSEL_PIT0 = 4,
SIM_ADCTRGSEL_PIT1 = 5,
SIM_ADCTRGSEL_PIT2 = 6,
SIM_ADCTRGSEL_PIT3 = 7,
SIM_ADCTRGSEL_FTM0 = 8,
SIM_ADCTRGSEL_FTM1 = 9,
SIM_ADCTRGSEL_RTCALARM = 12,
SIM_ADCTRGSEL_RTCSECS = 13,
SIM_ADCTRGSEL_LPTIMER = 14
} adc0trgsel : 4;
enum {
SIM_ADCPRETRGSEL_A = 0,
SIM_ADCPRETRGSEL_B = 1
} adc0pretrgsel : 1;
uint32_t _rsvd0 : 2;
enum {
SIM_ADCALTTRGEN_PDB = 0,
SIM_ADCALTTRGEN_ALT = 1
} adc0alttrgen : 1;
uint32_t _rsvd1 : 24;
UNION_STRUCT_END;
} sopt7;
uint32_t _pad3[(0x1024 - 0x101c) / 4];
struct SIM_SDID_t {
UNION_STRUCT_START(32);
enum {
SIM_PINID_32 = 2,
SIM_PINID_48 = 4,
SIM_PINID_64 = 5
} pinid : 4;
enum {
SIM_FAMID_K10 = 0,
SIM_FAMID_K20 = 1
} famid : 3;
uint32_t _rsvd1 : 5;
uint32_t revid : 4;
uint32_t _rsvd2 : 16;
UNION_STRUCT_END;
} sdid;
uint32_t _pad4[(0x1034 - 0x1028) / 4];
struct SIM_SCGC4_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 1;
uint32_t ewm : 1;
uint32_t cmt : 1;
uint32_t _rsvd1 : 3;
uint32_t i2c0 : 1;
uint32_t _rsvd2 : 3;
uint32_t uart0 : 1;
uint32_t uart1 : 1;
uint32_t uart2 : 1;
uint32_t _rsvd3 : 5;
uint32_t usbotg : 1;
uint32_t cmp : 1;
uint32_t vref : 1;
uint32_t _rsvd4 : 11;
UNION_STRUCT_END;
} scgc4;
struct SIM_SCGC5_t {
UNION_STRUCT_START(32);
uint32_t lptimer : 1;
uint32_t _rsvd0 : 4;
uint32_t tsi : 1;
uint32_t _rsvd1 : 3;
uint32_t porta : 1;
uint32_t portb : 1;
uint32_t portc : 1;
uint32_t portd : 1;
uint32_t porte : 1;
uint32_t _rsvd2 : 18;
UNION_STRUCT_END;
} scgc5;
struct SIM_SCGC6_t {
UNION_STRUCT_START(32);
uint32_t ftfl : 1;
uint32_t dmamux : 1;
uint32_t _rsvd0 : 10;
uint32_t spi0 : 1;
uint32_t _rsvd1 : 2;
uint32_t i2s : 1;
uint32_t _rsvd2 : 2;
uint32_t crc : 1;
uint32_t _rsvd3 : 2;
uint32_t usbdcd : 1;
uint32_t pdb : 1;
uint32_t pit : 1;
uint32_t ftm0 : 1;
uint32_t ftm1 : 1;
uint32_t _rsvd4 : 1;
uint32_t adc0 : 1;
uint32_t _rsvd5 : 1;
uint32_t rtc : 1;
uint32_t _rsvd6 : 2;
UNION_STRUCT_END;
} scgc6;
struct SIM_SCGC7_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 1;
uint32_t dma : 1;
uint32_t _rsvd1 : 30;
UNION_STRUCT_END;
} scgc7;
struct SIM_CLKDIV1_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 16;
uint32_t outdiv4 : 4;
uint32_t _rsvd1 : 4;
uint32_t outdiv2 : 4;
uint32_t outdiv1 : 4;
UNION_STRUCT_END;
} clkdiv1;
struct SIM_CLKDIV2_t {
UNION_STRUCT_START(32);
uint32_t usbfrac : 1;
uint32_t usbdiv : 3;
uint32_t _rsvd0 : 28;
UNION_STRUCT_END;
} clkdiv2;
struct SIM_FCFG1_t {
UNION_STRUCT_START(32);
uint32_t flashdis : 1;
uint32_t flashdoze : 1;
uint32_t _rsvd0 : 6;
struct SIM_SOPT1_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 12;
enum {
SIM_RAMSIZE_8KB = 1,
SIM_RAMSIZE_16KB = 3
} ramsize : 4;
uint32_t _rsvd1 : 2;
enum {
SIM_OSC32KSEL_SYSTEM = 0,
SIM_OSC32KSEL_RTC = 2,
SIM_OSC32KSEL_LPO = 3
} osc32ksel : 2;
uint32_t _rsvd2 : 9;
uint32_t usbvstby : 1;
uint32_t usbsstby : 1;
uint32_t usbregen : 1;
UNION_STRUCT_END;
} sopt1;
struct SIM_SOPT1CFG_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 24;
uint32_t urwe : 1;
uint32_t uvswe : 1;
uint32_t usswe : 1;
uint32_t _rsvd1 : 5;
UNION_STRUCT_END;
} sopt1cfg;
uint32_t _pad0[(0x1004 - 0x8) / 4];
struct SIM_SOPT2_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 4;
enum {
SIM_RTCCLKOUTSEL_1HZ = 0,
SIM_RTCCLKOUTSEL_32KHZ = 1
} rtcclkoutsel : 1;
enum {
SIM_CLKOUTSEL_FLASH = 2,
SIM_CLKOUTSEL_LPO = 3,
SIM_CLKOUTSEL_MCG = 4,
SIM_CLKOUTSEL_RTC = 5,
SIM_CLKOUTSEL_OSC = 6
} clkoutsel : 3;
uint32_t _rsvd1 : 3;
enum {
SIM_PTD7PAD_SINGLE = 0,
SIM_PTD7PAD_DOUBLE = 1
} ptd7pad : 1;
enum {
SIM_TRACECLKSEL_MCG = 0,
SIM_TRACECLKSEL_CORE = 1
} traceclksel : 1;
uint32_t _rsvd2 : 3;
enum {
SIM_PLLFLLSEL_FLL = 0,
SIM_PLLFLLSEL_PLL = 1
} pllfllsel : 1;
uint32_t _rsvd3 : 1;
enum {
SIM_USBSRC_EXTERNAL = 0,
SIM_USBSRC_MCG = 1
} usbsrc : 1;
uint32_t _rsvd4 : 13;
UNION_STRUCT_END;
} sopt2;
uint32_t _pad1;
struct SIM_SOPT4_t {
UNION_STRUCT_START(32);
enum sim_ftmflt {
SIM_FTMFLT_FTM = 0,
SIM_FTMFLT_CMP = 1
} ftm0flt0 : 1;
enum sim_ftmflt ftm0flt1 : 1;
uint32_t _rsvd0 : 2;
enum sim_ftmflt ftm1flt0 : 1;
uint32_t _rsvd1 : 13;
enum {
SIM_FTMCHSRC_FTM = 0,
SIM_FTMCHSRC_CMP0 = 1,
SIM_FTMCHSRC_CMP1 = 2,
SIM_FTMCHSRC_USBSOF = 3
} ftm1ch0src : 2;
uint32_t _rsvd2 : 4;
enum sim_ftmclksel {
SIM_FTMCLKSEL_CLK0 = 0,
SIM_FTMCLKSEL_CLK1 = 1
} ftm0clksel : 1;
enum sim_ftmclksel ftm1clksel : 1;
uint32_t _rsvd3 : 2;
enum {
SIM_FTMTRGSRC_HSCMP0 = 0,
SIM_FTMTRGSRC_FTM1 = 1
} ftm0trg0src : 1;
uint32_t _rsvd4 : 3;
UNION_STRUCT_END;
} sopt4;
struct SIM_SOPT5_t {
UNION_STRUCT_START(32);
enum sim_uarttxsrc {
SIM_UARTTXSRC_UART = 0,
SIM_UARTTXSRC_FTM = 1
} uart0txsrc : 1;
uint32_t _rsvd0 : 1;
enum sim_uartrxsrc {
SIM_UARTRXSRC_UART = 0,
SIM_UARTRXSRC_CMP0 = 1,
SIM_UARTRXSRC_CMP1 = 2
} uart0rxsrc : 2;
enum sim_uarttxsrc uart1txsrc : 1;
uint32_t _rsvd1 : 1;
enum sim_uartrxsrc uart1rxsrc : 2;
uint32_t _rsvd2 : 24;
UNION_STRUCT_END;
} sopt5;
uint32_t _pad2;
struct SIM_SOPT7_t {
UNION_STRUCT_START(32);
enum {
SIM_ADCTRGSEL_PDB = 0,
SIM_ADCTRGSEL_HSCMP0 = 1,
SIM_ADCTRGSEL_HSCMP1 = 2,
SIM_ADCTRGSEL_PIT0 = 4,
SIM_ADCTRGSEL_PIT1 = 5,
SIM_ADCTRGSEL_PIT2 = 6,
SIM_ADCTRGSEL_PIT3 = 7,
SIM_ADCTRGSEL_FTM0 = 8,
SIM_ADCTRGSEL_FTM1 = 9,
SIM_ADCTRGSEL_RTCALARM = 12,
SIM_ADCTRGSEL_RTCSECS = 13,
SIM_ADCTRGSEL_LPTIMER = 14
} adc0trgsel : 4;
enum {
SIM_ADCPRETRGSEL_A = 0,
SIM_ADCPRETRGSEL_B = 1
} adc0pretrgsel : 1;
uint32_t _rsvd0 : 2;
enum {
SIM_ADCALTTRGEN_PDB = 0,
SIM_ADCALTTRGEN_ALT = 1
} adc0alttrgen : 1;
uint32_t _rsvd1 : 24;
UNION_STRUCT_END;
} sopt7;
uint32_t _pad3[(0x1024 - 0x101c) / 4];
struct SIM_SDID_t {
UNION_STRUCT_START(32);
enum {
SIM_PINID_32 = 2,
SIM_PINID_48 = 4,
SIM_PINID_64 = 5
} pinid : 4;
enum {
SIM_FAMID_K10 = 0,
SIM_FAMID_K20 = 1
} famid : 3;
uint32_t _rsvd1 : 5;
uint32_t revid : 4;
uint32_t _rsvd2 : 16;
UNION_STRUCT_END;
} sdid;
uint32_t _pad4[(0x1034 - 0x1028) / 4];
struct SIM_SCGC4_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 1;
uint32_t ewm : 1;
uint32_t cmt : 1;
uint32_t _rsvd1 : 3;
uint32_t i2c0 : 1;
uint32_t _rsvd2 : 3;
uint32_t uart0 : 1;
uint32_t uart1 : 1;
uint32_t uart2 : 1;
uint32_t _rsvd3 : 5;
uint32_t usbotg : 1;
uint32_t cmp : 1;
uint32_t vref : 1;
uint32_t _rsvd4 : 11;
UNION_STRUCT_END;
} scgc4;
struct SIM_SCGC5_t {
UNION_STRUCT_START(32);
uint32_t lptimer : 1;
uint32_t _rsvd0 : 4;
uint32_t tsi : 1;
uint32_t _rsvd1 : 3;
uint32_t porta : 1;
uint32_t portb : 1;
uint32_t portc : 1;
uint32_t portd : 1;
uint32_t porte : 1;
uint32_t _rsvd2 : 18;
UNION_STRUCT_END;
} scgc5;
struct SIM_SCGC6_t {
UNION_STRUCT_START(32);
uint32_t ftfl : 1;
uint32_t dmamux : 1;
uint32_t _rsvd0 : 10;
uint32_t spi0 : 1;
uint32_t _rsvd1 : 2;
uint32_t i2s : 1;
uint32_t _rsvd2 : 2;
uint32_t crc : 1;
uint32_t _rsvd3 : 2;
uint32_t usbdcd : 1;
uint32_t pdb : 1;
uint32_t pit : 1;
uint32_t ftm0 : 1;
uint32_t ftm1 : 1;
uint32_t _rsvd4 : 1;
uint32_t adc0 : 1;
uint32_t _rsvd5 : 1;
uint32_t rtc : 1;
uint32_t _rsvd6 : 2;
UNION_STRUCT_END;
} scgc6;
struct SIM_SCGC7_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 1;
uint32_t dma : 1;
uint32_t _rsvd1 : 30;
UNION_STRUCT_END;
} scgc7;
struct SIM_CLKDIV1_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 16;
uint32_t outdiv4 : 4;
uint32_t _rsvd1 : 4;
uint32_t outdiv2 : 4;
uint32_t outdiv1 : 4;
UNION_STRUCT_END;
} clkdiv1;
struct SIM_CLKDIV2_t {
UNION_STRUCT_START(32);
uint32_t usbfrac : 1;
uint32_t usbdiv : 3;
uint32_t _rsvd0 : 28;
UNION_STRUCT_END;
} clkdiv2;
struct SIM_FCFG1_t {
UNION_STRUCT_START(32);
uint32_t flashdis : 1;
uint32_t flashdoze : 1;
uint32_t _rsvd0 : 6;


/* the following enum is analogous to enum
* FTFL_FLEXNVM_PARTITION in ftfl.h, but that one is padded
* with four 1-bits to make an 8-bit value.
*/
enum SIM_FLEXNVM_PARTITION {
SIM_FLEXNVM_DATA_32_EEPROM_0 = 0x0,
SIM_FLEXNVM_DATA_24_EEPROM_8 = 0x1,
SIM_FLEXNVM_DATA_16_EEPROM_16 = 0x2,
SIM_FLEXNVM_DATA_8_EEPROM_24 = 0x9,
SIM_FLEXNVM_DATA_0_EEPROM_32 = 0x3
} depart : 4;
/* the following enum is analogous to enum
* FTFL_FLEXNVM_PARTITION in ftfl.h, but that one is padded
* with four 1-bits to make an 8-bit value.
*/
enum SIM_FLEXNVM_PARTITION {
SIM_FLEXNVM_DATA_32_EEPROM_0 = 0x0,
SIM_FLEXNVM_DATA_24_EEPROM_8 = 0x1,
SIM_FLEXNVM_DATA_16_EEPROM_16 = 0x2,
SIM_FLEXNVM_DATA_8_EEPROM_24 = 0x9,
SIM_FLEXNVM_DATA_0_EEPROM_32 = 0x3
} depart : 4;


uint32_t _rsvd1 : 4;
enum {
SIM_EESIZE_2KB = 3,
SIM_EESIZE_1KB = 4,
SIM_EESIZE_512B = 5,
SIM_EESIZE_256B = 6,
SIM_EESIZE_128B = 7,
SIM_EESIZE_64B = 8,
SIM_EESIZE_32B = 9,
SIM_EESIZE_0B = 15
} eesize : 4;
uint32_t _rsvd2 : 4;
enum {
SIM_PFSIZE_32KB = 3,
SIM_PFSIZE_64KB = 5,
SIM_PFSIZE_128KB = 7
} pfsize : 4;
enum {
SIM_NVMSIZE_0KB = 0,
SIM_NVMSIZE_32KB = 3
} nvmsize : 4;
UNION_STRUCT_END;
} fcfg1;
struct SIM_FCFG2_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 16;
uint32_t maxaddr1 : 7;
enum {
SIM_PFLSH_FLEXNVM = 0,
SIM_PFLSH_PROGRAM = 1
} pflsh : 1;
uint32_t maxaddr0 : 7;
uint32_t _rsvd1 : 1;
UNION_STRUCT_END;
} fcfg2;
uint32_t uidh;
uint32_t uidmh;
uint32_t uidml;
uint32_t uidl;
uint32_t _rsvd1 : 4;
enum {
SIM_EESIZE_2KB = 3,
SIM_EESIZE_1KB = 4,
SIM_EESIZE_512B = 5,
SIM_EESIZE_256B = 6,
SIM_EESIZE_128B = 7,
SIM_EESIZE_64B = 8,
SIM_EESIZE_32B = 9,
SIM_EESIZE_0B = 15
} eesize : 4;
uint32_t _rsvd2 : 4;
enum {
SIM_PFSIZE_32KB = 3,
SIM_PFSIZE_64KB = 5,
SIM_PFSIZE_128KB = 7
} pfsize : 4;
enum {
SIM_NVMSIZE_0KB = 0,
SIM_NVMSIZE_32KB = 3
} nvmsize : 4;
UNION_STRUCT_END;
} fcfg1;
struct SIM_FCFG2_t {
UNION_STRUCT_START(32);
uint32_t _rsvd0 : 16;
uint32_t maxaddr1 : 7;
enum {
SIM_PFLSH_FLEXNVM = 0,
SIM_PFLSH_PROGRAM = 1
} pflsh : 1;
uint32_t maxaddr0 : 7;
uint32_t _rsvd1 : 1;
UNION_STRUCT_END;
} fcfg2;
uint32_t uidh;
uint32_t uidmh;
uint32_t uidml;
uint32_t uidl;
}; };
CTASSERT_SIZE_BYTE(struct SIM_t, 0x1064); CTASSERT_SIZE_BYTE(struct SIM_t, 0x1064);



+ 3
- 3
Bootloader/usb.c Voir le fichier

*/ */
size_t nextlen = s->transfer_size; size_t nextlen = s->transfer_size;


if (nextlen > s->ep_maxsize)
nextlen = s->ep_maxsize;
if (nextlen > s->ep_maxsize)
nextlen = s->ep_maxsize;


void *addr = s->data_buf + s->pos;
void *addr = s->data_buf + s->pos;
usb_queue_next(s, addr, nextlen); usb_queue_next(s, addr, nextlen);


return (1); return (1);

+ 74
- 74
Bootloader/usb.h Voir le fichier

#define USB_CTRL_REQ_TYPE_SHIFT 1 #define USB_CTRL_REQ_TYPE_SHIFT 1
#define USB_CTRL_REQ_RECP_SHIFT 3 #define USB_CTRL_REQ_RECP_SHIFT 3
#define USB_CTRL_REQ_CODE_SHIFT 8 #define USB_CTRL_REQ_CODE_SHIFT 8
#define USB_CTRL_REQ(req_inout, req_type, req_code) \
(uint16_t) \
((USB_CTRL_REQ_##req_inout << USB_CTRL_REQ_DIR_SHIFT) \
|(USB_CTRL_REQ_##req_type << USB_CTRL_REQ_TYPE_SHIFT) \
#define USB_CTRL_REQ(req_inout, req_type, req_code) \
(uint16_t) \
((USB_CTRL_REQ_##req_inout << USB_CTRL_REQ_DIR_SHIFT) \
|(USB_CTRL_REQ_##req_type << USB_CTRL_REQ_TYPE_SHIFT) \
|(USB_CTRL_REQ_##req_code << USB_CTRL_REQ_CODE_SHIFT)) |(USB_CTRL_REQ_##req_code << USB_CTRL_REQ_CODE_SHIFT))






// ----- Macros ----- // ----- Macros -----


#define USB_DESC_STRING(s) \
(const void *)&(const struct { \
struct usb_desc_string_t dsc; \
char16_t str[sizeof(s) / 2 - 1]; \
}) {{ \
.bLength = sizeof(struct usb_desc_string_t) + \
sizeof(s) - 2, \
.bDescriptorType = USB_DESC_STRING, \
}, \
s \
#define USB_DESC_STRING(s) \
(const void *)&(const struct { \
struct usb_desc_string_t dsc; \
char16_t str[sizeof(s) / 2 - 1]; \
}) {{ \
.bLength = sizeof(struct usb_desc_string_t) + \
sizeof(s) - 2, \
.bDescriptorType = USB_DESC_STRING, \
}, \
s \
} }
#define USB_DESC_STRING_LANG_ENUS USB_DESC_STRING(u"\x0409") #define USB_DESC_STRING_LANG_ENUS USB_DESC_STRING(u"\x0409")
#define USB_DESC_STRING_SERIALNO ((const void *)1) #define USB_DESC_STRING_SERIALNO ((const void *)1)


#define USB_FUNCTION_IFACE(iface, iface_off, tx_ep_off, rx_ep_off) \
#define USB_FUNCTION_IFACE(iface, iface_off, tx_ep_off, rx_ep_off) \
((iface_off) + (iface)) ((iface_off) + (iface))
#define USB_FUNCTION_TX_EP(ep, iface_off, tx_ep_off, rx_ep_off) \
#define USB_FUNCTION_TX_EP(ep, iface_off, tx_ep_off, rx_ep_off) \
((tx_ep_off) + (ep)) ((tx_ep_off) + (ep))
#define USB_FUNCTION_RX_EP(ep, iface_off, tx_ep_off, rx_ep_off) \
#define USB_FUNCTION_RX_EP(ep, iface_off, tx_ep_off, rx_ep_off) \
((rx_ep_off) + (ep)) ((rx_ep_off) + (ep))




#define USB__INCREMENT(i, _0) (i + 1) #define USB__INCREMENT(i, _0) (i + 1)
#define USB__COUNT_IFACE_EP(i, e) \
#define USB__COUNT_IFACE_EP(i, e) \
__DEFER(USB__COUNT_IFACE_EP_)(__EXPAND i, e) __DEFER(USB__COUNT_IFACE_EP_)(__EXPAND i, e)
#define USB__COUNT_IFACE_EP_(iface, tx_ep, rx_ep, func) \ #define USB__COUNT_IFACE_EP_(iface, tx_ep, rx_ep, func) \
(iface + USB_FUNCTION_ ## func ## _IFACE_COUNT, \
tx_ep + USB_FUNCTION_ ## func ## _TX_EP_COUNT, \
(iface + USB_FUNCTION_ ## func ## _IFACE_COUNT, \
tx_ep + USB_FUNCTION_ ## func ## _TX_EP_COUNT, \
rx_ep + USB_FUNCTION_ ## func ## _RX_EP_COUNT) rx_ep + USB_FUNCTION_ ## func ## _RX_EP_COUNT)
#define USB__GET_FUNCTION_IFACE_COUNT(iter, func) \
#define USB__GET_FUNCTION_IFACE_COUNT(iter, func) \
USB_FUNCTION_ ## func ## _IFACE_COUNT + USB_FUNCTION_ ## func ## _IFACE_COUNT +


#define USB__DEFINE_FUNCTION_DESC(iter, func) \
#define USB__DEFINE_FUNCTION_DESC(iter, func) \
USB_FUNCTION_DESC_ ## func ## _DECL __CAT(__usb_func_desc, __COUNTER__); USB_FUNCTION_DESC_ ## func ## _DECL __CAT(__usb_func_desc, __COUNTER__);
#define USB__INIT_FUNCTION_DESC(iter, func) \
#define USB__INIT_FUNCTION_DESC(iter, func) \
USB_FUNCTION_DESC_ ## func iter, USB_FUNCTION_DESC_ ## func iter,


#define USB__DEFINE_CONFIG_DESC(confignum, name, ...) \
&((const struct name { \
struct usb_desc_config_t config; \
#define USB__DEFINE_CONFIG_DESC(confignum, name, ...) \
&((const struct name { \
struct usb_desc_config_t config; \
__REPEAT_INNER(, __EAT, USB__DEFINE_FUNCTION_DESC, __VA_ARGS__) \ __REPEAT_INNER(, __EAT, USB__DEFINE_FUNCTION_DESC, __VA_ARGS__) \
}){ \
.config = { \
.bLength = sizeof(struct usb_desc_config_t), \
.bDescriptorType = USB_DESC_CONFIG, \
.wTotalLength = sizeof(struct name), \
}){ \
.config = { \
.bLength = sizeof(struct usb_desc_config_t), \
.bDescriptorType = USB_DESC_CONFIG, \
.wTotalLength = sizeof(struct name), \
.bNumInterfaces = __REPEAT_INNER(, __EAT, USB__GET_FUNCTION_IFACE_COUNT, __VA_ARGS__) 0, \ .bNumInterfaces = __REPEAT_INNER(, __EAT, USB__GET_FUNCTION_IFACE_COUNT, __VA_ARGS__) 0, \
.bConfigurationValue = confignum, \
.iConfiguration = 0, \
.one = 1, \
.bMaxPower = 50 \
}, \
.bConfigurationValue = confignum, \
.iConfiguration = 0, \
.one = 1, \
.bMaxPower = 50 \
}, \
__REPEAT_INNER((0, 0, 0), USB__COUNT_IFACE_EP, USB__INIT_FUNCTION_DESC, __VA_ARGS__) \ __REPEAT_INNER((0, 0, 0), USB__COUNT_IFACE_EP, USB__INIT_FUNCTION_DESC, __VA_ARGS__) \
}).config }).config




#define USB__DEFINE_CONFIG(iter, args) \
#define USB__DEFINE_CONFIG(iter, args) \
__DEFER(USB__DEFINE_CONFIG_)(iter, __EXPAND args) __DEFER(USB__DEFINE_CONFIG_)(iter, __EXPAND args)


#define USB__DEFINE_CONFIG_(confignum, initfun, ...) \
&(const struct usbd_config){ \
.init = initfun, \
.desc = USB__DEFINE_CONFIG_DESC( \
confignum, \
__CAT(__usb_desc, __COUNTER__), \
__VA_ARGS__) \
#define USB__DEFINE_CONFIG_(confignum, initfun, ...) \
&(const struct usbd_config){ \
.init = initfun, \
.desc = USB__DEFINE_CONFIG_DESC( \
confignum, \
__CAT(__usb_desc, __COUNTER__), \
__VA_ARGS__) \
}, },


#define USB_INIT_DEVICE(vid, pid, manuf, product, ...) \
{ \
.dev_desc = &(const struct usb_desc_dev_t){ \
.bLength = sizeof(struct usb_desc_dev_t), \
.bDescriptorType = USB_DESC_DEV, \
.bcdUSB = { .maj = 2 }, \
.bDeviceClass = USB_DEV_CLASS_SEE_IFACE, \
.bDeviceSubClass = USB_DEV_SUBCLASS_SEE_IFACE, \
.bDeviceProtocol = USB_DEV_PROTO_SEE_IFACE, \
.bMaxPacketSize0 = EP0_BUFSIZE, \
.idVendor = vid, \
.idProduct = pid, \
.bcdDevice = { .raw = 0 }, \
.iManufacturer = 1, \
.iProduct = 2, \
.iSerialNumber = 3, \
.bNumConfigurations = __PP_NARG(__VA_ARGS__), \
}, \
#define USB_INIT_DEVICE(vid, pid, manuf, product, ...) \
{ \
.dev_desc = &(const struct usb_desc_dev_t){ \
.bLength = sizeof(struct usb_desc_dev_t), \
.bDescriptorType = USB_DESC_DEV, \
.bcdUSB = { .maj = 2 }, \
.bDeviceClass = USB_DEV_CLASS_SEE_IFACE, \
.bDeviceSubClass = USB_DEV_SUBCLASS_SEE_IFACE, \
.bDeviceProtocol = USB_DEV_PROTO_SEE_IFACE, \
.bMaxPacketSize0 = EP0_BUFSIZE, \
.idVendor = vid, \
.idProduct = pid, \
.bcdDevice = { .raw = 0 }, \
.iManufacturer = 1, \
.iProduct = 2, \
.iSerialNumber = 3, \
.bNumConfigurations = __PP_NARG(__VA_ARGS__), \
}, \
.string_descs = (const struct usb_desc_string_t * const []){ \ .string_descs = (const struct usb_desc_string_t * const []){ \
USB_DESC_STRING_LANG_ENUS, \
USB_DESC_STRING(manuf), \
USB_DESC_STRING(product), \
USB_DESC_STRING_SERIALNO, \
NULL \
}, \
.configs = { \
USB_DESC_STRING_LANG_ENUS, \
USB_DESC_STRING(manuf), \
USB_DESC_STRING(product), \
USB_DESC_STRING_SERIALNO, \
NULL \
}, \
.configs = { \
__REPEAT(1, USB__INCREMENT, USB__DEFINE_CONFIG, __VA_ARGS__) \ __REPEAT(1, USB__INCREMENT, USB__DEFINE_CONFIG, __VA_ARGS__) \
NULL \
} \
NULL \
} \
} }




struct usb_desc_dev_t { struct usb_desc_dev_t {
uint8_t bLength; uint8_t bLength;
enum usb_desc_type bDescriptorType : 8; /* = USB_DESC_DEV */ enum usb_desc_type bDescriptorType : 8; /* = USB_DESC_DEV */
struct usb_bcd_t bcdUSB; /* = 0x0200 */
struct usb_bcd_t bcdUSB; /* = 0x0200 */
enum usb_dev_class bDeviceClass : 8; enum usb_dev_class bDeviceClass : 8;
enum usb_dev_subclass bDeviceSubClass : 8; enum usb_dev_subclass bDeviceSubClass : 8;
enum usb_dev_proto bDeviceProtocol : 8; enum usb_dev_proto bDeviceProtocol : 8;
struct usb_desc_config_t { struct usb_desc_config_t {
uint8_t bLength; uint8_t bLength;
enum usb_desc_type bDescriptorType : 8; /* = USB_DESC_CONFIG */ enum usb_desc_type bDescriptorType : 8; /* = USB_DESC_CONFIG */
uint16_t wTotalLength; /* size of config, iface, ep */
uint16_t wTotalLength; /* size of config, iface, ep */
uint8_t bNumInterfaces; uint8_t bNumInterfaces;
uint8_t bConfigurationValue; uint8_t bConfigurationValue;
uint8_t iConfiguration; uint8_t iConfiguration;
uint8_t self_powered : 1; uint8_t self_powered : 1;
uint8_t one : 1; /* = 1 for historical reasons */ uint8_t one : 1; /* = 1 for historical reasons */
}; };
uint8_t bMaxPower; /* units of 2mA */
uint8_t bMaxPower; /* units of 2mA */
} __packed; } __packed;
CTASSERT_SIZE_BYTE(struct usb_desc_config_t, 9); CTASSERT_SIZE_BYTE(struct usb_desc_config_t, 9);



+ 205
- 205
Bootloader/usbotg.h Voir le fichier

*/ */


struct USB_ADDINFO_t { struct USB_ADDINFO_t {
UNION_STRUCT_START(8);
uint8_t iehost : 1;
uint8_t _rsvd0 : 2;
uint8_t irqnum : 5;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t iehost : 1;
uint8_t _rsvd0 : 2;
uint8_t irqnum : 5;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_ADDINFO_t, 8); CTASSERT_SIZE_BIT(struct USB_ADDINFO_t, 8);


struct USB_OTGSTAT_t { struct USB_OTGSTAT_t {
UNION_STRUCT_START(8);
uint8_t avbus : 1;
uint8_t _rsvd0 : 1;
uint8_t b_sess : 1;
uint8_t sessvld : 1;
uint8_t _rsvd1 : 1;
uint8_t line_state : 1;
uint8_t onemsec : 1;
uint8_t idchg : 1;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t avbus : 1;
uint8_t _rsvd0 : 1;
uint8_t b_sess : 1;
uint8_t sessvld : 1;
uint8_t _rsvd1 : 1;
uint8_t line_state : 1;
uint8_t onemsec : 1;
uint8_t idchg : 1;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_OTGSTAT_t, 8); CTASSERT_SIZE_BIT(struct USB_OTGSTAT_t, 8);


struct USB_OTGCTL_t { struct USB_OTGCTL_t {
UNION_STRUCT_START(8);
uint8_t _rsvd0 : 2;
uint8_t otgen : 1;
uint8_t _rsvd1 : 1;
uint8_t dmlow : 1;
uint8_t dplow : 1;
uint8_t _rsvd2 : 1;
uint8_t dphigh : 1;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t _rsvd0 : 2;
uint8_t otgen : 1;
uint8_t _rsvd1 : 1;
uint8_t dmlow : 1;
uint8_t dplow : 1;
uint8_t _rsvd2 : 1;
uint8_t dphigh : 1;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_OTGCTL_t, 8); CTASSERT_SIZE_BIT(struct USB_OTGCTL_t, 8);


struct USB_ISTAT_t { struct USB_ISTAT_t {
UNION_STRUCT_START(8);
uint8_t usbrst : 1;
uint8_t error : 1;
uint8_t softok : 1;
uint8_t tokdne : 1;
uint8_t sleep : 1;
uint8_t resume : 1;
uint8_t attach : 1;
uint8_t stall : 1;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t usbrst : 1;
uint8_t error : 1;
uint8_t softok : 1;
uint8_t tokdne : 1;
uint8_t sleep : 1;
uint8_t resume : 1;
uint8_t attach : 1;
uint8_t stall : 1;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_ISTAT_t, 8); CTASSERT_SIZE_BIT(struct USB_ISTAT_t, 8);


struct USB_ERRSTAT_t { struct USB_ERRSTAT_t {
UNION_STRUCT_START(8);
uint8_t piderr : 1;
uint8_t crc5eof : 1;
uint8_t crc16 : 1;
uint8_t dfn8 : 1;
uint8_t btoerr : 1;
uint8_t dmaerr : 1;
uint8_t _rsvd0 : 1;
uint8_t btserr : 1;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t piderr : 1;
uint8_t crc5eof : 1;
uint8_t crc16 : 1;
uint8_t dfn8 : 1;
uint8_t btoerr : 1;
uint8_t dmaerr : 1;
uint8_t _rsvd0 : 1;
uint8_t btserr : 1;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_ERRSTAT_t, 8); CTASSERT_SIZE_BIT(struct USB_ERRSTAT_t, 8);


struct USB_STAT_t { struct USB_STAT_t {
UNION_STRUCT_START(8);
uint8_t _rsvd0 : 2;
enum usb_ep_pingpong pingpong : 1;
enum usb_ep_dir dir : 1;
uint8_t ep : 4;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t _rsvd0 : 2;
enum usb_ep_pingpong pingpong : 1;
enum usb_ep_dir dir : 1;
uint8_t ep : 4;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_STAT_t, 8); CTASSERT_SIZE_BIT(struct USB_STAT_t, 8);


struct USB_CTL_t { struct USB_CTL_t {
union {
struct /* common */ {
uint8_t _rsvd1 : 1;
uint8_t oddrst : 1;
uint8_t resume : 1;
uint8_t _rsvd2 : 3;
uint8_t se0 : 1;
uint8_t jstate : 1;
};
struct /* host */ {
uint8_t sofen : 1;
uint8_t _rsvd3 : 2;
uint8_t hostmodeen : 1;
uint8_t reset : 1;
uint8_t token_busy : 1;
uint8_t _rsvd4 : 2;
};
struct /* device */ {
uint8_t usben : 1;
uint8_t _rsvd5 : 4;
uint8_t txd_suspend : 1;
uint8_t _rsvd6 : 2;
};
uint8_t raw;
};
union {
struct /* common */ {
uint8_t _rsvd1 : 1;
uint8_t oddrst : 1;
uint8_t resume : 1;
uint8_t _rsvd2 : 3;
uint8_t se0 : 1;
uint8_t jstate : 1;
};
struct /* host */ {
uint8_t sofen : 1;
uint8_t _rsvd3 : 2;
uint8_t hostmodeen : 1;
uint8_t reset : 1;
uint8_t token_busy : 1;
uint8_t _rsvd4 : 2;
};
struct /* device */ {
uint8_t usben : 1;
uint8_t _rsvd5 : 4;
uint8_t txd_suspend : 1;
uint8_t _rsvd6 : 2;
};
uint8_t raw;
};
}; };
CTASSERT_SIZE_BIT(struct USB_CTL_t, 8); CTASSERT_SIZE_BIT(struct USB_CTL_t, 8);


struct USB_ADDR_t { struct USB_ADDR_t {
UNION_STRUCT_START(8);
uint8_t addr : 7;
uint8_t lsen : 1;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t addr : 7;
uint8_t lsen : 1;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_ADDR_t, 8); CTASSERT_SIZE_BIT(struct USB_ADDR_t, 8);


struct USB_TOKEN_t { struct USB_TOKEN_t {
UNION_STRUCT_START(8);
uint8_t endpt : 4;
enum usb_tok_pid pid : 4;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t endpt : 4;
enum usb_tok_pid pid : 4;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_TOKEN_t, 8); CTASSERT_SIZE_BIT(struct USB_TOKEN_t, 8);


struct USB_ENDPT_t { struct USB_ENDPT_t {
UNION_STRUCT_START(8);
uint8_t ephshk : 1;
uint8_t epstall : 1;
uint8_t eptxen : 1;
uint8_t eprxen : 1;
uint8_t epctldis : 1;
uint8_t _rsvd0 : 1;
uint8_t retrydis : 1;
uint8_t hostwohub : 1;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t ephshk : 1;
uint8_t epstall : 1;
uint8_t eptxen : 1;
uint8_t eprxen : 1;
uint8_t epctldis : 1;
uint8_t _rsvd0 : 1;
uint8_t retrydis : 1;
uint8_t hostwohub : 1;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_ENDPT_t, 8); CTASSERT_SIZE_BIT(struct USB_ENDPT_t, 8);


struct USB_USBCTRL_t { struct USB_USBCTRL_t {
UNION_STRUCT_START(8);
uint8_t _rsvd0 : 6;
uint8_t pde : 1;
uint8_t susp : 1;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t _rsvd0 : 6;
uint8_t pde : 1;
uint8_t susp : 1;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_USBCTRL_t, 8); CTASSERT_SIZE_BIT(struct USB_USBCTRL_t, 8);


struct USB_OBSERVE_t { struct USB_OBSERVE_t {
UNION_STRUCT_START(8);
uint8_t _rsvd0 : 4;
uint8_t dmpd : 1;
uint8_t _rsvd1 : 1;
uint8_t dppd : 1;
uint8_t dppu : 1;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t _rsvd0 : 4;
uint8_t dmpd : 1;
uint8_t _rsvd1 : 1;
uint8_t dppd : 1;
uint8_t dppu : 1;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_OBSERVE_t, 8); CTASSERT_SIZE_BIT(struct USB_OBSERVE_t, 8);


struct USB_CONTROL_t { struct USB_CONTROL_t {
UNION_STRUCT_START(8);
uint8_t _rsvd0 : 4;
uint8_t dppullupnonotg : 1;
uint8_t _rsvd1 : 3;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t _rsvd0 : 4;
uint8_t dppullupnonotg : 1;
uint8_t _rsvd1 : 3;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_CONTROL_t, 8); CTASSERT_SIZE_BIT(struct USB_CONTROL_t, 8);


struct USB_USBTRC0_t { struct USB_USBTRC0_t {
UNION_STRUCT_START(8);
uint8_t usb_resume_int : 1;
uint8_t sync_det : 1;
uint8_t _rsvd0 : 3;
uint8_t usbresmen : 1;
uint8_t _rsvd1 : 1;
uint8_t usbreset : 1;
UNION_STRUCT_END;
UNION_STRUCT_START(8);
uint8_t usb_resume_int : 1;
uint8_t sync_det : 1;
uint8_t _rsvd0 : 3;
uint8_t usbresmen : 1;
uint8_t _rsvd1 : 1;
uint8_t usbreset : 1;
UNION_STRUCT_END;
}; };
CTASSERT_SIZE_BIT(struct USB_USBTRC0_t, 8); CTASSERT_SIZE_BIT(struct USB_USBTRC0_t, 8);


struct USB_t { struct USB_t {
uint8_t perid;
uint8_t _pad0[3];
uint8_t idcomp;
uint8_t _pad1[3];
uint8_t rev;
uint8_t _pad2[3];
struct USB_ADDINFO_t addinfo;
uint8_t _pad3[3];
struct USB_OTGSTAT_t otgistat;
uint8_t _pad4[3];
struct USB_OTGSTAT_t otgicr;
uint8_t _pad5[3];
struct USB_OTGSTAT_t otgstat;
uint8_t _pad6[3];
struct USB_OTGCTL_t otgctl;
uint8_t _pad7[3];
uint8_t _pad8[0x80 - 0x20];
struct USB_ISTAT_t istat;
uint8_t _pad9[3];
struct USB_ISTAT_t inten;
uint8_t _pad10[3];
struct USB_ERRSTAT_t errstat;
uint8_t _pad11[3];
struct USB_ERRSTAT_t erren;
uint8_t _pad12[3];
struct USB_STAT_t stat;
uint8_t _pad13[3];
struct USB_CTL_t ctl;
uint8_t _pad14[3];
struct USB_ADDR_t addr;
uint8_t _pad15[3];
uint8_t bdtpage1;
uint8_t _pad16[3];
uint8_t frmnuml;
uint8_t _pad17[3];
struct {
uint8_t frmnumh : 3;
uint8_t _rsvd0 : 5;
};
uint8_t _pad18[3];
struct USB_TOKEN_t token;
uint8_t _pad19[3];
uint8_t softhld;
uint8_t _pad20[3];
uint8_t bdtpage2;
uint8_t _pad21[3];
uint8_t bdtpage3;
uint8_t _pad22[3];
uint8_t _pad23[0xc0 - 0xb8];
struct {
struct USB_ENDPT_t;
uint8_t _pad24[3];
} endpt[16];
struct USB_USBCTRL_t usbctrl;
uint8_t _pad25[3];
struct USB_OBSERVE_t observe;
uint8_t _pad26[3];
struct USB_CONTROL_t control;
uint8_t _pad27[3];
struct USB_USBTRC0_t usbtrc0;
uint8_t _pad28[3];
uint8_t _pad29[4];
uint8_t usbfrmadjust;
uint8_t _pad30[3];
uint8_t perid;
uint8_t _pad0[3];
uint8_t idcomp;
uint8_t _pad1[3];
uint8_t rev;
uint8_t _pad2[3];
struct USB_ADDINFO_t addinfo;
uint8_t _pad3[3];
struct USB_OTGSTAT_t otgistat;
uint8_t _pad4[3];
struct USB_OTGSTAT_t otgicr;
uint8_t _pad5[3];
struct USB_OTGSTAT_t otgstat;
uint8_t _pad6[3];
struct USB_OTGCTL_t otgctl;
uint8_t _pad7[3];
uint8_t _pad8[0x80 - 0x20];
struct USB_ISTAT_t istat;
uint8_t _pad9[3];
struct USB_ISTAT_t inten;
uint8_t _pad10[3];
struct USB_ERRSTAT_t errstat;
uint8_t _pad11[3];
struct USB_ERRSTAT_t erren;
uint8_t _pad12[3];
struct USB_STAT_t stat;
uint8_t _pad13[3];
struct USB_CTL_t ctl;
uint8_t _pad14[3];
struct USB_ADDR_t addr;
uint8_t _pad15[3];
uint8_t bdtpage1;
uint8_t _pad16[3];
uint8_t frmnuml;
uint8_t _pad17[3];
struct {
uint8_t frmnumh : 3;
uint8_t _rsvd0 : 5;
};
uint8_t _pad18[3];
struct USB_TOKEN_t token;
uint8_t _pad19[3];
uint8_t softhld;
uint8_t _pad20[3];
uint8_t bdtpage2;
uint8_t _pad21[3];
uint8_t bdtpage3;
uint8_t _pad22[3];
uint8_t _pad23[0xc0 - 0xb8];
struct {
struct USB_ENDPT_t;
uint8_t _pad24[3];
} endpt[16];
struct USB_USBCTRL_t usbctrl;
uint8_t _pad25[3];
struct USB_OBSERVE_t observe;
uint8_t _pad26[3];
struct USB_CONTROL_t control;
uint8_t _pad27[3];
struct USB_USBTRC0_t usbtrc0;
uint8_t _pad28[3];
uint8_t _pad29[4];
uint8_t usbfrmadjust;
uint8_t _pad30[3];
}; };
CTASSERT_SIZE_BYTE(struct USB_t, 0x118); CTASSERT_SIZE_BYTE(struct USB_t, 0x118);


struct USB_BD_t { struct USB_BD_t {
struct USB_BD_BITS_t {
union {
struct {
uint32_t _rsvd0 : 2;
uint32_t stall : 1;
uint32_t dts : 1;
uint32_t ninc : 1;
uint32_t keep : 1;
enum usb_data01 data01 : 1;
uint32_t own : 1;
uint32_t _rsvd1 : 8;
uint32_t bc : 10;
uint32_t _rsvd2 : 6;
};
struct /* processor */ {
uint32_t _rsvd5 : 2;
enum usb_tok_pid tok_pid : 4;
uint32_t _rsvd6 : 26;
};
uint32_t raw;
};
};
void *addr;
struct USB_BD_BITS_t {
union {
struct {
uint32_t _rsvd0 : 2;
uint32_t stall : 1;
uint32_t dts : 1;
uint32_t ninc : 1;
uint32_t keep : 1;
enum usb_data01 data01 : 1;
uint32_t own : 1;
uint32_t _rsvd1 : 8;
uint32_t bc : 10;
uint32_t _rsvd2 : 6;
};
struct /* processor */ {
uint32_t _rsvd5 : 2;
enum usb_tok_pid tok_pid : 4;
uint32_t _rsvd6 : 26;
};
uint32_t raw;
};
};
void *addr;
}; };
CTASSERT_SIZE_BYTE(struct USB_BD_t, 8); CTASSERT_SIZE_BYTE(struct USB_BD_t, 8);



+ 9
- 9
CMakeLists.txt Voir le fichier

#| You _MUST_ clean the build directory if you change this value #| You _MUST_ clean the build directory if you change this value
#| #|
set( CHIP set( CHIP
# "at90usb162" # Teensy 1.0 (avr)
# "atmega32u4" # Teensy 2.0 (avr)
# "at90usb646" # Teensy++ 1.0 (avr)
# "at90usb1286" # Teensy++ 2.0 (avr)
# "mk20dx128" # Teensy 3.0 (arm)
# "at90usb162" # Teensy 1.0 (avr)
# "atmega32u4" # Teensy 2.0 (avr)
# "at90usb646" # Teensy++ 1.0 (avr)
# "at90usb1286" # Teensy++ 2.0 (avr)
# "mk20dx128" # Teensy 3.0 (arm)
"mk20dx128vlf5" # McHCK mk20dx128vlf5 "mk20dx128vlf5" # McHCK mk20dx128vlf5
# "mk20dx256" # Teensy 3.1 (arm)
# "mk20dx256vlh7" # Kiibohd-dfu mk20dx256vlh7
# "mk20dx256" # Teensy 3.1 (arm)
# "mk20dx256vlh7" # Kiibohd-dfu mk20dx256vlh7
CACHE STRING "Microcontroller Chip" ) CACHE STRING "Microcontroller Chip" )




#| Stick with gcc unless you know what you're doing #| Stick with gcc unless you know what you're doing
#| Currently only arm is supported with clang #| Currently only arm is supported with clang
set( COMPILER set( COMPILER
"gcc" # arm-none-eabi-gcc / avr-gcc - Default
# "clang" # arm-none-eabi
"gcc" # arm-none-eabi-gcc / avr-gcc - Default
# "clang" # arm-none-eabi
CACHE STRING "Compiler Type" ) CACHE STRING "Compiler Type" )





+ 3
- 3
Debug/print/print.h Voir le fichier



// Special Msg Constructs (Uses VT100 tags) // Special Msg Constructs (Uses VT100 tags)
#define dPrintMsg(colour_code_str,msg,...) \ #define dPrintMsg(colour_code_str,msg,...) \
printstrs("\033[", colour_code_str, "m", msg, "\033[0m - ", __VA_ARGS__, NL, "\0\0\0")
printstrs("\033[", colour_code_str, "m", msg, "\033[0m - ", __VA_ARGS__, NL, "\0\0\0")
#define printMsgNL(colour_code_str,msg,str) \ #define printMsgNL(colour_code_str,msg,str) \
print("\033[" colour_code_str "m" msg "\033[0m - " str NL)
print("\033[" colour_code_str "m" msg "\033[0m - " str NL)
#define printMsg(colour_code_str,msg,str) \ #define printMsg(colour_code_str,msg,str) \
print("\033[" colour_code_str "m" msg "\033[0m - " str)
print("\033[" colour_code_str "m" msg "\033[0m - " str)


// Info Messages // Info Messages
#define info_dPrint(...) dPrintMsg ("1;32", "INFO", __VA_ARGS__) // Info Msg #define info_dPrint(...) dPrintMsg ("1;32", "INFO", __VA_ARGS__) // Info Msg

+ 2
- 2
Lib/_buildvars.h Voir le fichier

// Windows, even though the driver is supplied by Microsoft, an // Windows, even though the driver is supplied by Microsoft, an
// INF file is needed to load the driver. These numbers need to // INF file is needed to load the driver. These numbers need to
// match the INF file. // match the INF file.
#define VENDOR_ID @VENDOR_ID@
#define PRODUCT_ID @PRODUCT_ID@
#define VENDOR_ID @VENDOR_ID@
#define PRODUCT_ID @PRODUCT_ID@


#endif #endif



+ 3
- 3
Lib/delay.h Voir le fichier

uint32_t n = usec << 3; uint32_t n = usec << 3;
#endif #endif
asm volatile( asm volatile(
"L_%=_delayMicroseconds:" "\n\t"
"subs %0, #1" "\n\t"
"bne L_%=_delayMicroseconds" "\n"
"L_%=_delayMicroseconds:" "\n\t"
"subs %0, #1" "\n\t"
"bne L_%=_delayMicroseconds" "\n"
: "+r" (n) : : "+r" (n) :
); );
} }

+ 8
- 8
Lib/mk20dx.c Voir le fichier

__attribute__((noreturn)) __attribute__((noreturn))
static inline void jump_to_app( uintptr_t addr ) static inline void jump_to_app( uintptr_t addr )
{ {
// addr is in r0
__asm__("ldr sp, [%[addr], #0]\n"
"ldr pc, [%[addr], #4]"
:: [addr] "r" (addr));
// NOTREACHED
__builtin_unreachable();
// addr is in r0
__asm__("ldr sp, [%[addr], #0]\n"
"ldr pc, [%[addr], #4]"
:: [addr] "r" (addr));
// NOTREACHED
__builtin_unreachable();
} }
#endif #endif


NVIC_SET_PRIORITY( i, 128 ); NVIC_SET_PRIORITY( i, 128 );
} }


// FLL at 48MHz
// FLL at 48MHz
MCG_C4 = MCG_C4_DMX32 | MCG_C4_DRST_DRS( 1 ); MCG_C4 = MCG_C4_DMX32 | MCG_C4_DRST_DRS( 1 );


// USB Clock and FLL select // USB Clock and FLL select


// Teensy 3.0 and 3.1 and Kiibohd-dfu (mk20dx256vlh7) // Teensy 3.0 and 3.1 and Kiibohd-dfu (mk20dx256vlh7)
#else #else
SCB_VTOR = 0; // use vector table in flash
SCB_VTOR = 0; // use vector table in flash


// default all interrupts to medium priority level // default all interrupts to medium priority level
for ( unsigned int i = 0; i < NVIC_NUM_INTERRUPTS; i++ ) for ( unsigned int i = 0; i < NVIC_NUM_INTERRUPTS; i++ )

+ 1179
- 1179
Lib/mk20dx.h
Fichier diff supprimé car celui-ci est trop grand
Voir le fichier


+ 30
- 30
LoadFile/teensy_loader_cli.c Voir le fichier

num = read_intel_hex(filename); num = read_intel_hex(filename);
if (num < 0) die("error reading intel hex file \"%s\"", filename); if (num < 0) die("error reading intel hex file \"%s\"", filename);
printf_verbose("Read \"%s\": %d bytes, %.1f%% usage\n", printf_verbose("Read \"%s\": %d bytes, %.1f%% usage\n",
filename, num, (double)num / (double)code_size * 100.0);
filename, num, (double)num / (double)code_size * 100.0);
} }


// program the data // program the data
parse_hex_line(char *line) parse_hex_line(char *line)
{ {
int addr, code, num; int addr, code, num;
int sum, len, cksum, i;
char *ptr;
num = 0;
if (line[0] != ':') return 0;
if (strlen(line) < 11) return 0;
ptr = line+1;
if (!sscanf(ptr, "%02x", &len)) return 0;
ptr += 2;
if ((int)strlen(line) < (11 + (len * 2)) ) return 0;
if (!sscanf(ptr, "%04x", &addr)) return 0;
ptr += 4;
/* printf("Line: length=%d Addr=%d\n", len, addr); */
if (!sscanf(ptr, "%02x", &code)) return 0;
int sum, len, cksum, i;
char *ptr;
num = 0;
if (line[0] != ':') return 0;
if (strlen(line) < 11) return 0;
ptr = line+1;
if (!sscanf(ptr, "%02x", &len)) return 0;
ptr += 2;
if ((int)strlen(line) < (11 + (len * 2)) ) return 0;
if (!sscanf(ptr, "%04x", &addr)) return 0;
ptr += 4;
/* printf("Line: length=%d Addr=%d\n", len, addr); */
if (!sscanf(ptr, "%02x", &code)) return 0;
if (addr + extended_addr + len >= MAX_MEMORY_SIZE) return 0; if (addr + extended_addr + len >= MAX_MEMORY_SIZE) return 0;
ptr += 2;
sum = (len & 255) + ((addr >> 8) & 255) + (addr & 255) + (code & 255);
ptr += 2;
sum = (len & 255) + ((addr >> 8) & 255) + (addr & 255) + (code & 255);
if (code != 0) { if (code != 0) {
if (code == 1) { if (code == 1) {
end_record_seen = 1; end_record_seen = 1;
if (!sscanf(ptr, "%04x", &i)) return 1; if (!sscanf(ptr, "%04x", &i)) return 1;
ptr += 4; ptr += 4;
sum += ((i >> 8) & 255) + (i & 255); sum += ((i >> 8) & 255) + (i & 255);
if (!sscanf(ptr, "%02x", &cksum)) return 1;
if (!sscanf(ptr, "%02x", &cksum)) return 1;
if (((sum & 255) + (cksum & 255)) & 255) return 1; if (((sum & 255) + (cksum & 255)) & 255) return 1;
extended_addr = i << 4; extended_addr = i << 4;
//printf("ext addr = %05X\n", extended_addr); //printf("ext addr = %05X\n", extended_addr);
if (!sscanf(ptr, "%04x", &i)) return 1; if (!sscanf(ptr, "%04x", &i)) return 1;
ptr += 4; ptr += 4;
sum += ((i >> 8) & 255) + (i & 255); sum += ((i >> 8) & 255) + (i & 255);
if (!sscanf(ptr, "%02x", &cksum)) return 1;
if (!sscanf(ptr, "%02x", &cksum)) return 1;
if (((sum & 255) + (cksum & 255)) & 255) return 1; if (((sum & 255) + (cksum & 255)) & 255) return 1;
extended_addr = i << 16; extended_addr = i << 16;
//printf("ext addr = %08X\n", extended_addr); //printf("ext addr = %08X\n", extended_addr);
} }
return 1; // non-data line
return 1; // non-data line
} }
byte_count += len; byte_count += len;
while (num != len) {
if (sscanf(ptr, "%02x", &i) != 1) return 0;
while (num != len) {
if (sscanf(ptr, "%02x", &i) != 1) return 0;
i &= 255; i &= 255;
firmware_image[addr + extended_addr + num] = i; firmware_image[addr + extended_addr + num] = i;
firmware_mask[addr + extended_addr + num] = 1; firmware_mask[addr + extended_addr + num] = 1;
ptr += 2;
sum += i;
(num)++;
if (num >= 256) return 0;
}
if (!sscanf(ptr, "%02x", &cksum)) return 0;
if (((sum & 255) + (cksum & 255)) & 255) return 0; /* checksum error */
return 1;
ptr += 2;
sum += i;
(num)++;
if (num >= 256) return 0;
}
if (!sscanf(ptr, "%02x", &cksum)) return 0;
if (((sum & 255) + (cksum & 255)) & 255) return 0; /* checksum error */
return 1;
} }


int ihex_bytes_within_range(int begin, int end) int ihex_bytes_within_range(int begin, int end)

+ 2
- 2
Macro/buffer/Keymap/usb_keys.h Voir le fichier

// List of Modifiers // List of Modifiers
#define KEY_CTRL 0x01 #define KEY_CTRL 0x01
#define KEY_SHIFT 0x02 #define KEY_SHIFT 0x02
#define KEY_ALT 0x04
#define KEY_GUI 0x08
#define KEY_ALT 0x04
#define KEY_GUI 0x08
#define KEY_LEFT_CTRL 0x01 #define KEY_LEFT_CTRL 0x01
#define KEY_LEFT_SHIFT 0x02 #define KEY_LEFT_SHIFT 0x02
#define KEY_LEFT_ALT 0x04 #define KEY_LEFT_ALT 0x04

+ 346
- 346
Output/pjrcUSB/arm/usb_desc.c Voir le fichier

// USB Device Descriptor. The USB host reads this first, to learn // USB Device Descriptor. The USB host reads this first, to learn
// what type of device is connected. // what type of device is connected.
static uint8_t device_descriptor[] = { static uint8_t device_descriptor[] = {
18, // bLength
1, // bDescriptorType
0x00, 0x02, // bcdUSB
DEVICE_CLASS, // bDeviceClass
DEVICE_SUBCLASS, // bDeviceSubClass
DEVICE_PROTOCOL, // bDeviceProtocol
EP0_SIZE, // bMaxPacketSize0
LSB(VENDOR_ID), MSB(VENDOR_ID), // idVendor
LSB(PRODUCT_ID), MSB(PRODUCT_ID), // idProduct
0x00, 0x01, // bcdDevice
1, // iManufacturer
2, // iProduct
3, // iSerialNumber
1 // bNumConfigurations
18, // bLength
1, // bDescriptorType
0x00, 0x02, // bcdUSB
DEVICE_CLASS, // bDeviceClass
DEVICE_SUBCLASS, // bDeviceSubClass
DEVICE_PROTOCOL, // bDeviceProtocol
EP0_SIZE, // bMaxPacketSize0
LSB(VENDOR_ID), MSB(VENDOR_ID), // idVendor
LSB(PRODUCT_ID), MSB(PRODUCT_ID), // idProduct
0x00, 0x01, // bcdDevice
1, // iManufacturer
2, // iProduct
3, // iSerialNumber
1 // bNumConfigurations
}; };


// USB Device Qualifier Descriptor // USB Device Qualifier Descriptor
static uint8_t device_qualifier_descriptor[] = { static uint8_t device_qualifier_descriptor[] = {
0 // Indicate only single speed 0 // Indicate only single speed
/* Device qualifier example (used for specifying multiple USB speeds) /* Device qualifier example (used for specifying multiple USB speeds)
10, // bLength
6, // bDescriptorType
0x00, 0x02, // bcdUSB
DEVICE_CLASS, // bDeviceClass
DEVICE_SUBCLASS, // bDeviceSubClass
DEVICE_PROTOCOL, // bDeviceProtocol
EP0_SIZE, // bMaxPacketSize0
10, // bLength
6, // bDescriptorType
0x00, 0x02, // bcdUSB
DEVICE_CLASS, // bDeviceClass
DEVICE_SUBCLASS, // bDeviceSubClass
DEVICE_PROTOCOL, // bDeviceProtocol
EP0_SIZE, // bMaxPacketSize0
0, // bNumOtherSpeedConfigurations 0, // bNumOtherSpeedConfigurations
0 // bReserved 0 // bReserved
*/ */
// Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60 // Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60
static uint8_t keyboard_report_desc[] = { static uint8_t keyboard_report_desc[] = {
// Keyboard Collection // Keyboard Collection
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x06, // Usage (Keyboard),
0xA1, 0x01, // Collection (Application) - Keyboard,
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x06, // Usage (Keyboard),
0xA1, 0x01, // Collection (Application) - Keyboard,


// Modifier Byte // Modifier Byte
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xE0, // Usage Minimum (224),
0x29, 0xE7, // Usage Maximum (231),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x81, 0x02, // Input (Data, Variable, Absolute),
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xE0, // Usage Minimum (224),
0x29, 0xE7, // Usage Maximum (231),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x81, 0x02, // Input (Data, Variable, Absolute),


// Reserved Byte // Reserved Byte
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x81, 0x03, // Output (Constant),
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x81, 0x03, // Output (Constant),


// LED Report // LED Report
0x75, 0x01, // Report Size (1),
0x95, 0x05, // Report Count (5),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute),
0x75, 0x01, // Report Size (1),
0x95, 0x05, // Report Count (5),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute),


// LED Report Padding // LED Report Padding
0x75, 0x03, // Report Size (3),
0x95, 0x01, // Report Count (1),
0x91, 0x03, // Output (Constant),
0x75, 0x03, // Report Size (3),
0x95, 0x01, // Report Count (1),
0x91, 0x03, // Output (Constant),


// Normal Keys // Normal Keys
0x75, 0x08, // Report Size (8),
0x95, 0x06, // Report Count (6),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x7F, // Logical Maximum(104),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x00, // Usage Minimum (0),
0x29, 0x7F, // Usage Maximum (104),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - Keyboard
0x75, 0x08, // Report Size (8),
0x95, 0x06, // Report Count (6),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x7F, // Logical Maximum(104),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x00, // Usage Minimum (0),
0x29, 0x7F, // Usage Maximum (104),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - Keyboard
}; };


// Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60 // Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60
static uint8_t nkro_keyboard_report_desc[] = { static uint8_t nkro_keyboard_report_desc[] = {
// Keyboard Collection // Keyboard Collection
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x06, // Usage (Keyboard),
0xA1, 0x01, // Collection (Application) - Keyboard,
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x06, // Usage (Keyboard),
0xA1, 0x01, // Collection (Application) - Keyboard,


// LED Report // LED Report
0x85, 0x01, // Report ID (1),
0x75, 0x01, // Report Size (1),
0x95, 0x05, // Report Count (5),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute),
0x85, 0x01, // Report ID (1),
0x75, 0x01, // Report Size (1),
0x95, 0x05, // Report Count (5),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute),


// LED Report Padding // LED Report Padding
0x75, 0x03, // Report Size (3),
0x95, 0x01, // Report Count (1),
0x91, 0x03, // Output (Constant),
0x75, 0x03, // Report Size (3),
0x95, 0x01, // Report Count (1),
0x91, 0x03, // Output (Constant),


// Normal Keys - Using an NKRO Bitmap // Normal Keys - Using an NKRO Bitmap
// //
// 224-231 : 1 byte (0xE0-0xE7) ( 8 bits) // 224-231 : 1 byte (0xE0-0xE7) ( 8 bits)


// Modifier Byte // Modifier Byte
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xE0, // Usage Minimum (224),
0x29, 0xE7, // Usage Maximum (231),
0x81, 0x02, // Input (Data, Variable, Absolute),
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xE0, // Usage Minimum (224),
0x29, 0xE7, // Usage Maximum (231),
0x81, 0x02, // Input (Data, Variable, Absolute),


// 4-49 (6 bytes/46 bits) - MainKeys // 4-49 (6 bytes/46 bits) - MainKeys
0x75, 0x01, // Report Size (1),
0x95, 0x2E, // Report Count (46),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x04, // Usage Minimum (4),
0x29, 0x31, // Usage Maximum (49),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),
0x75, 0x01, // Report Size (1),
0x95, 0x2E, // Report Count (46),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x04, // Usage Minimum (4),
0x29, 0x31, // Usage Maximum (49),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),


// Padding (2 bits) // Padding (2 bits)
0x75, 0x02, // Report Size (2), 0x75, 0x02, // Report Size (2),
0x81, 0x03, // Input (Constant), 0x81, 0x03, // Input (Constant),


// 51-155 (14 bytes/105 bits) - SecondaryKeys // 51-155 (14 bytes/105 bits) - SecondaryKeys
0x75, 0x01, // Report Size (1),
0x95, 0x69, // Report Count (105),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x33, // Usage Minimum (51),
0x29, 0x9B, // Usage Maximum (155),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),
0x75, 0x01, // Report Size (1),
0x95, 0x69, // Report Count (105),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x33, // Usage Minimum (51),
0x29, 0x9B, // Usage Maximum (155),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),


// Padding (7 bits) // Padding (7 bits)
0x75, 0x07, // Report Size (7), 0x75, 0x07, // Report Size (7),
0x81, 0x03, // Input (Constant), 0x81, 0x03, // Input (Constant),


// 157-164 (1 byte/8 bits) - TertiaryKeys // 157-164 (1 byte/8 bits) - TertiaryKeys
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x9D, // Usage Minimum (157),
0x29, 0xA4, // Usage Maximum (164),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x9D, // Usage Minimum (157),
0x29, 0xA4, // Usage Maximum (164),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),


// 176-221 (6 bytes/46 bits) - QuartiaryKeys // 176-221 (6 bytes/46 bits) - QuartiaryKeys
0x75, 0x01, // Report Size (1),
0x95, 0x2E, // Report Count (46),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xB0, // Usage Minimum (176),
0x29, 0xDD, // Usage Maximum (221),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),
0x75, 0x01, // Report Size (1),
0x95, 0x2E, // Report Count (46),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xB0, // Usage Minimum (176),
0x29, 0xDD, // Usage Maximum (221),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),


// Padding (2 bits) // Padding (2 bits)
0x75, 0x02, // Report Size (2), 0x75, 0x02, // Report Size (2),
0x95, 0x01, // Report Count (1), 0x95, 0x01, // Report Count (1),
0x81, 0x03, // Input (Constant), 0x81, 0x03, // Input (Constant),
0xc0, // End Collection - Keyboard
0xc0, // End Collection - Keyboard


// System Control Collection // System Control Collection
// //
// NOTES: // NOTES:
// Not bothering with NKRO for this table. If there's need, I can implement it. -HaaTa // Not bothering with NKRO for this table. If there's need, I can implement it. -HaaTa
// Using a 1KRO scheme // Using a 1KRO scheme
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x80, // Usage (System Control),
0xA1, 0x01, // Collection (Application),
0x85, 0x02, // Report ID (2),
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x16, 0x81, 0x00, // Logical Minimum (129),
0x26, 0xB7, 0x00, // Logical Maximum (183),
0x19, 0x81, // Usage Minimum (129),
0x29, 0xB7, // Usage Maximum (183),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - System Control
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x80, // Usage (System Control),
0xA1, 0x01, // Collection (Application),
0x85, 0x02, // Report ID (2),
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x16, 0x81, 0x00, // Logical Minimum (129),
0x26, 0xB7, 0x00, // Logical Maximum (183),
0x19, 0x81, // Usage Minimum (129),
0x29, 0xB7, // Usage Maximum (183),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - System Control


// Consumer Control Collection - Media Keys // Consumer Control Collection - Media Keys
// //
// NOTES: // NOTES:
// Not bothering with NKRO for this table. If there's a need, I can implement it. -HaaTa // Not bothering with NKRO for this table. If there's a need, I can implement it. -HaaTa
// Using a 1KRO scheme // Using a 1KRO scheme
0x05, 0x0c, // Usage Page (Consumer),
0x09, 0x01, // Usage (Consumer Control),
0xA1, 0x01, // Collection (Application),
0x85, 0x03, // Report ID (3),
0x75, 0x10, // Report Size (16),
0x95, 0x01, // Report Count (1),
0x16, 0x20, 0x00, // Logical Minimum (32),
0x26, 0x9C, 0x02, // Logical Maximum (668),
0x05, 0x0C, // Usage Page (Consumer),
0x19, 0x20, // Usage Minimum (32),
0x2A, 0x9C, 0x02, // Usage Maximum (668),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - Consumer Control
0x05, 0x0c, // Usage Page (Consumer),
0x09, 0x01, // Usage (Consumer Control),
0xA1, 0x01, // Collection (Application),
0x85, 0x03, // Report ID (3),
0x75, 0x10, // Report Size (16),
0x95, 0x01, // Report Count (1),
0x16, 0x20, 0x00, // Logical Minimum (32),
0x26, 0x9C, 0x02, // Logical Maximum (668),
0x05, 0x0C, // Usage Page (Consumer),
0x19, 0x20, // Usage Minimum (32),
0x2A, 0x9C, 0x02, // Usage Maximum (668),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - Consumer Control
}; };


/* MOUSE /* MOUSE
// Mouse Protocol 1, HID 1.11 spec, Appendix B, page 59-60, with wheel extension // Mouse Protocol 1, HID 1.11 spec, Appendix B, page 59-60, with wheel extension
static uint8_t mouse_report_desc[] = { static uint8_t mouse_report_desc[] = {
0x05, 0x01, // Usage Page (Generic Desktop)
0x09, 0x02, // Usage (Mouse)
0xA1, 0x01, // Collection (Application)
0x05, 0x09, // Usage Page (Button)
0x19, 0x01, // Usage Minimum (Button #1)
0x29, 0x03, // Usage Maximum (Button #3)
0x15, 0x00, // Logical Minimum (0)
0x25, 0x01, // Logical Maximum (1)
0x95, 0x03, // Report Count (3)
0x75, 0x01, // Report Size (1)
0x81, 0x02, // Input (Data, Variable, Absolute)
0x95, 0x01, // Report Count (1)
0x75, 0x05, // Report Size (5)
0x81, 0x03, // Input (Constant)
0x05, 0x01, // Usage Page (Generic Desktop)
0x09, 0x30, // Usage (X)
0x09, 0x31, // Usage (Y)
0x15, 0x00, // Logical Minimum (0)
0x26, 0xFF, 0x7F, // Logical Maximum (32767)
0x75, 0x10, // Report Size (16),
0x95, 0x02, // Report Count (2),
0x81, 0x02, // Input (Data, Variable, Absolute)
0x09, 0x38, // Usage (Wheel)
0x15, 0x81, // Logical Minimum (-127)
0x25, 0x7F, // Logical Maximum (127)
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x81, 0x06, // Input (Data, Variable, Relative)
0xC0 // End Collection
0x05, 0x01, // Usage Page (Generic Desktop)
0x09, 0x02, // Usage (Mouse)
0xA1, 0x01, // Collection (Application)
0x05, 0x09, // Usage Page (Button)
0x19, 0x01, // Usage Minimum (Button #1)
0x29, 0x03, // Usage Maximum (Button #3)
0x15, 0x00, // Logical Minimum (0)
0x25, 0x01, // Logical Maximum (1)
0x95, 0x03, // Report Count (3)
0x75, 0x01, // Report Size (1)
0x81, 0x02, // Input (Data, Variable, Absolute)
0x95, 0x01, // Report Count (1)
0x75, 0x05, // Report Size (5)
0x81, 0x03, // Input (Constant)
0x05, 0x01, // Usage Page (Generic Desktop)
0x09, 0x30, // Usage (X)
0x09, 0x31, // Usage (Y)
0x15, 0x00, // Logical Minimum (0)
0x26, 0xFF, 0x7F, // Logical Maximum (32767)
0x75, 0x10, // Report Size (16),
0x95, 0x02, // Report Count (2),
0x81, 0x02, // Input (Data, Variable, Absolute)
0x09, 0x38, // Usage (Wheel)
0x15, 0x81, // Logical Minimum (-127)
0x25, 0x7F, // Logical Maximum (127)
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x81, 0x06, // Input (Data, Variable, Relative)
0xC0 // End Collection
}; };
*/ */


static uint8_t config_descriptor[CONFIG_DESC_SIZE] = { static uint8_t config_descriptor[CONFIG_DESC_SIZE] = {
// --- Configuration --- // --- Configuration ---
// - 9 bytes - // - 9 bytes -
// configuration descriptor, USB spec 9.6.3, page 264-266, Table 9-10
9, // bLength;
2, // bDescriptorType;
LSB(CONFIG_DESC_SIZE), // wTotalLength
MSB(CONFIG_DESC_SIZE),
NUM_INTERFACE, // bNumInterfaces
1, // bConfigurationValue
0, // iConfiguration
0xA0, // bmAttributes
250, // bMaxPower
// configuration descriptor, USB spec 9.6.3, page 264-266, Table 9-10
9, // bLength;
2, // bDescriptorType;
LSB(CONFIG_DESC_SIZE), // wTotalLength
MSB(CONFIG_DESC_SIZE),
NUM_INTERFACE, // bNumInterfaces
1, // bConfigurationValue
0, // iConfiguration
0xA0, // bmAttributes
250, // bMaxPower


// --- Keyboard HID --- Boot Mode Keyboard Interface // --- Keyboard HID --- Boot Mode Keyboard Interface
// - 9 bytes - // - 9 bytes -
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
KEYBOARD_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x01, // bInterfaceSubClass (0x00 = Non-Boot, 0x01 = Boot)
0x01, // bInterfaceProtocol (0x01 = Keyboard)
0, // iInterface
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
KEYBOARD_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x01, // bInterfaceSubClass (0x00 = Non-Boot, 0x01 = Boot)
0x01, // bInterfaceProtocol (0x01 = Keyboard)
0, // iInterface
// - 9 bytes - // - 9 bytes -
// HID interface descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode
1, // bNumDescriptors
0x22, // bDescriptorType
LSB(sizeof(keyboard_report_desc)), // wDescriptorLength
MSB(sizeof(keyboard_report_desc)),
// HID interface descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode
1, // bNumDescriptors
0x22, // bDescriptorType
LSB(sizeof(keyboard_report_desc)), // wDescriptorLength
MSB(sizeof(keyboard_report_desc)),
// - 7 bytes - // - 7 bytes -
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
KEYBOARD_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
KEYBOARD_SIZE, 0, // wMaxPacketSize
KEYBOARD_INTERVAL, // bInterval
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
KEYBOARD_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
KEYBOARD_SIZE, 0, // wMaxPacketSize
KEYBOARD_INTERVAL, // bInterval


// --- NKRO Keyboard HID --- OS Mode Keyboard Interface // --- NKRO Keyboard HID --- OS Mode Keyboard Interface
// - 9 bytes - // - 9 bytes -
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
NKRO_KEYBOARD_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x00, // bInterfaceSubClass (0x00 = Non-Boot, 0x01 = Boot)
0x01, // bInterfaceProtocol (0x01 = Keyboard)
0, // iInterface
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
NKRO_KEYBOARD_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x00, // bInterfaceSubClass (0x00 = Non-Boot, 0x01 = Boot)
0x01, // bInterfaceProtocol (0x01 = Keyboard)
0, // iInterface
// - 9 bytes - // - 9 bytes -
// HID interface descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode
1, // bNumDescriptors
0x22, // bDescriptorType
LSB(sizeof(nkro_keyboard_report_desc)), // wDescriptorLength
MSB(sizeof(nkro_keyboard_report_desc)),
// HID interface descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode
1, // bNumDescriptors
0x22, // bDescriptorType
LSB(sizeof(nkro_keyboard_report_desc)), // wDescriptorLength
MSB(sizeof(nkro_keyboard_report_desc)),
// - 7 bytes - // - 7 bytes -
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
NKRO_KEYBOARD_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
NKRO_KEYBOARD_SIZE, 0, // wMaxPacketSize
NKRO_KEYBOARD_INTERVAL, // bInterval
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
NKRO_KEYBOARD_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
NKRO_KEYBOARD_SIZE, 0, // wMaxPacketSize
NKRO_KEYBOARD_INTERVAL, // bInterval


// --- Serial CDC --- CDC IAD Descriptor // --- Serial CDC --- CDC IAD Descriptor
// - 8 bytes - // - 8 bytes -
// interface association descriptor, USB ECN, Table 9-Z
8, // bLength
11, // bDescriptorType
CDC_STATUS_INTERFACE, // bFirstInterface
2, // bInterfaceCount
0x02, // bFunctionClass
0x02, // bFunctionSubClass
0x01, // bFunctionProtocol
0, // iFunction
// interface association descriptor, USB ECN, Table 9-Z
8, // bLength
11, // bDescriptorType
CDC_STATUS_INTERFACE, // bFirstInterface
2, // bInterfaceCount
0x02, // bFunctionClass
0x02, // bFunctionSubClass
0x01, // bFunctionProtocol
0, // iFunction


// --- Serial CDC --- CDC Data Interface // --- Serial CDC --- CDC Data Interface
// - 9 bytes - // - 9 bytes -
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
CDC_STATUS_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x02, // bInterfaceClass
0x02, // bInterfaceSubClass
0x01, // bInterfaceProtocol
0, // iInterface
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
CDC_STATUS_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x02, // bInterfaceClass
0x02, // bInterfaceSubClass
0x01, // bInterfaceProtocol
0, // iInterface
// - 5 bytes - // - 5 bytes -
// CDC Header Functional Descriptor, CDC Spec 5.2.3.1, Table 26
5, // bFunctionLength
0x24, // bDescriptorType
0x00, // bDescriptorSubtype
0x10, 0x01, // bcdCDC
// CDC Header Functional Descriptor, CDC Spec 5.2.3.1, Table 26
5, // bFunctionLength
0x24, // bDescriptorType
0x00, // bDescriptorSubtype
0x10, 0x01, // bcdCDC
// - 5 bytes - // - 5 bytes -
// Call Management Functional Descriptor, CDC Spec 5.2.3.2, Table 27
5, // bFunctionLength
0x24, // bDescriptorType
0x01, // bDescriptorSubtype
0x01, // bmCapabilities
CDC_DATA_INTERFACE, // bDataInterface
// Call Management Functional Descriptor, CDC Spec 5.2.3.2, Table 27
5, // bFunctionLength
0x24, // bDescriptorType
0x01, // bDescriptorSubtype
0x01, // bmCapabilities
CDC_DATA_INTERFACE, // bDataInterface
// - 4 bytes - // - 4 bytes -
// Abstract Control Management Functional Descriptor, CDC Spec 5.2.3.3, Table 28
4, // bFunctionLength
0x24, // bDescriptorType
0x02, // bDescriptorSubtype
0x06, // bmCapabilities
// Abstract Control Management Functional Descriptor, CDC Spec 5.2.3.3, Table 28
4, // bFunctionLength
0x24, // bDescriptorType
0x02, // bDescriptorSubtype
0x06, // bmCapabilities
// - 5 bytes - // - 5 bytes -
// Union Functional Descriptor, CDC Spec 5.2.3.8, Table 33
5, // bFunctionLength
0x24, // bDescriptorType
0x06, // bDescriptorSubtype
CDC_STATUS_INTERFACE, // bMasterInterface
CDC_DATA_INTERFACE, // bSlaveInterface0
// Union Functional Descriptor, CDC Spec 5.2.3.8, Table 33
5, // bFunctionLength
0x24, // bDescriptorType
0x06, // bDescriptorSubtype
CDC_STATUS_INTERFACE, // bMasterInterface
CDC_DATA_INTERFACE, // bSlaveInterface0
// - 7 bytes - // - 7 bytes -
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
CDC_ACM_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
CDC_ACM_SIZE, 0, // wMaxPacketSize
64, // bInterval
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
CDC_ACM_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
CDC_ACM_SIZE, 0, // wMaxPacketSize
64, // bInterval
// - 9 bytes - // - 9 bytes -
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
CDC_DATA_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
2, // bNumEndpoints
0x0A, // bInterfaceClass
0x00, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0, // iInterface
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
CDC_DATA_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
2, // bNumEndpoints
0x0A, // bInterfaceClass
0x00, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0, // iInterface
// - 7 bytes - // - 7 bytes -
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
CDC_RX_ENDPOINT, // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
CDC_RX_SIZE, 0, // wMaxPacketSize
0, // bInterval
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
CDC_RX_ENDPOINT, // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
CDC_RX_SIZE, 0, // wMaxPacketSize
0, // bInterval
// - 7 bytes - // - 7 bytes -
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
CDC_TX_ENDPOINT | 0x80, // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
CDC_TX_SIZE, 0, // wMaxPacketSize
0, // bInterval
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
CDC_TX_ENDPOINT | 0x80, // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
CDC_TX_SIZE, 0, // wMaxPacketSize
0, // bInterval


/* /*
// Mouse Interface // Mouse Interface
// - 9 bytes - // - 9 bytes -
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
MOUSE_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x00, // bInterfaceSubClass (0x01 = Boot)
0x00, // bInterfaceProtocol (0x02 = Mouse)
0, // iInterface
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
MOUSE_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x00, // bInterfaceSubClass (0x01 = Boot)
0x00, // bInterfaceProtocol (0x02 = Mouse)
0, // iInterface
// - 9 bytes - // - 9 bytes -
// HID interface descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode
1, // bNumDescriptors
0x22, // bDescriptorType
LSB(sizeof(mouse_report_desc)), // wDescriptorLength
MSB(sizeof(mouse_report_desc)),
// HID interface descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode
1, // bNumDescriptors
0x22, // bDescriptorType
LSB(sizeof(mouse_report_desc)), // wDescriptorLength
MSB(sizeof(mouse_report_desc)),
// - 7 bytes - // - 7 bytes -
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
MOUSE_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
MOUSE_SIZE, 0, // wMaxPacketSize
MOUSE_INTERVAL, // bInterval
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
MOUSE_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
MOUSE_SIZE, 0, // wMaxPacketSize
MOUSE_INTERVAL, // bInterval
#endif // MOUSE_INTERFACE #endif // MOUSE_INTERFACE
*/ */
}; };
// actual string data // actual string data


struct usb_string_descriptor_struct { struct usb_string_descriptor_struct {
uint8_t bLength;
uint8_t bDescriptorType;
uint16_t wString[];
uint8_t bLength;
uint8_t bDescriptorType;
uint16_t wString[];
}; };


extern struct usb_string_descriptor_struct usb_string_manufacturer_name extern struct usb_string_descriptor_struct usb_string_manufacturer_name
__attribute__ ((weak, alias("usb_string_manufacturer_name_default")));
__attribute__ ((weak, alias("usb_string_manufacturer_name_default")));
extern struct usb_string_descriptor_struct usb_string_product_name extern struct usb_string_descriptor_struct usb_string_product_name
__attribute__ ((weak, alias("usb_string_product_name_default")));
__attribute__ ((weak, alias("usb_string_product_name_default")));
extern struct usb_string_descriptor_struct usb_string_serial_number extern struct usb_string_descriptor_struct usb_string_serial_number
__attribute__ ((weak, alias("usb_string_serial_number_default")));
__attribute__ ((weak, alias("usb_string_serial_number_default")));


struct usb_string_descriptor_struct string0 = { struct usb_string_descriptor_struct string0 = {
4,
3,
{0x0409}
4,
3,
{0x0409}
}; };


struct usb_string_descriptor_struct usb_string_manufacturer_name_default = { struct usb_string_descriptor_struct usb_string_manufacturer_name_default = {
sizeof(STR_MANUFACTURER),
3,
{STR_MANUFACTURER}
sizeof(STR_MANUFACTURER),
3,
{STR_MANUFACTURER}
}; };
struct usb_string_descriptor_struct usb_string_product_name_default = { struct usb_string_descriptor_struct usb_string_product_name_default = {
sizeof(STR_PRODUCT), sizeof(STR_PRODUCT),
3,
{STR_PRODUCT}
3,
{STR_PRODUCT}
}; };
struct usb_string_descriptor_struct usb_string_serial_number_default = { struct usb_string_descriptor_struct usb_string_serial_number_default = {
sizeof(STR_SERIAL), sizeof(STR_SERIAL),
3,
3,
{STR_SERIAL} {STR_SERIAL}
}; };


{0x0200, 0x0000, config_descriptor, sizeof(config_descriptor)}, {0x0200, 0x0000, config_descriptor, sizeof(config_descriptor)},
{0x0600, 0x0000, device_qualifier_descriptor, sizeof(device_qualifier_descriptor)}, {0x0600, 0x0000, device_qualifier_descriptor, sizeof(device_qualifier_descriptor)},
{0x0A00, 0x0000, usb_debug_descriptor, sizeof(usb_debug_descriptor)}, {0x0A00, 0x0000, usb_debug_descriptor, sizeof(usb_debug_descriptor)},
{0x2200, KEYBOARD_INTERFACE, keyboard_report_desc, sizeof(keyboard_report_desc)},
{0x2100, KEYBOARD_INTERFACE, config_descriptor + KEYBOARD_DESC_OFFSET, 9},
{0x2200, NKRO_KEYBOARD_INTERFACE, nkro_keyboard_report_desc, sizeof(nkro_keyboard_report_desc)},
{0x2100, NKRO_KEYBOARD_INTERFACE, config_descriptor + NKRO_KEYBOARD_DESC_OFFSET, 9},
{0x2200, KEYBOARD_INTERFACE, keyboard_report_desc, sizeof(keyboard_report_desc)},
{0x2100, KEYBOARD_INTERFACE, config_descriptor + KEYBOARD_DESC_OFFSET, 9},
{0x2200, NKRO_KEYBOARD_INTERFACE, nkro_keyboard_report_desc, sizeof(nkro_keyboard_report_desc)},
{0x2100, NKRO_KEYBOARD_INTERFACE, config_descriptor + NKRO_KEYBOARD_DESC_OFFSET, 9},
/* MOUSE /* MOUSE
{0x2200, MOUSE_INTERFACE, mouse_report_desc, sizeof(mouse_report_desc)},
{0x2100, MOUSE_INTERFACE, config_descriptor+MOUSE_DESC_OFFSET, 9},
{0x2200, MOUSE_INTERFACE, mouse_report_desc, sizeof(mouse_report_desc)},
{0x2100, MOUSE_INTERFACE, config_descriptor+MOUSE_DESC_OFFSET, 9},
*/ */
{0x0300, 0x0000, (const uint8_t *)&string0, 0},
{0x0301, 0x0409, (const uint8_t *)&usb_string_manufacturer_name, 0},
{0x0302, 0x0409, (const uint8_t *)&usb_string_product_name, 0},
{0x0303, 0x0409, (const uint8_t *)&usb_string_serial_number, 0},
{0x0300, 0x0000, (const uint8_t *)&string0, 0},
{0x0301, 0x0409, (const uint8_t *)&usb_string_manufacturer_name, 0},
{0x0302, 0x0409, (const uint8_t *)&usb_string_product_name, 0},
{0x0303, 0x0409, (const uint8_t *)&usb_string_serial_number, 0},
{0, 0, NULL, 0} {0, 0, NULL, 0}
}; };



+ 15
- 15
Output/pjrcUSB/arm/usb_desc.h Voir le fichier



// ----- Defines ----- // ----- Defines -----


#define ENDPOINT_UNUSED 0x00
#define ENDPOINT_TRANSIMIT_ONLY 0x15
#define ENDPOINT_RECEIVE_ONLY 0x19
#define ENDPOINT_TRANSMIT_AND_RECEIVE 0x1D
#define ENDPOINT_UNUSED 0x00
#define ENDPOINT_TRANSIMIT_ONLY 0x15
#define ENDPOINT_RECEIVE_ONLY 0x19
#define ENDPOINT_TRANSMIT_AND_RECEIVE 0x1D




#define DEVICE_CLASS 0x00 // Keep 0x00 to indicate each sub device will indicate what it is #define DEVICE_CLASS 0x00 // Keep 0x00 to indicate each sub device will indicate what it is
#define MOUSE_DESC_OFFSET (9 + 9+9+7 + 9+9+7 + 8+9+5+5+4+5+7+9+7+7 + 9) #define MOUSE_DESC_OFFSET (9 + 9+9+7 + 9+9+7 + 8+9+5+5+4+5+7+9+7+7 + 9)
#define JOYSTICK_DESC_OFFSET (9 + 9+9+7 + 9+9+7 + 8+9+5+5+4+5+7+9+7+7 + 9+9+7 + 9) #define JOYSTICK_DESC_OFFSET (9 + 9+9+7 + 9+9+7 + 8+9+5+5+4+5+7+9+7+7 + 9+9+7 + 9)


#define ENDPOINT1_CONFIG ENDPOINT_TRANSIMIT_ONLY
#define ENDPOINT2_CONFIG ENDPOINT_TRANSIMIT_ONLY
#define ENDPOINT3_CONFIG ENDPOINT_TRANSIMIT_ONLY
#define ENDPOINT4_CONFIG ENDPOINT_RECEIVE_ONLY
#define ENDPOINT5_CONFIG ENDPOINT_TRANSIMIT_ONLY
#define ENDPOINT6_CONFIG ENDPOINT_TRANSIMIT_ONLY
#define ENDPOINT7_CONFIG ENDPOINT_TRANSIMIT_ONLY
#define ENDPOINT1_CONFIG ENDPOINT_TRANSIMIT_ONLY
#define ENDPOINT2_CONFIG ENDPOINT_TRANSIMIT_ONLY
#define ENDPOINT3_CONFIG ENDPOINT_TRANSIMIT_ONLY
#define ENDPOINT4_CONFIG ENDPOINT_RECEIVE_ONLY
#define ENDPOINT5_CONFIG ENDPOINT_TRANSIMIT_ONLY
#define ENDPOINT6_CONFIG ENDPOINT_TRANSIMIT_ONLY
#define ENDPOINT7_CONFIG ENDPOINT_TRANSIMIT_ONLY






// ----- Enumerations ----- // ----- Enumerations -----


typedef struct { typedef struct {
uint16_t wValue;
uint16_t wIndex;
const uint8_t *addr;
uint16_t length;
uint16_t wValue;
uint16_t wIndex;
const uint8_t *addr;
uint16_t length;
} usb_descriptor_list_t; } usb_descriptor_list_t;





+ 32
- 32
Output/pjrcUSB/arm/usb_dev.c Voir le fichier

//#define UART_DEBUG_UNKNOWN 1 //#define UART_DEBUG_UNKNOWN 1




#define TX_STATE_BOTH_FREE_EVEN_FIRST 0
#define TX_STATE_BOTH_FREE_ODD_FIRST 1
#define TX_STATE_EVEN_FREE 2
#define TX_STATE_ODD_FREE 3
#define TX_STATE_NONE_FREE_EVEN_FIRST 4
#define TX_STATE_NONE_FREE_ODD_FIRST 5
#define BDT_OWN 0x80
#define BDT_DATA1 0x40
#define BDT_DATA0 0x00
#define BDT_DTS 0x08
#define BDT_STALL 0x04
#define TX_STATE_BOTH_FREE_EVEN_FIRST 0
#define TX_STATE_BOTH_FREE_ODD_FIRST 1
#define TX_STATE_EVEN_FREE 2
#define TX_STATE_ODD_FREE 3
#define TX_STATE_NONE_FREE_EVEN_FIRST 4
#define TX_STATE_NONE_FREE_ODD_FIRST 5
#define BDT_OWN 0x80
#define BDT_DATA1 0x40
#define BDT_DATA0 0x00
#define BDT_DTS 0x08
#define BDT_STALL 0x04


#define TX 1 #define TX 1
#define RX 0 #define RX 0
#define DATA1 1 #define DATA1 1




#define GET_STATUS 0
#define CLEAR_FEATURE 1
#define SET_FEATURE 3
#define SET_ADDRESS 5
#define GET_DESCRIPTOR 6
#define SET_DESCRIPTOR 7
#define GET_CONFIGURATION 8
#define SET_CONFIGURATION 9
#define GET_INTERFACE 10
#define SET_INTERFACE 11
#define SYNCH_FRAME 12
#define GET_STATUS 0
#define CLEAR_FEATURE 1
#define SET_FEATURE 3
#define SET_ADDRESS 5
#define GET_DESCRIPTOR 6
#define SET_DESCRIPTOR 7
#define GET_CONFIGURATION 8
#define SET_CONFIGURATION 9
#define GET_INTERFACE 10
#define SET_INTERFACE 11
#define SYNCH_FRAME 12


#define TX_STATE_BOTH_FREE_EVEN_FIRST 0
#define TX_STATE_BOTH_FREE_ODD_FIRST 1
#define TX_STATE_EVEN_FREE 2
#define TX_STATE_ODD_FREE 3
#define TX_STATE_NONE_FREE 4
#define TX_STATE_BOTH_FREE_EVEN_FIRST 0
#define TX_STATE_BOTH_FREE_ODD_FIRST 1
#define TX_STATE_EVEN_FREE 2
#define TX_STATE_ODD_FREE 3
#define TX_STATE_NONE_FREE 4








// ----- Macros ----- // ----- Macros -----


#define BDT_PID(n) (((n) >> 2) & 15)
#define BDT_PID(n) (((n) >> 2) & 15)


#define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \
#define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \
| ((data) ? BDT_DATA1 : BDT_DATA0) \ | ((data) ? BDT_DATA1 : BDT_DATA0) \
| ((count) << 16)) | ((count) << 16))


serial_phex(b->desc >> 16); serial_phex(b->desc >> 16);
serial_print("\n"); serial_print("\n");
#endif #endif
endpoint--; // endpoint is index to zero-based arrays
endpoint--; // endpoint is index to zero-based arrays


if ( stat & 0x08 ) if ( stat & 0x08 )
{ // transmit { // transmit
// If no USB cable is attached, do not initialize usb // If no USB cable is attached, do not initialize usb
// XXX Test -HaaTa // XXX Test -HaaTa
//if ( USB0_OTGISTAT & USB_OTGSTAT_ID ) //if ( USB0_OTGISTAT & USB_OTGSTAT_ID )
// return 0;
// return 0;


// Clear out endpoints table // Clear out endpoints table
for ( int i = 0; i <= NUM_ENDPOINTS * 4; i++ ) for ( int i = 0; i <= NUM_ENDPOINTS * 4; i++ )

+ 3
- 3
Output/pjrcUSB/arm/usb_dev.h Voir le fichier

static inline uint32_t usb_rx_byte_count(uint32_t endpoint) __attribute__((always_inline)); static inline uint32_t usb_rx_byte_count(uint32_t endpoint) __attribute__((always_inline));
static inline uint32_t usb_rx_byte_count(uint32_t endpoint) static inline uint32_t usb_rx_byte_count(uint32_t endpoint)
{ {
endpoint--;
if ( endpoint >= NUM_ENDPOINTS )
endpoint--;
if ( endpoint >= NUM_ENDPOINTS )
return 0; return 0;
return usb_rx_byte_count_data[ endpoint ];
return usb_rx_byte_count_data[ endpoint ];
} }


void usb_device_reload(); void usb_device_reload();

+ 1
- 1
Output/pjrcUSB/arm/usb_serial.c Voir le fichier



// ----- Defines ----- // ----- Defines -----


#define TRANSMIT_FLUSH_TIMEOUT 5 /* in milliseconds */
#define TRANSMIT_FLUSH_TIMEOUT 5 /* in milliseconds */


// Maximum number of transmit packets to queue so we don't starve other endpoints for memory // Maximum number of transmit packets to queue so we don't starve other endpoints for memory
#define TX_PACKET_LIMIT 8 #define TX_PACKET_LIMIT 8

+ 31
- 31
Output/pjrcUSB/avr/usb_keyboard_serial.c Voir le fichier

// Check to see if a usb cable has been plugged in // Check to see if a usb cable has been plugged in
// XXX Not tested (also, not currently needed) -HaaTa // XXX Not tested (also, not currently needed) -HaaTa
//if ( USB0_STAT & (1 << 1) //if ( USB0_STAT & (1 << 1)
// return 0;
// return 0;


HW_CONFIG(); HW_CONFIG();
USB_FREEZE(); // enable USB
PLL_CONFIG(); // config PLL
while (!(PLLCSR & (1<<PLOCK))) ; // wait for PLL lock
USB_CONFIG(); // start USB clock
UDCON = 0; // enable attach resistor
USB_FREEZE(); // enable USB
PLL_CONFIG(); // config PLL
while (!(PLLCSR & (1<<PLOCK))) ; // wait for PLL lock
USB_CONFIG(); // start USB clock
UDCON = 0; // enable attach resistor
usb_configuration = 0; usb_configuration = 0;
UDIEN = (1<<EORSTE) | (1<<SOFE);
UDIEN = (1<<EORSTE) | (1<<SOFE);
sei(); sei();


// Disable watchdog timer after possible software reset // Disable watchdog timer after possible software reset
{ {
uint8_t intbits, t_cdc; uint8_t intbits, t_cdc;


intbits = UDINT;
UDINT = 0;
if ( intbits & (1 << EORSTI) )
intbits = UDINT;
UDINT = 0;
if ( intbits & (1 << EORSTI) )
{ {
UENUM = 0; UENUM = 0;
UECONX = 1; UECONX = 1;
UEIENX = (1 << RXSTPE); UEIENX = (1 << RXSTPE);
usb_configuration = 0; usb_configuration = 0;
cdc_line_rtsdtr = 0; cdc_line_rtsdtr = 0;
}
}
if ( (intbits & (1 << SOFI)) && usb_configuration ) if ( (intbits & (1 << SOFI)) && usb_configuration )
{ {
t_cdc = transmit_flush_timer; t_cdc = transmit_flush_timer;
// //
ISR( USB_COM_vect ) ISR( USB_COM_vect )
{ {
uint8_t intbits;
uint8_t intbits;
const uint8_t *list; const uint8_t *list;
const uint8_t *cfg;
const uint8_t *cfg;
uint8_t i, n, len, en; uint8_t i, n, len, en;
uint8_t *p; uint8_t *p;
uint8_t bmRequestType; uint8_t bmRequestType;
uint16_t wLength; uint16_t wLength;
uint16_t desc_val; uint16_t desc_val;
const uint8_t *desc_addr; const uint8_t *desc_addr;
uint8_t desc_length;
uint8_t desc_length;


UENUM = 0;
UENUM = 0;
intbits = UEINTX; intbits = UEINTX;
if (intbits & (1<<RXSTPI)) if (intbits & (1<<RXSTPI))
{ {
bmRequestType = UEDATX;
bRequest = UEDATX;
wValue = UEDATX;
wValue |= (UEDATX << 8);
wIndex = UEDATX;
wIndex |= (UEDATX << 8);
wLength = UEDATX;
wLength |= (UEDATX << 8);
UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
if ( bRequest == GET_DESCRIPTOR )
bmRequestType = UEDATX;
bRequest = UEDATX;
wValue = UEDATX;
wValue |= (UEDATX << 8);
wIndex = UEDATX;
wIndex |= (UEDATX << 8);
wLength = UEDATX;
wLength |= (UEDATX << 8);
UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
if ( bRequest == GET_DESCRIPTOR )
{ {
list = (const uint8_t *)descriptor_list; list = (const uint8_t *)descriptor_list;
for ( i = 0; ; i++ ) for ( i = 0; ; i++ )
do { do {
i = UEINTX; i = UEINTX;
} while (!(i & ((1<<TXINI)|(1<<RXOUTI)))); } while (!(i & ((1<<TXINI)|(1<<RXOUTI))));
if (i & (1<<RXOUTI)) return; // abort
if (i & (1<<RXOUTI)) return; // abort
// send IN packet // send IN packet
n = len < ENDPOINT0_SIZE ? len : ENDPOINT0_SIZE; n = len < ENDPOINT0_SIZE ? len : ENDPOINT0_SIZE;
for (i = n; i; i--) { for (i = n; i; i--) {
usb_send_in(); usb_send_in();
} while (len || n == ENDPOINT0_SIZE); } while (len || n == ENDPOINT0_SIZE);
return; return;
}
}


if (bRequest == SET_ADDRESS) { if (bRequest == SET_ADDRESS) {
usb_send_in(); usb_send_in();
UECFG1X = pgm_read_byte(cfg++); UECFG1X = pgm_read_byte(cfg++);
} }
} }
UERST = 0x7E;
UERST = 0;
UERST = 0x7E;
UERST = 0;
return; return;
} }


} }
} }
} }
UECONX = (1 << STALLRQ) | (1 << EPEN); // stall
UECONX = (1 << STALLRQ) | (1 << EPEN); // stall
} }



+ 314
- 314
Output/pjrcUSB/avr/usb_keyboard_serial.h Voir le fichier

// ----- Function Declarations ----- // ----- Function Declarations -----


// Basic USB Configuration // Basic USB Configuration
uint8_t usb_init(); // initialize everything
uint8_t usb_configured(); // is the USB port configured
uint8_t usb_init(); // initialize everything
uint8_t usb_configured(); // is the USB port configured


// Keyboard HID Functions // Keyboard HID Functions
void usb_keyboard_send(); void usb_keyboard_send();
void usb_device_reload(); // Enable firmware reflash mode void usb_device_reload(); // Enable firmware reflash mode


// USB Serial CDC Functions // USB Serial CDC Functions
int16_t usb_serial_getchar(); // receive a character (-1 if timeout/error)
uint8_t usb_serial_available(); // number of bytes in receive buffer
void usb_serial_flush_input(); // discard any buffered input
int16_t usb_serial_getchar(); // receive a character (-1 if timeout/error)
uint8_t usb_serial_available(); // number of bytes in receive buffer
void usb_serial_flush_input(); // discard any buffered input


// transmitting data // transmitting data
int8_t usb_serial_putchar(uint8_t c); // transmit a character int8_t usb_serial_putchar(uint8_t c); // transmit a character
#define usb_device_software_reset() do { wdt_enable( WDTO_15MS ); for(;;); } while(0) #define usb_device_software_reset() do { wdt_enable( WDTO_15MS ); for(;;); } while(0)


// See EPSIZE -> UECFG1X - 128 and 256 bytes are for endpoint 1 only // See EPSIZE -> UECFG1X - 128 and 256 bytes are for endpoint 1 only
#define EP_SIZE(s) ((s) == 256 ? 0x50 : \
#define EP_SIZE(s) ((s) == 256 ? 0x50 : \
((s) == 128 ? 0x40 : \ ((s) == 128 ? 0x40 : \
((s) == 64 ? 0x30 : \ ((s) == 64 ? 0x30 : \
((s) == 32 ? 0x20 : \ ((s) == 32 ? 0x20 : \
// ----- Defines ----- // ----- Defines -----


// constants corresponding to the various serial parameters // constants corresponding to the various serial parameters
#define USB_SERIAL_DTR 0x01
#define USB_SERIAL_RTS 0x02
#define USB_SERIAL_1_STOP 0
#define USB_SERIAL_1_5_STOP 1
#define USB_SERIAL_2_STOP 2
#define USB_SERIAL_PARITY_NONE 0
#define USB_SERIAL_PARITY_ODD 1
#define USB_SERIAL_PARITY_EVEN 2
#define USB_SERIAL_PARITY_MARK 3
#define USB_SERIAL_PARITY_SPACE 4
#define USB_SERIAL_DCD 0x01
#define USB_SERIAL_DSR 0x02
#define USB_SERIAL_BREAK 0x04
#define USB_SERIAL_RI 0x08
#define USB_SERIAL_FRAME_ERR 0x10
#define USB_SERIAL_PARITY_ERR 0x20
#define USB_SERIAL_OVERRUN_ERR 0x40
#define EP_TYPE_CONTROL 0x00
#define EP_TYPE_BULK_IN 0x81
#define EP_TYPE_BULK_OUT 0x80
#define EP_TYPE_INTERRUPT_IN 0xC1
#define EP_TYPE_INTERRUPT_OUT 0xC0
#define EP_TYPE_ISOCHRONOUS_IN 0x41
#define EP_TYPE_ISOCHRONOUS_OUT 0x40
#define EP_SINGLE_BUFFER 0x02
#define EP_DOUBLE_BUFFER 0x06
#define MAX_ENDPOINT 4
#define USB_SERIAL_DTR 0x01
#define USB_SERIAL_RTS 0x02
#define USB_SERIAL_1_STOP 0
#define USB_SERIAL_1_5_STOP 1
#define USB_SERIAL_2_STOP 2
#define USB_SERIAL_PARITY_NONE 0
#define USB_SERIAL_PARITY_ODD 1
#define USB_SERIAL_PARITY_EVEN 2
#define USB_SERIAL_PARITY_MARK 3
#define USB_SERIAL_PARITY_SPACE 4
#define USB_SERIAL_DCD 0x01
#define USB_SERIAL_DSR 0x02
#define USB_SERIAL_BREAK 0x04
#define USB_SERIAL_RI 0x08
#define USB_SERIAL_FRAME_ERR 0x10
#define USB_SERIAL_PARITY_ERR 0x20
#define USB_SERIAL_OVERRUN_ERR 0x40
#define EP_TYPE_CONTROL 0x00
#define EP_TYPE_BULK_IN 0x81
#define EP_TYPE_BULK_OUT 0x80
#define EP_TYPE_INTERRUPT_IN 0xC1
#define EP_TYPE_INTERRUPT_OUT 0xC0
#define EP_TYPE_ISOCHRONOUS_IN 0x41
#define EP_TYPE_ISOCHRONOUS_OUT 0x40
#define EP_SINGLE_BUFFER 0x02
#define EP_DOUBLE_BUFFER 0x06
#define MAX_ENDPOINT 4


#if defined(__AVR_AT90USB162__) #if defined(__AVR_AT90USB162__)
#define HW_CONFIG() #define HW_CONFIG()
#endif #endif


// standard control endpoint request types // standard control endpoint request types
#define GET_STATUS 0
#define CLEAR_FEATURE 1
#define SET_FEATURE 3
#define SET_ADDRESS 5
#define GET_DESCRIPTOR 6
#define GET_CONFIGURATION 8
#define SET_CONFIGURATION 9
#define GET_INTERFACE 10
#define SET_INTERFACE 11
#define GET_STATUS 0
#define CLEAR_FEATURE 1
#define SET_FEATURE 3
#define SET_ADDRESS 5
#define GET_DESCRIPTOR 6
#define GET_CONFIGURATION 8
#define SET_CONFIGURATION 9
#define GET_INTERFACE 10
#define SET_INTERFACE 11


// HID (human interface device) // HID (human interface device)
#define HID_GET_REPORT 1
#define HID_GET_IDLE 2
#define HID_GET_PROTOCOL 3
#define HID_SET_REPORT 9
#define HID_SET_IDLE 10
#define HID_SET_PROTOCOL 11
#define HID_GET_REPORT 1
#define HID_GET_IDLE 2
#define HID_GET_PROTOCOL 3
#define HID_SET_REPORT 9
#define HID_SET_IDLE 10
#define HID_SET_PROTOCOL 11


// CDC (communication class device) // CDC (communication class device)
#define CDC_SET_LINE_CODING 0x20
#define CDC_GET_LINE_CODING 0x21
#define CDC_SET_CONTROL_LINE_STATE 0x22
#define CDC_SET_LINE_CODING 0x20
#define CDC_GET_LINE_CODING 0x21
#define CDC_SET_CONTROL_LINE_STATE 0x22


// CDC Configuration // CDC Configuration
// When you write data, it goes into a USB endpoint buffer, which // When you write data, it goes into a USB endpoint buffer, which
// that tells the PC no more data is expected and it should pass // that tells the PC no more data is expected and it should pass
// any buffered data to the application that may be waiting. If // any buffered data to the application that may be waiting. If
// you want data sent immediately, call usb_serial_flush_output(). // you want data sent immediately, call usb_serial_flush_output().
#define TRANSMIT_FLUSH_TIMEOUT 5 /* in milliseconds */
#define TRANSMIT_FLUSH_TIMEOUT 5 /* in milliseconds */


// If the PC is connected but not "listening", this is the length // If the PC is connected but not "listening", this is the length
// of time before usb_serial_getchar() returns with an error. This // of time before usb_serial_getchar() returns with an error. This
// bits on a wire where nobody is listening, except you get an error // bits on a wire where nobody is listening, except you get an error
// code which you can ignore for serial-like discard of data, or // code which you can ignore for serial-like discard of data, or
// use to know your data wasn't sent. // use to know your data wasn't sent.
#define TRANSMIT_TIMEOUT 25 /* in milliseconds */
#define TRANSMIT_TIMEOUT 25 /* in milliseconds */






// ----- Endpoint Configuration ----- // ----- Endpoint Configuration -----


#define ENDPOINT0_SIZE 32
#define ENDPOINT0_SIZE 32


#define KEYBOARD_NKRO_INTERFACE 0 #define KEYBOARD_NKRO_INTERFACE 0
#define KEYBOARD_NKRO_ENDPOINT 1 #define KEYBOARD_NKRO_ENDPOINT 1


#define KEYBOARD_INTERFACE 1 #define KEYBOARD_INTERFACE 1
#define KEYBOARD_ENDPOINT 2 #define KEYBOARD_ENDPOINT 2
#define KEYBOARD_SIZE 8
#define KEYBOARD_SIZE 8
#define KEYBOARD_HID_BUFFER EP_DOUBLE_BUFFER #define KEYBOARD_HID_BUFFER EP_DOUBLE_BUFFER


#define CDC_IAD_DESCRIPTOR 1 #define CDC_IAD_DESCRIPTOR 1
#define CDC_STATUS_INTERFACE 2 #define CDC_STATUS_INTERFACE 2
#define CDC_DATA_INTERFACE 3 #define CDC_DATA_INTERFACE 3
#define CDC_ACM_ENDPOINT 3 #define CDC_ACM_ENDPOINT 3
#define CDC_RX_ENDPOINT 4
#define CDC_TX_ENDPOINT 5
#define CDC_RX_ENDPOINT 4
#define CDC_TX_ENDPOINT 5
#if defined(__AVR_AT90USB162__) #if defined(__AVR_AT90USB162__)
#define CDC_ACM_SIZE 16
#define CDC_ACM_BUFFER EP_SINGLE_BUFFER
#define CDC_RX_SIZE 32
#define CDC_RX_BUFFER EP_DOUBLE_BUFFER
#define CDC_TX_SIZE 32
#define CDC_TX_BUFFER EP_DOUBLE_BUFFER
#define CDC_ACM_SIZE 16
#define CDC_ACM_BUFFER EP_SINGLE_BUFFER
#define CDC_RX_SIZE 32
#define CDC_RX_BUFFER EP_DOUBLE_BUFFER
#define CDC_TX_SIZE 32
#define CDC_TX_BUFFER EP_DOUBLE_BUFFER
#else #else
#define CDC_ACM_SIZE 16
#define CDC_ACM_BUFFER EP_SINGLE_BUFFER
#define CDC_RX_SIZE 64
#define CDC_RX_BUFFER EP_DOUBLE_BUFFER
#define CDC_TX_SIZE 64
#define CDC_TX_BUFFER EP_DOUBLE_BUFFER
#define CDC_ACM_SIZE 16
#define CDC_ACM_BUFFER EP_SINGLE_BUFFER
#define CDC_RX_SIZE 64
#define CDC_RX_BUFFER EP_DOUBLE_BUFFER
#define CDC_TX_SIZE 64
#define CDC_TX_BUFFER EP_DOUBLE_BUFFER
#endif #endif


// Endpoint 0 is reserved for the control endpoint // Endpoint 0 is reserved for the control endpoint




static const uint8_t PROGMEM device_descriptor[] = { static const uint8_t PROGMEM device_descriptor[] = {
18, // bLength
1, // bDescriptorType
0x00, 0x02, // bcdUSB
0x00, // bDeviceClass - Composite device, 0x00 is required for Windows
0, // bDeviceSubClass
0, // bDeviceProtocol
ENDPOINT0_SIZE, // bMaxPacketSize0
LSB(VENDOR_ID), MSB(VENDOR_ID), // idVendor
LSB(PRODUCT_ID), MSB(PRODUCT_ID), // idProduct
0x00, 0x01, // bcdDevice
1, // iManufacturer
2, // iProduct
3, // iSerialNumber
1 // bNumConfigurations
18, // bLength
1, // bDescriptorType
0x00, 0x02, // bcdUSB
0x00, // bDeviceClass - Composite device, 0x00 is required for Windows
0, // bDeviceSubClass
0, // bDeviceProtocol
ENDPOINT0_SIZE, // bMaxPacketSize0
LSB(VENDOR_ID), MSB(VENDOR_ID), // idVendor
LSB(PRODUCT_ID), MSB(PRODUCT_ID), // idProduct
0x00, 0x01, // bcdDevice
1, // iManufacturer
2, // iProduct
3, // iSerialNumber
1 // bNumConfigurations
}; };


// Specify only a single USB speed // Specify only a single USB speed
// Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60 // Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60
static const uint8_t PROGMEM keyboard_hid_report_desc[] = { static const uint8_t PROGMEM keyboard_hid_report_desc[] = {
// Keyboard Collection // Keyboard Collection
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x06, // Usage (Keyboard),
0xA1, 0x01, // Collection (Application) - Keyboard,
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x06, // Usage (Keyboard),
0xA1, 0x01, // Collection (Application) - Keyboard,


// Modifier Byte // Modifier Byte
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xE0, // Usage Minimum (224),
0x29, 0xE7, // Usage Maximum (231),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x81, 0x02, // Input (Data, Variable, Absolute),
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xE0, // Usage Minimum (224),
0x29, 0xE7, // Usage Maximum (231),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x81, 0x02, // Input (Data, Variable, Absolute),


// Reserved Byte // Reserved Byte
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x81, 0x03, // Output (Constant),
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x81, 0x03, // Output (Constant),


// LED Report // LED Report
0x75, 0x01, // Report Size (1),
0x95, 0x05, // Report Count (5),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute),
0x75, 0x01, // Report Size (1),
0x95, 0x05, // Report Count (5),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute),


// LED Report Padding // LED Report Padding
0x75, 0x03, // Report Size (3),
0x95, 0x01, // Report Count (1),
0x91, 0x03, // Output (Constant),
0x75, 0x03, // Report Size (3),
0x95, 0x01, // Report Count (1),
0x91, 0x03, // Output (Constant),


// Normal Keys // Normal Keys
0x75, 0x08, // Report Size (8),
0x95, 0x06, // Report Count (6),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x7F, // Logical Maximum(104),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x00, // Usage Minimum (0),
0x29, 0x7F, // Usage Maximum (104),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - Keyboard
0x75, 0x08, // Report Size (8),
0x95, 0x06, // Report Count (6),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x7F, // Logical Maximum(104),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x00, // Usage Minimum (0),
0x29, 0x7F, // Usage Maximum (104),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - Keyboard
}; };


// Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60 // Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60
static const uint8_t PROGMEM keyboard_nkro_hid_report_desc[] = { static const uint8_t PROGMEM keyboard_nkro_hid_report_desc[] = {
// Keyboard Collection // Keyboard Collection
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x06, // Usage (Keyboard),
0xA1, 0x01, // Collection (Application) - Keyboard,
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x06, // Usage (Keyboard),
0xA1, 0x01, // Collection (Application) - Keyboard,


// LED Report // LED Report
0x85, 0x01, // Report ID (1),
0x75, 0x01, // Report Size (1),
0x95, 0x05, // Report Count (5),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute),
0x85, 0x01, // Report ID (1),
0x75, 0x01, // Report Size (1),
0x95, 0x05, // Report Count (5),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute),


// LED Report Padding // LED Report Padding
0x75, 0x03, // Report Size (3),
0x95, 0x01, // Report Count (1),
0x91, 0x03, // Output (Constant),
0x75, 0x03, // Report Size (3),
0x95, 0x01, // Report Count (1),
0x91, 0x03, // Output (Constant),


// Normal Keys - Using an NKRO Bitmap // Normal Keys - Using an NKRO Bitmap
// //
// 224-231 : 1 byte (0xE0-0xE7) ( 8 bits) // 224-231 : 1 byte (0xE0-0xE7) ( 8 bits)


// Modifier Byte // Modifier Byte
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xE0, // Usage Minimum (224),
0x29, 0xE7, // Usage Maximum (231),
0x81, 0x02, // Input (Data, Variable, Absolute),
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xE0, // Usage Minimum (224),
0x29, 0xE7, // Usage Maximum (231),
0x81, 0x02, // Input (Data, Variable, Absolute),


// 4-49 (6 bytes/46 bits) - MainKeys // 4-49 (6 bytes/46 bits) - MainKeys
0x75, 0x01, // Report Size (1),
0x95, 0x2E, // Report Count (46),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x04, // Usage Minimum (4),
0x29, 0x31, // Usage Maximum (49),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),
0x75, 0x01, // Report Size (1),
0x95, 0x2E, // Report Count (46),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x04, // Usage Minimum (4),
0x29, 0x31, // Usage Maximum (49),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),


// Padding (2 bits) // Padding (2 bits)
0x75, 0x02, // Report Size (2), 0x75, 0x02, // Report Size (2),
0x81, 0x03, // Input (Constant), 0x81, 0x03, // Input (Constant),


// 51-155 (14 bytes/105 bits) - SecondaryKeys // 51-155 (14 bytes/105 bits) - SecondaryKeys
0x75, 0x01, // Report Size (1),
0x95, 0x69, // Report Count (105),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x33, // Usage Minimum (51),
0x29, 0x9B, // Usage Maximum (155),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),
0x75, 0x01, // Report Size (1),
0x95, 0x69, // Report Count (105),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x33, // Usage Minimum (51),
0x29, 0x9B, // Usage Maximum (155),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),


// Padding (7 bits) // Padding (7 bits)
0x75, 0x07, // Report Size (7), 0x75, 0x07, // Report Size (7),
0x81, 0x03, // Input (Constant), 0x81, 0x03, // Input (Constant),


// 157-164 (1 byte/8 bits) - TertiaryKeys // 157-164 (1 byte/8 bits) - TertiaryKeys
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x9D, // Usage Minimum (157),
0x29, 0xA4, // Usage Maximum (164),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x9D, // Usage Minimum (157),
0x29, 0xA4, // Usage Maximum (164),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),


// 176-221 (6 bytes/46 bits) - QuartiaryKeys // 176-221 (6 bytes/46 bits) - QuartiaryKeys
0x75, 0x01, // Report Size (1),
0x95, 0x2E, // Report Count (46),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xB0, // Usage Minimum (176),
0x29, 0xDD, // Usage Maximum (221),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),
0x75, 0x01, // Report Size (1),
0x95, 0x2E, // Report Count (46),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xB0, // Usage Minimum (176),
0x29, 0xDD, // Usage Maximum (221),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),


// Padding (2 bits) // Padding (2 bits)
0x75, 0x02, // Report Size (2), 0x75, 0x02, // Report Size (2),
0x95, 0x01, // Report Count (1), 0x95, 0x01, // Report Count (1),
0x81, 0x03, // Input (Constant), 0x81, 0x03, // Input (Constant),
0xc0, // End Collection - Keyboard
0xc0, // End Collection - Keyboard


// System Control Collection // System Control Collection
// //
// NOTES: // NOTES:
// Not bothering with NKRO for this table. If there's need, I can implement it. -HaaTa // Not bothering with NKRO for this table. If there's need, I can implement it. -HaaTa
// Using a 1KRO scheme // Using a 1KRO scheme
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x80, // Usage (System Control),
0xA1, 0x01, // Collection (Application),
0x85, 0x02, // Report ID (2),
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x16, 0x81, 0x00, // Logical Minimum (129),
0x26, 0xB7, 0x00, // Logical Maximum (183),
0x19, 0x81, // Usage Minimum (129),
0x29, 0xB7, // Usage Maximum (183),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - System Control
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x80, // Usage (System Control),
0xA1, 0x01, // Collection (Application),
0x85, 0x02, // Report ID (2),
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x16, 0x81, 0x00, // Logical Minimum (129),
0x26, 0xB7, 0x00, // Logical Maximum (183),
0x19, 0x81, // Usage Minimum (129),
0x29, 0xB7, // Usage Maximum (183),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - System Control


// Consumer Control Collection - Media Keys // Consumer Control Collection - Media Keys
// //
// NOTES: // NOTES:
// Not bothering with NKRO for this table. If there's a need, I can implement it. -HaaTa // Not bothering with NKRO for this table. If there's a need, I can implement it. -HaaTa
// Using a 1KRO scheme // Using a 1KRO scheme
0x05, 0x0c, // Usage Page (Consumer),
0x09, 0x01, // Usage (Consumer Control),
0xA1, 0x01, // Collection (Application),
0x85, 0x03, // Report ID (3),
0x75, 0x10, // Report Size (16),
0x95, 0x01, // Report Count (1),
0x16, 0x20, 0x00, // Logical Minimum (32),
0x26, 0x9C, 0x02, // Logical Maximum (668),
0x05, 0x0C, // Usage Page (Consumer),
0x19, 0x20, // Usage Minimum (32),
0x2A, 0x9C, 0x02, // Usage Maximum (668),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - Consumer Control
0x05, 0x0c, // Usage Page (Consumer),
0x09, 0x01, // Usage (Consumer Control),
0xA1, 0x01, // Collection (Application),
0x85, 0x03, // Report ID (3),
0x75, 0x10, // Report Size (16),
0x95, 0x01, // Report Count (1),
0x16, 0x20, 0x00, // Logical Minimum (32),
0x26, 0x9C, 0x02, // Logical Maximum (668),
0x05, 0x0C, // Usage Page (Consumer),
0x19, 0x20, // Usage Minimum (32),
0x2A, 0x9C, 0x02, // Usage Maximum (668),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - Consumer Control
}; };


// <Configuration> + <Keyboard HID> + <NKRO Keyboard HID> + <Serial CDC> // <Configuration> + <Keyboard HID> + <NKRO Keyboard HID> + <Serial CDC>
// --- Configuration --- // --- Configuration ---
// - 9 bytes - // - 9 bytes -
// configuration descriptor, USB spec 9.6.3, page 264-266, Table 9-10 // configuration descriptor, USB spec 9.6.3, page 264-266, Table 9-10
9, // bLength;
2, // bDescriptorType;
LSB(CONFIG1_DESC_SIZE), // wTotalLength
9, // bLength;
2, // bDescriptorType;
LSB(CONFIG1_DESC_SIZE), // wTotalLength
MSB(CONFIG1_DESC_SIZE), MSB(CONFIG1_DESC_SIZE),
4, // bNumInterfaces
1, // bConfigurationValue
0, // iConfiguration
0x80, // bmAttributes
250, // bMaxPower
4, // bNumInterfaces
1, // bConfigurationValue
0, // iConfiguration
0x80, // bmAttributes
250, // bMaxPower


// --- Keyboard HID --- // --- Keyboard HID ---
// - 9 bytes - // - 9 bytes -
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12 // interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
KEYBOARD_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x01, // bInterfaceSubClass (0x00 = Non-Boot, 0x01 = Boot)
0x01, // bInterfaceProtocol (0x01 = Keyboard)
0, // iInterface
9, // bLength
4, // bDescriptorType
KEYBOARD_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x01, // bInterfaceSubClass (0x00 = Non-Boot, 0x01 = Boot)
0x01, // bInterfaceProtocol (0x01 = Keyboard)
0, // iInterface
// - 9 bytes - // - 9 bytes -
// HID interface descriptor, HID 1.11 spec, section 6.2.1 // HID interface descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode - Setting to 0/Undefined
1, // bNumDescriptors
0x22, // bDescriptorType
LSB(sizeof(keyboard_hid_report_desc)), // wDescriptorLength
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode - Setting to 0/Undefined
1, // bNumDescriptors
0x22, // bDescriptorType
LSB(sizeof(keyboard_hid_report_desc)), // wDescriptorLength
MSB(sizeof(keyboard_hid_report_desc)), MSB(sizeof(keyboard_hid_report_desc)),
// - 7 bytes - // - 7 bytes -
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
KEYBOARD_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
KEYBOARD_SIZE, 0, // wMaxPacketSize
7, // bLength
5, // bDescriptorType
KEYBOARD_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
KEYBOARD_SIZE, 0, // wMaxPacketSize
1, // bInterval 1, // bInterval


// --- NKRO Keyboard HID --- // --- NKRO Keyboard HID ---
// - 9 bytes - // - 9 bytes -
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12 // interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
KEYBOARD_NKRO_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x00, // bInterfaceSubClass (0x00 = Non-Boot, 0x01 = Boot)
0x01, // bInterfaceProtocol (0x01 = Keyboard)
0, // iInterface
9, // bLength
4, // bDescriptorType
KEYBOARD_NKRO_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x00, // bInterfaceSubClass (0x00 = Non-Boot, 0x01 = Boot)
0x01, // bInterfaceProtocol (0x01 = Keyboard)
0, // iInterface
// - 9 bytes - // - 9 bytes -
// HID interface descriptor, HID 1.11 spec, section 6.2.1 // HID interface descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode - Setting to 0/Undefined
1, // bNumDescriptors
0x22, // bDescriptorType
// wDescriptorLength
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode - Setting to 0/Undefined
1, // bNumDescriptors
0x22, // bDescriptorType
// wDescriptorLength
LSB(sizeof(keyboard_nkro_hid_report_desc)), LSB(sizeof(keyboard_nkro_hid_report_desc)),
MSB(sizeof(keyboard_nkro_hid_report_desc)), MSB(sizeof(keyboard_nkro_hid_report_desc)),
// - 7 bytes - // - 7 bytes -
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
KEYBOARD_NKRO_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
KEYBOARD_NKRO_SIZE, 0, // wMaxPacketSize
7, // bLength
5, // bDescriptorType
KEYBOARD_NKRO_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
KEYBOARD_NKRO_SIZE, 0, // wMaxPacketSize
1, // bInterval 1, // bInterval


// --- Serial CDC --- // --- Serial CDC ---
// - 8 bytes - // - 8 bytes -
// interface association descriptor, USB ECN, Table 9-Z
8, // bLength
11, // bDescriptorType
CDC_STATUS_INTERFACE, // bFirstInterface
2, // bInterfaceCount
0x02, // bFunctionClass
0x02, // bFunctionSubClass
0x01, // bFunctionProtocol
4, // iFunction
// interface association descriptor, USB ECN, Table 9-Z
8, // bLength
11, // bDescriptorType
CDC_STATUS_INTERFACE, // bFirstInterface
2, // bInterfaceCount
0x02, // bFunctionClass
0x02, // bFunctionSubClass
0x01, // bFunctionProtocol
4, // iFunction
// - 9 bytes - // - 9 bytes -
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12 // interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
CDC_STATUS_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x02, // bInterfaceClass
0x02, // bInterfaceSubClass
0x01, // bInterfaceProtocol
0, // iInterface
9, // bLength
4, // bDescriptorType
CDC_STATUS_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x02, // bInterfaceClass
0x02, // bInterfaceSubClass
0x01, // bInterfaceProtocol
0, // iInterface
// - 5 bytes - // - 5 bytes -
// CDC Header Functional Descriptor, CDC Spec 5.2.3.1, Table 26 // CDC Header Functional Descriptor, CDC Spec 5.2.3.1, Table 26
5, // bFunctionLength
0x24, // bDescriptorType
0x00, // bDescriptorSubtype
0x10, 0x01, // bcdCDC
5, // bFunctionLength
0x24, // bDescriptorType
0x00, // bDescriptorSubtype
0x10, 0x01, // bcdCDC
// - 5 bytes - // - 5 bytes -
// Call Management Functional Descriptor, CDC Spec 5.2.3.2, Table 27 // Call Management Functional Descriptor, CDC Spec 5.2.3.2, Table 27
5, // bFunctionLength
0x24, // bDescriptorType
0x01, // bDescriptorSubtype
0x01, // bmCapabilities
1, // bDataInterface
5, // bFunctionLength
0x24, // bDescriptorType
0x01, // bDescriptorSubtype
0x01, // bmCapabilities
1, // bDataInterface
// - 4 bytes - // - 4 bytes -
// Abstract Control Management Functional Descriptor, CDC Spec 5.2.3.3, Table 28 // Abstract Control Management Functional Descriptor, CDC Spec 5.2.3.3, Table 28
4, // bFunctionLength
0x24, // bDescriptorType
0x02, // bDescriptorSubtype
0x06, // bmCapabilities
4, // bFunctionLength
0x24, // bDescriptorType
0x02, // bDescriptorSubtype
0x06, // bmCapabilities
// - 5 bytes - // - 5 bytes -
// Union Functional Descriptor, CDC Spec 5.2.3.8, Table 33 // Union Functional Descriptor, CDC Spec 5.2.3.8, Table 33
5, // bFunctionLength
0x24, // bDescriptorType
0x06, // bDescriptorSubtype
CDC_STATUS_INTERFACE, // bMasterInterface
CDC_DATA_INTERFACE, // bSlaveInterface0
5, // bFunctionLength
0x24, // bDescriptorType
0x06, // bDescriptorSubtype
CDC_STATUS_INTERFACE, // bMasterInterface
CDC_DATA_INTERFACE, // bSlaveInterface0
// - 7 bytes - // - 7 bytes -
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
CDC_ACM_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
CDC_ACM_SIZE, 0, // wMaxPacketSize
64, // bInterval
7, // bLength
5, // bDescriptorType
CDC_ACM_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
CDC_ACM_SIZE, 0, // wMaxPacketSize
64, // bInterval
// - 9 bytes - // - 9 bytes -
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12 // interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
CDC_DATA_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
2, // bNumEndpoints
0x0A, // bInterfaceClass
0x00, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0, // iInterface
9, // bLength
4, // bDescriptorType
CDC_DATA_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
2, // bNumEndpoints
0x0A, // bInterfaceClass
0x00, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0, // iInterface
// - 7 bytes - // - 7 bytes -
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
CDC_RX_ENDPOINT, // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
CDC_RX_SIZE, 0, // wMaxPacketSize
0, // bInterval
7, // bLength
5, // bDescriptorType
CDC_RX_ENDPOINT, // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
CDC_RX_SIZE, 0, // wMaxPacketSize
0, // bInterval
// - 7 bytes - // - 7 bytes -
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13 // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
CDC_TX_ENDPOINT | 0x80, // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
CDC_TX_SIZE, 0, // wMaxPacketSize
0, // bInterval
7, // bLength
5, // bDescriptorType
CDC_TX_ENDPOINT | 0x80, // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
CDC_TX_SIZE, 0, // wMaxPacketSize
0, // bInterval
}; };




// This table defines which descriptor data is sent for each specific // This table defines which descriptor data is sent for each specific
// request from the host (in wValue and wIndex). // request from the host (in wValue and wIndex).
static const struct descriptor_list_struct { static const struct descriptor_list_struct {
uint16_t wValue;
uint16_t wIndex;
const uint8_t *addr;
uint8_t length;
uint16_t wValue;
uint16_t wIndex;
const uint8_t *addr;
uint8_t length;
} PROGMEM descriptor_list[] = { } PROGMEM descriptor_list[] = {
{0x0100, 0x0000, device_descriptor, sizeof(device_descriptor)}, {0x0100, 0x0000, device_descriptor, sizeof(device_descriptor)},
{0x0200, 0x0000, config1_descriptor, sizeof(config1_descriptor)}, {0x0200, 0x0000, config1_descriptor, sizeof(config1_descriptor)},

+ 12
- 12
Output/pjrcUSB/output_com.c Voir le fichier

// Which modifier keys are currently pressed // Which modifier keys are currently pressed
// 1=left ctrl, 2=left shift, 4=left alt, 8=left gui // 1=left ctrl, 2=left shift, 4=left alt, 8=left gui
// 16=right ctrl, 32=right shift, 64=right alt, 128=right gui // 16=right ctrl, 32=right shift, 64=right alt, 128=right gui
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer


// Currently pressed keys, max is defined by USB_MAX_KEY_SEND // Currently pressed keys, max is defined by USB_MAX_KEY_SEND
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer


// System Control and Consumer Control 1KRO containers // System Control and Consumer Control 1KRO containers
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;


// The number of keys sent to the usb in the array // The number of keys sent to the usb in the array
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;


// 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana // 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana
volatile uint8_t USBKeys_LEDs = 0; volatile uint8_t USBKeys_LEDs = 0;


// the idle configuration, how often we send the report to the // the idle configuration, how often we send the report to the
// host (ms * 4) even when it hasn't changed // host (ms * 4) even when it hasn't changed
uint8_t USBKeys_Idle_Config = 125;
uint8_t USBKeys_Idle_Config = 125;


// count until idle timeout // count until idle timeout
uint8_t USBKeys_Idle_Count = 0;
uint8_t USBKeys_Idle_Count = 0;


// Indicates whether the Output module is fully functional // Indicates whether the Output module is fully functional
// 0 - Not fully functional, 1 - Fully functional // 0 - Not fully functional, 1 - Fully functional
// 0 is often used to show that a USB cable is not plugged in (but has power) // 0 is often used to show that a USB cable is not plugged in (but has power)
uint8_t Output_Available = 0;
uint8_t Output_Available = 0;


// Debug control variable for Output modules // Debug control variable for Output modules
// 0 - Debug disabled (default) // 0 - Debug disabled (default)
// 1 - Debug enabled // 1 - Debug enabled
uint8_t Output_DebugMode = 0;
uint8_t Output_DebugMode = 0;







+ 11
- 11
Output/uartOut/output_com.c Voir le fichier

// Which modifier keys are currently pressed // Which modifier keys are currently pressed
// 1=left ctrl, 2=left shift, 4=left alt, 8=left gui // 1=left ctrl, 2=left shift, 4=left alt, 8=left gui
// 16=right ctrl, 32=right shift, 64=right alt, 128=right gui // 16=right ctrl, 32=right shift, 64=right alt, 128=right gui
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer


// Currently pressed keys, max is defined by USB_MAX_KEY_SEND // Currently pressed keys, max is defined by USB_MAX_KEY_SEND
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer


// System Control and Consumer Control 1KRO containers // System Control and Consumer Control 1KRO containers
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;


// The number of keys sent to the usb in the array // The number of keys sent to the usb in the array
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;


// 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana // 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana
volatile uint8_t USBKeys_LEDs = 0; volatile uint8_t USBKeys_LEDs = 0;


// the idle configuration, how often we send the report to the // the idle configuration, how often we send the report to the
// host (ms * 4) even when it hasn't changed // host (ms * 4) even when it hasn't changed
uint8_t USBKeys_Idle_Config = 125;
uint8_t USBKeys_Idle_Config = 125;


// count until idle timeout // count until idle timeout
uint8_t USBKeys_Idle_Count = 0;
uint8_t USBKeys_Idle_Count = 0;


// Indicates whether the Output module is fully functional // Indicates whether the Output module is fully functional
// 0 - Not fully functional, 1 - Fully functional // 0 - Not fully functional, 1 - Fully functional
// 0 is often used to show that a USB cable is not plugged in (but has power) // 0 is often used to show that a USB cable is not plugged in (but has power)
uint8_t Output_Available = 0;
uint8_t Output_Available = 0;







+ 12
- 12
Output/usbMuxUart/output_com.c Voir le fichier

// Which modifier keys are currently pressed // Which modifier keys are currently pressed
// 1=left ctrl, 2=left shift, 4=left alt, 8=left gui // 1=left ctrl, 2=left shift, 4=left alt, 8=left gui
// 16=right ctrl, 32=right shift, 64=right alt, 128=right gui // 16=right ctrl, 32=right shift, 64=right alt, 128=right gui
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer


// Currently pressed keys, max is defined by USB_MAX_KEY_SEND // Currently pressed keys, max is defined by USB_MAX_KEY_SEND
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer


// System Control and Consumer Control 1KRO containers // System Control and Consumer Control 1KRO containers
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;


// The number of keys sent to the usb in the array // The number of keys sent to the usb in the array
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;


// 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana // 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana
volatile uint8_t USBKeys_LEDs = 0; volatile uint8_t USBKeys_LEDs = 0;


// the idle configuration, how often we send the report to the // the idle configuration, how often we send the report to the
// host (ms * 4) even when it hasn't changed // host (ms * 4) even when it hasn't changed
uint8_t USBKeys_Idle_Config = 125;
uint8_t USBKeys_Idle_Config = 125;


// count until idle timeout // count until idle timeout
uint8_t USBKeys_Idle_Count = 0;
uint8_t USBKeys_Idle_Count = 0;


// Indicates whether the Output module is fully functional // Indicates whether the Output module is fully functional
// 0 - Not fully functional, 1 - Fully functional // 0 - Not fully functional, 1 - Fully functional
// 0 is often used to show that a USB cable is not plugged in (but has power) // 0 is often used to show that a USB cable is not plugged in (but has power)
uint8_t Output_Available = 0;
uint8_t Output_Available = 0;


// Debug control variable for Output modules // Debug control variable for Output modules
// 0 - Debug disabled (default) // 0 - Debug disabled (default)
// 1 - Debug enabled // 1 - Debug enabled
uint8_t Output_DebugMode = 0;
uint8_t Output_DebugMode = 0;







+ 1
- 1
Output/usbMuxUart/setup.cmake Voir le fichier

# #
set( ModuleCompatibility set( ModuleCompatibility
arm arm
# avr # TODO
# avr # TODO
) )



+ 1
- 1
README.markdown Voir le fichier



If stuff is hard to read (you have a dumb colour scheme): If stuff is hard to read (you have a dumb colour scheme):
`Category->Window->Colours->Use system color`. That seems to make text at `Category->Window->Colours->Use system color`. That seems to make text at
least readable
least readable


> I use a custom colour scheme that makes each colour easy to see. > I use a custom colour scheme that makes each colour easy to see.
> -HaaTa. > -HaaTa.

+ 1
- 1
Scan/ADCTest/analog.c Voir le fichier

uint32_t num; uint32_t num;


VREF_TRM = 0x60; VREF_TRM = 0x60;
VREF_SC = 0xE1; // enable 1.2 volt ref
VREF_SC = 0xE1; // enable 1.2 volt ref


if (analog_config_bits == 8) { if (analog_config_bits == 8) {
ADC0_CFG1 = ADC_CFG1_24MHZ + ADC_CFG1_MODE(0); ADC0_CFG1 = ADC_CFG1_24MHZ + ADC_CFG1_MODE(0);

+ 4
- 4
Scan/ADCTest/scan_loop.c Voir le fichier

const CLIDictItem scanCLIDict[] = { const CLIDictItem scanCLIDict[] = {
#if defined(_mk20dx128_) || defined(_mk20dx256_) || defined(_mk20dx256vlh7_) // ARM #if defined(_mk20dx128_) || defined(_mk20dx256_) || defined(_mk20dx256vlh7_) // ARM
{ "adc", "Read the specified number of values from the ADC at the given pin: <pin> [# of reads]" { "adc", "Read the specified number of values from the ADC at the given pin: <pin> [# of reads]"
NL "\t\t See \033[35mLib/pin_map.teensy3\033[0m for ADC0 channel number.", cliFunc_adc },
NL "\t\t See \033[35mLib/pin_map.teensy3\033[0m for ADC0 channel number.", cliFunc_adc },
{ "adcInit", "Intialize/calibrate ADC: <ADC Resolution> <Vref> <Hardware averaging samples>" { "adcInit", "Intialize/calibrate ADC: <ADC Resolution> <Vref> <Hardware averaging samples>"
NL "\t\tADC Resolution -> 8, 10, 12, 16 (bit)"
NL "\t\t Vref -> 0 (1.2 V), 1 (External)"
NL "\t\tHw Avg Samples -> 0 (disabled), 4, 8, 16, 32", cliFunc_adcInit },
NL "\t\tADC Resolution -> 8, 10, 12, 16 (bit)"
NL "\t\t Vref -> 0 (1.2 V), 1 (External)"
NL "\t\tHw Avg Samples -> 0 (disabled), 4, 8, 16, 32", cliFunc_adcInit },
#endif #endif
#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_) // DAC is only supported on Teensy 3.1 #if defined(_mk20dx256_) || defined(_mk20dx256vlh7_) // DAC is only supported on Teensy 3.1
{ "dac", "Set DAC output value, from 0 to 4095 (1/4096 Vref to Vref).", cliFunc_dac }, { "dac", "Set DAC output value, from 0 to 4095 (1/4096 Vref to Vref).", cliFunc_dac },

+ 4
- 4
Scan/BudKeypad/matrix.h Voir le fichier

/* Copyright (C) 2011 by Jacob Alexander /* Copyright (C) 2011 by Jacob Alexander
*
*
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights * in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is * copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions: * furnished to do so, subject to the following conditions:
*
*
* The above copyright notice and this permission notice shall be included in * The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software. * all copies or substantial portions of the Software.
*
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// Just layout the matrix by rows and columns // Just layout the matrix by rows and columns
// Usually you'll want to set the scanMode above to scanDual or scanCol_powrRow/scanRow_powrCol // Usually you'll want to set the scanMode above to scanDual or scanCol_powrRow/scanRow_powrCol
// The mode allows for optimization in the kind of scanning algorithms that are done // The mode allows for optimization in the kind of scanning algorithms that are done
//
//
// The key numbers are used to translate into the keymap table (array) (and always start from 1, not 0). // The key numbers are used to translate into the keymap table (array) (and always start from 1, not 0).
// Thus if a row doesn't use all the key positions, you can denote it as 0, which will be ignored/skipped on each scan // Thus if a row doesn't use all the key positions, you can denote it as 0, which will be ignored/skipped on each scan
// See the keymap.h file for the various preconfigured arrays. // See the keymap.h file for the various preconfigured arrays.

+ 2
- 2
Scan/DPH/scan_loop.c Voir le fichier

PORTD &= ~D_MASK; PORTD &= ~D_MASK;
PORTE &= ~E_MASK; PORTE &= ~E_MASK;


DDRB |= (1 << RECOVERY_SINK); // SINK pull
DDRB |= (1 << RECOVERY_SINK); // SINK pull
PORTB |= (1 << RECOVERY_CONTROL); PORTB |= (1 << RECOVERY_CONTROL);
PORTB |= (1 << RECOVERY_SOURCE); // SOURCE high PORTB |= (1 << RECOVERY_SOURCE); // SOURCE high
DDRB |= (1 << RECOVERY_SOURCE); DDRB |= (1 << RECOVERY_SOURCE);
PORTB &= ~(1 << RECOVERY_CONTROL); PORTB &= ~(1 << RECOVERY_CONTROL);
DDRB &= ~(1 << RECOVERY_SOURCE); DDRB &= ~(1 << RECOVERY_SOURCE);
PORTB &= ~(1 << RECOVERY_SOURCE); // SOURCE low PORTB &= ~(1 << RECOVERY_SOURCE); // SOURCE low
DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp
DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp
} }
} }



+ 1
- 1
Scan/EpsonQX-10/scan_loop.c Voir le fichier





// Setup the the USART interface for keyboard data input // Setup the the USART interface for keyboard data input
// Setup baud rate // Setup baud rate
// 16 MHz / ( 16 * Baud ) = UBRR // 16 MHz / ( 16 * Baud ) = UBRR
// Baud <- 1200 as per the spec (see datasheet archives), rounding to 1200.1 (as that's as accurate as the timer can be) // Baud <- 1200 as per the spec (see datasheet archives), rounding to 1200.1 (as that's as accurate as the timer can be)

+ 2
- 2
Scan/FACOM6684/scan_loop.c Voir le fichier

inline void Scan_setup() inline void Scan_setup()
{ {
// Setup the the USART interface for keyboard data input // Setup the the USART interface for keyboard data input
// Setup baud rate // Setup baud rate
// 16 MHz / ( 16 * Baud ) = UBRR // 16 MHz / ( 16 * Baud ) = UBRR
// Baud: 4817 -> 16 MHz / ( 16 * 4817 ) = 207.5981 // Baud: 4817 -> 16 MHz / ( 16 * 4817 ) = 207.5981
} }
} }


// Send data
// Send data
uint8_t Scan_sendData( uint8_t dataPayload ) uint8_t Scan_sendData( uint8_t dataPayload )
{ {
// Debug // Debug

+ 1
- 1
Scan/HP150/scan_loop.c Voir le fichier

return 0; return 0;
} }


// Send data
// Send data
uint8_t Scan_sendData( uint8_t dataPayload ) uint8_t Scan_sendData( uint8_t dataPayload )
{ {
return 0; return 0;

+ 3
- 3
Scan/HeathZenith/matrix.h Voir le fichier

/* Copyright (C) 2011 by Jacob Alexander /* Copyright (C) 2011 by Jacob Alexander
*
*
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights * in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is * copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions: * furnished to do so, subject to the following conditions:
*
*
* The above copyright notice and this permission notice shall be included in * The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software. * all copies or substantial portions of the Software.
*
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

+ 3
- 3
Scan/IBMConvertible/matrix.h Voir le fichier

/* Copyright (C) 2012 by Jacob Alexander /* Copyright (C) 2012 by Jacob Alexander
*
*
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights * in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is * copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions: * furnished to do so, subject to the following conditions:
*
*
* The above copyright notice and this permission notice shall be included in * The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software. * all copies or substantial portions of the Software.
*
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

+ 1
- 1
Scan/MicroSwitch8304/scan_loop.c Voir le fichier

sei(); // Re-enable Interrupts sei(); // Re-enable Interrupts
} }


// Send data
// Send data
// //
// Keyboard Input Guide for Micro Switch 8304 // Keyboard Input Guide for Micro Switch 8304
// 0xBX is for LED F1,F2,Over Type,Lock // 0xBX is for LED F1,F2,Over Type,Lock

+ 1
- 1
Scan/SonyNEWS/scan_loop.c Voir le fichier

// Configured as a Pull-up Input - This pin "can" be read as well, it will go to GND when the "Power On" switch is pressed, and will read ~5V otherwise // Configured as a Pull-up Input - This pin "can" be read as well, it will go to GND when the "Power On" switch is pressed, and will read ~5V otherwise
// XXX Currently not used by the controller // XXX Currently not used by the controller
POWR_DDR &= ~(1 << POWR_POS); POWR_DDR &= ~(1 << POWR_POS);
POWR_PORT |= (1 << POWR_POS);
POWR_PORT |= (1 << POWR_POS);


// Reset the keyboard before scanning, we might be in a wierd state // Reset the keyboard before scanning, we might be in a wierd state
scan_resetKeyboard(); scan_resetKeyboard();

+ 7
- 7
Scan/matrix/matrix_scan.c Voir le fichier

// ----- Macros ----- // ----- Macros -----


// -- pinSetup Macros -- // -- pinSetup Macros --
#define REG_SET(reg) reg |= (1 << ( matrix[row*(MAX_ROW_SIZE+1)+col] % 10 ) ) // Modulo 10 for the define offset for each pin set 12 or 32 -> shift of 2
#define REG_SET(reg) reg |= (1 << ( matrix[row*(MAX_ROW_SIZE+1)+col] % 10 ) ) // Modulo 10 for the define offset for each pin set 12 or 32 -> shift of 2
#define REG_UNSET(reg) reg &= ~(1 << ( matrix[row*(MAX_ROW_SIZE+1)+col] % 10 ) ) #define REG_UNSET(reg) reg &= ~(1 << ( matrix[row*(MAX_ROW_SIZE+1)+col] % 10 ) )


#define PIN_SET(pin,scan,direction) \ #define PIN_SET(pin,scan,direction) \
case scanDual: \ case scanDual: \
REG_SET(port##pin); break; \ REG_SET(port##pin); break; \
case scanCol_powrRow: REG_UNSET(ddr##pin); REG_UNSET(DDR##pin); \ case scanCol_powrRow: REG_UNSET(ddr##pin); REG_UNSET(DDR##pin); \
REG_SET(port##pin); REG_SET(PORT##pin); break; \
REG_SET(port##pin); REG_SET(PORT##pin); break; \
case powrRow: break; \ case powrRow: break; \
case powrCol: REG_SET(ddr##pin); REG_SET(DDR##pin); \ case powrCol: REG_SET(ddr##pin); REG_SET(DDR##pin); \
REG_SET(port##pin); REG_SET(PORT##pin); break; \ REG_SET(port##pin); REG_SET(PORT##pin); break; \
case scanDual: \ case scanDual: \
REG_SET(port##pin); break; \ REG_SET(port##pin); break; \
case scanCol_powrRow: REG_SET(ddr##pin); REG_SET(DDR##pin); \ case scanCol_powrRow: REG_SET(ddr##pin); REG_SET(DDR##pin); \
REG_UNSET(port##pin); REG_UNSET(PORT##pin); break; \
REG_UNSET(port##pin); REG_UNSET(PORT##pin); break; \
case powrRow: REG_SET(ddr##pin); REG_SET(DDR##pin); \ case powrRow: REG_SET(ddr##pin); REG_SET(DDR##pin); \
REG_SET(port##pin); REG_SET(PORT##pin); break; \
REG_SET(port##pin); REG_SET(PORT##pin); break; \
case powrCol: break; \ case powrCol: break; \
} \ } \
break break
if ( showDebug == 0 ) // Only show once if ( showDebug == 0 ) // Only show once
{ {
matrix_debugPins(); matrix_debugPins();
}
}
} }


// Scans the given matrix determined by the scanMode method // Scans the given matrix determined by the scanMode method
_delay_us( 1 ); _delay_us( 1 );
col = 1; col = 1;
row = 1; row = 1;
for ( ; col < (MAX_ROW_SIZE+1); col++ ) for ( ; row < (MAX_COL_SIZE+1); row++ )
for ( ; col < (MAX_ROW_SIZE+1); col++ ) for ( ; row < (MAX_COL_SIZE+1); row++ )
{ {
// Scan over the pins for each of the rows, and using the pin alias to determine which pin to set // Scan over the pins for each of the rows, and using the pin alias to determine which pin to set
// (e.g. / 10 is for the pin name (A,B,C,etc.) and % 10 is for the position of the pin (A1,A2,etc.)) // (e.g. / 10 is for the pin name (A,B,C,etc.) and % 10 is for the position of the pin (A1,A2,etc.))
} }
#endif #endif
} }

+ 1
- 1
Scan/matrix/scan_loop.h Voir le fichier

// NOTE: Highest Bit: Valid keypress (0x80 is valid keypress) // NOTE: Highest Bit: Valid keypress (0x80 is valid keypress)
// Other Bits: Pressed state sample counter // Other Bits: Pressed state sample counter
extern uint8_t KeyIndex_Array [KEYBOARD_KEYS + 1]; extern uint8_t KeyIndex_Array [KEYBOARD_KEYS + 1];
static const uint8_t KeyIndex_Size = KEYBOARD_KEYS;
static const uint8_t KeyIndex_Size = KEYBOARD_KEYS;


extern volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER]; extern volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
extern volatile uint8_t KeyIndex_BufferUsed; extern volatile uint8_t KeyIndex_BufferUsed;

+ 1
- 1
buildall.bash Voir le fichier

#!/bin/bash #!/bin/bash
###| Builder Script |### ###| Builder Script |###
#
#
# Builds all permutations of modules # Builds all permutations of modules
# This script is an attempt to maintain module sanity as new ones are added # This script is an attempt to maintain module sanity as new ones are added
# #