Archived
1
0

Adding NKRO support to AVR/DPH.

- NKRO for USB Codes 4 to 164, 176 to 221 and modifiers
- Added System Control support codes 129 to 183
- Added Consumer Control support codes 32 to 668
This commit is contained in:
Jacob Alexander 2014-09-21 11:55:37 -07:00
parent c57c2d7a66
commit 9f6be5794b
6 changed files with 510 additions and 195 deletions

View File

@ -99,7 +99,7 @@ set( DefaultMap "colemak kishsaver_unix1 stdFuncMap" )
##| ParitalMaps available on top of the BaseMap. See above for syntax on specifying multiple layers vs. layering
##| Can be set to ""
set( PartialMaps "hhkbpro2" )
#set( PartialMaps "hhkbpro2" )

View File

@ -55,46 +55,19 @@ void usb_keyboard_toHost()
// Modifiers
UEDATX = USBKeys_Modifiers;
// LED Report spacer
USBKeys_LEDs = 0;
// Reserved Byte
UEDATX = 0x00;
// Normal Keys
// Normal Keys, only supports 6 in Boot mode
for ( i = 0; i < 6; i++)
{
UEDATX = USBKeys_Array[i];
UEDATX = USBKeys_Keys[i];
}
UEINTX = 0x3A;
UEINTX = 0x00;
}
// Sends NKRO keyboard out to host
// NOTE: Make sure to match the descriptor
void usb_nkrokeyboard_toHost()
{
uint8_t i;
// Modifiers
/*
UEDATX = 0x02;
UEDATX = USBKeys_Modifiers;
UEINTX = 0x3A;
*/
// Media Keys
UEDATX = 0x03;
UEDATX = 0;
UEINTX = 0x3A;
// Normal Keys
UEDATX = 0x04;
for ( i = 0; i < 6; i++)
{
UEDATX = USBKeys_Array[i];
}
UEINTX = 0x3A;
}
// send the contents of USBKeys_Array and USBKeys_Modifiers
int8_t usb_keyboard_send()
// send the contents of USBKeys_Keys and USBKeys_Modifiers
inline void usb_keyboard_send()
{
uint8_t intr_state, timeout;
@ -108,26 +81,88 @@ int8_t usb_keyboard_send()
// has the USB gone offline? or exceeded timeout?
if ( !usb_configuration || UDFNUML == timeout )
return -1;
{
erro_print("USB Offline? Timeout?");
return;
}
// get ready to try checking again
intr_state = SREG;
cli();
// If not using Boot protocol, send NKRO
UENUM = KEYBOARD_ENDPOINT;
//UENUM = USBKeys_Protocol ? KEYBOARD_NKRO_ENDPOINT : KEYBOARD_ENDPOINT;
UENUM = USBKeys_Protocol ? KEYBOARD_NKRO_ENDPOINT : KEYBOARD_ENDPOINT;
} while ( !( UEINTX & (1 << RWAL) ) );
// Send normal keyboard interrupt packet(s)
//switch ( USBKeys_Protocol )
//{
//}
usb_keyboard_toHost();
switch ( USBKeys_Protocol )
{
// Send boot keyboard interrupt packet(s)
case 0:
usb_keyboard_toHost();
break;
// Send NKRO keyboard interrupts packet(s)
case 1:
// Check modifiers
if ( USBKeys_Changed & USBKeyChangeState_Modifiers )
{
UEDATX = 0x01; // ID
UEDATX = USBKeys_Modifiers;
UEINTX = 0; // Finished with ID
USBKeys_Changed &= ~USBKeyChangeState_Modifiers; // Mark sent
}
// Check main key section
else if ( USBKeys_Changed & USBKeyChangeState_MainKeys )
{
UEDATX = 0x03; // ID
// 4-164 (first 20 bytes)
for ( uint8_t byte = 0; byte < 20; byte++ )
UEDATX = USBKeys_Keys[ byte ];
UEINTX = 0; // Finished with ID
USBKeys_Changed &= ~USBKeyChangeState_MainKeys; // Mark sent
}
// Check secondary key section
else if ( USBKeys_Changed & USBKeyChangeState_SecondaryKeys )
{
UEDATX = 0x04; // ID
// 176-221 (last 6 bytes)
for ( uint8_t byte = 20; byte < 26; byte++ )
UEDATX = USBKeys_Keys[ byte ];
UEINTX = 0; // Finished with ID
USBKeys_Changed &= ~USBKeyChangeState_SecondaryKeys; // Mark sent
}
// Check system control keys
else if ( USBKeys_Changed & USBKeyChangeState_System )
{
UEDATX = 0x05; // ID
UEDATX = USBKeys_SysCtrl;
UEINTX = 0; // Finished with ID
USBKeys_Changed &= ~USBKeyChangeState_System; // Mark sent
}
// Check consumer control keys
else if ( USBKeys_Changed & USBKeyChangeState_Consumer )
{
UEDATX = 0x06; // ID
UEDATX = (uint8_t)(USBKeys_ConsCtrl & 0x00FF);
UEDATX = (uint8_t)(USBKeys_ConsCtrl >> 8);
UEINTX = 0; // Finished with ID
USBKeys_Changed &= ~USBKeyChangeState_Consumer; // Mark sent
}
break;
}
USBKeys_Idle_Count = 0;
SREG = intr_state;
return 0;
}
@ -622,7 +657,13 @@ ISR( USB_GEN_vect )
// XXX TODO Is this even used? If so, when? -Jacob
// From hasu's code, this section looks like it could fix the Mac SET_IDLE problem
// Send normal keyboard interrupt packet(s)
//usb_keyboard_toHost();
switch ( USBKeys_Protocol )
{
// Send boot keyboard interrupt packet(s)
case 0: usb_keyboard_toHost(); break;
// Send NKRO keyboard interrupts packet(s)
//case 1: usb_nkrokeyboard_toHost(); break; // XXX Not valid anymore
}
print("IDLE");
}
}
@ -673,7 +714,8 @@ ISR(USB_COM_vect)
UENUM = 0;
intbits = UEINTX;
if (intbits & (1<<RXSTPI)) {
if (intbits & (1<<RXSTPI))
{
bmRequestType = UEDATX;
bRequest = UEDATX;
wValue = UEDATX;
@ -770,8 +812,8 @@ ISR(USB_COM_vect)
return;
}
//if ( wIndex == KEYBOARD_INTERFACE )
if ( wIndex == KEYBOARD_INTERFACE || wIndex == KEYBOARD_NKRO_INTERFACE )
if ( ( wIndex == KEYBOARD_INTERFACE && USBKeys_Protocol == 0 )
|| ( wIndex == KEYBOARD_NKRO_INTERFACE && USBKeys_Protocol == 1 ) )
{
if ( bmRequestType == 0xA1)
{
@ -779,10 +821,14 @@ ISR(USB_COM_vect)
{
usb_wait_in_ready();
// XXX TODO Is this even used? If so, when? -Jacob
// Send normal keyboard interrupt packet(s)
usb_keyboard_toHost();
//print("GET REPORT");
switch ( USBKeys_Protocol )
{
// Send boot keyboard interrupt packet(s)
case 0: usb_keyboard_toHost(); break;
// Send NKRO keyboard interrupts packet(s)
//case 1: usb_nkrokeyboard_toHost(); break; // XXX Not valid anymore
}
usb_send_in();
return;
@ -814,17 +860,19 @@ ISR(USB_COM_vect)
}
if ( bRequest == HID_SET_IDLE )
{
usb_wait_in_ready();
USBKeys_Idle_Config = (wValue >> 8);
USBKeys_Idle_Count = 0;
//usb_wait_in_ready();
usb_send_in();
print("HID IDLE");
return;
}
if ( bRequest == HID_SET_PROTOCOL )
{
usb_wait_in_ready();
USBKeys_Protocol = wValue; // 0 - Boot Mode, 1 - NKRO Mode
//usb_wait_in_ready();
usb_send_in();
print("HID SET");
return;
}
}

View File

@ -43,33 +43,32 @@
// ----- Function Declarations -----
// Basic USB Configuration
void usb_init(void); // initialize everything
uint8_t usb_configured(void); // is the USB port configured
void usb_init(); // initialize everything
uint8_t usb_configured(); // is the USB port configured
// Keyboard HID Functions
int8_t usb_keyboard_send(void);
void usb_keyboard_send();
// Chip Level Functions
void usb_device_reload(); // Enable firmware reflash mode
void wdt_init(void) __attribute__((naked)) __attribute__((section(".init3"))); // Needed for software reset
// USB Serial CDC Functions
int16_t usb_serial_getchar(void); // receive a character (-1 if timeout/error)
uint8_t usb_serial_available(void); // number of bytes in receive buffer
void usb_serial_flush_input(void); // discard any buffered input
int16_t usb_serial_getchar(); // receive a character (-1 if timeout/error)
uint8_t usb_serial_available(); // number of bytes in receive buffer
void usb_serial_flush_input(); // discard any buffered input
// transmitting data
int8_t usb_serial_putchar(uint8_t c); // transmit a character
int8_t usb_serial_putchar_nowait(uint8_t c); // transmit a character, do not wait
int8_t usb_serial_putchar(uint8_t c); // transmit a character
int8_t usb_serial_putchar_nowait(uint8_t c); // transmit a character, do not wait
int8_t usb_serial_write(const char *buffer, uint16_t size); // transmit a buffer
void usb_serial_flush_output(void); // immediately transmit any buffered output
void usb_serial_flush_output(); // immediately transmit any buffered output
// serial parameters
uint32_t usb_serial_get_baud(void); // get the baud rate
uint8_t usb_serial_get_stopbits(void); // get the number of stop bits
uint8_t usb_serial_get_paritytype(void);// get the parity type
uint8_t usb_serial_get_numbits(void); // get the number of data bits
uint8_t usb_serial_get_control(void); // get the RTS and DTR signal state
uint32_t usb_serial_get_baud(); // get the baud rate
uint8_t usb_serial_get_stopbits(); // get the number of stop bits
uint8_t usb_serial_get_paritytype(); // get the parity type
uint8_t usb_serial_get_numbits(); // get the number of data bits
uint8_t usb_serial_get_control(); // get the RTS and DTR signal state
int8_t usb_serial_set_control(uint8_t signals); // set DSR, DCD, RI, etc
@ -201,7 +200,7 @@ int8_t usb_serial_set_control(uint8_t signals); // set DSR, DCD, RI, etc
#define KEYBOARD_NKRO_INTERFACE 0
#define KEYBOARD_NKRO_ENDPOINT 1
#define KEYBOARD_NKRO_SIZE 16
#define KEYBOARD_NKRO_SIZE 128
#define KEYBOARD_NKRO_HID_BUFFER EP_DOUBLE_BUFFER
#define KEYBOARD_INTERFACE 1
@ -288,22 +287,27 @@ static const uint8_t PROGMEM keyboard_hid_report_desc[] = {
0x25, 0x01, // Logical Maximum (1),
0x81, 0x02, // Input (Data, Variable, Absolute),
// Reserved Byte
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x81, 0x03, // Output (Constant),
// LED Report
0x95, 0x05, // Report Count (5),
0x75, 0x01, // Report Size (1),
0x95, 0x05, // Report Count (5),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute),
// LED Report Padding
0x95, 0x01, // Report Count (1),
0x75, 0x03, // Report Size (3),
0x95, 0x01, // Report Count (1),
0x91, 0x03, // Output (Constant),
// Normal Keys
0x95, 0x06, // Report Count (6),
0x75, 0x08, // Report Size (8),
0x95, 0x06, // Report Count (6),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x7F, // Logical Maximum(104),
0x05, 0x07, // Usage Page (Key Codes),
@ -315,95 +319,115 @@ static const uint8_t PROGMEM keyboard_hid_report_desc[] = {
// Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60
static const uint8_t PROGMEM keyboard_nkro_hid_report_desc[] = {
/*
// System Control Collection
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x80, // Usage (System Control),
0xA1, 0x01, // Collection (Application),
0x85, 0x01, // Report ID (1),
0x95, 0x06, // Report Count (6),
0x75, 0x08, // Report Size (8),
0x19, 0x81, // Usage Minimum (129),
0x29, 0x83, // Usage Maximum (131),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x81, 0x02, // Input (Data, Variable, Absolute),
0x95, 0x05, // Report Count (5),
0x75, 0x01, // Report Size (1),
0x81, 0x03, // Input (Constant, Data, Variable, Absolute),
0xc0, 0x00, // End Collection - System Control
*/
// Keyboard Collection
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x06, // Usage (Keyboard),
0xA1, 0x01, // Collection (Application) - Keyboard,
// Modifier Byte
0x85, 0x01, // Report ID (1),
0x75, 0x01, // Report Size (1),
0x85, 0x02, // Report ID (2),
0x95, 0x08, // Report Count (8),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xE0, // Usage Minimum (224),
0x29, 0xE7, // Usage Maximum (231),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x81, 0x02, // Input (Data, Variable, Absolute),
// Media Keys
0x95, 0x08, // Report Count (8),
0x85, 0x03, // Report ID (3),
0x75, 0x01, // Report Size (1),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x0C, // Usage Page (Consumer),
0x09, 0xE9, // Usage (Volume Increment),
0x09, 0xEA, // Usage (Volume Decrement),
0x09, 0xE2, // Usage (Mute),
0x09, 0xCD, // Usage (Play/Pause),
0x09, 0xB5, // Usage (Scan Next Track),
0x09, 0xB6, // Usage (Scan Previous Track),
0x09, 0xB7, // Usage (Stop),
0x09, 0xB8, // Usage (Eject),
0x81, 0x02, // Input (Data, Variable, Absolute),
// LED Report
0x95, 0x05, // Report Count (5),
0x85, 0x01, // Report ID (1),
0x85, 0x02, // Report ID (2),
0x75, 0x01, // Report Size (1),
0x95, 0x05, // Report Count (5),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute),
// LED Report Padding
0x95, 0x01, // Report Count (1),
0x75, 0x03, // Report Size (3),
0x95, 0x01, // Report Count (1),
0x91, 0x03, // Output (Constant),
/*
// Misc Keys
0x95, 0x06, // Report Count (6),
// Normal Keys - Using an NKRO Bitmap
//
// NOTES:
// Supports all keys defined by the spec, except 1-3 which define error events
// and 0 which is "no keys pressed"
// See http://www.usb.org/developers/hidpage/Hut1_12v2.pdf Chapter 10
// Or Macros/PartialMap/usb_hid.h
//
// 165-175 are reserved/unused as well as 222-223 and 232-65535
// 224-231 are used for modifiers (see above)
//
// Packing of bitmaps are as follows:
// 4-164 : 20 bytes + 1 Report ID byte (0x04-0xA4)
// 176-221 : 6 bytes + 1 Report ID byte (0xB0-0xDD) (45 bits + 3 padding bits for 6 bytes total)
//
// 4-164 (20 bytes/160 bits)
0x85, 0x03, // Report ID (3),
0x75, 0x01, // Report Size (1),
0x95, 0xA0, // Report Count (160),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x7F, // Logical Maximum(104),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x00, // Usage Minimum (0),
0x29, 0x7F, // Usage Maximum (104),
0x81, 0x00, // Input (Data, Array),
*/
0x19, 0x04, // Usage Minimum (4),
0x29, 0xA4, // Usage Maximum (164),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),
// Normal Keys
0x95, 0x06, // Report Count (6),
// 176-221 (45 bits)
0x85, 0x04, // Report ID (4),
0x75, 0x08, // Report Size (8),
0x75, 0x01, // Report Size (1),
0x95, 0x2D, // Report Count (45),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x7F, // Logical Maximum(104),
0x25, 0x01, // Logical Maximum (1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x00, // Usage Minimum (0),
0x29, 0x7F, // Usage Maximum (104),
0x81, 0x00, // Input (Data, Array),
0x19, 0xB0, // Usage Minimum (176),
0x29, 0xDD, // Usage Maximum (221),
0x81, 0x02, // Input (Data, Variable, Absolute, Bitfield),
// 176-221 Padding (3 bits)
0x75, 0x03, // Report Size (3),
0x95, 0x01, // Report Count (1),
0x81, 0x03, // Input (Constant),
0xc0, // End Collection - Keyboard
// System Control Collection
//
// NOTES:
// Not bothering with NKRO for this table. If there's need, I can implement it. -HaaTa
// Using a 1KRO scheme
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x80, // Usage (System Control),
0xA1, 0x01, // Collection (Application),
0x85, 0x05, // Report ID (5),
0x75, 0x08, // Report Size (8),
0x95, 0x01, // Report Count (1),
0x16, 0x81, 0x00, // Logical Minimum (129),
0x26, 0xB7, 0x00, // Logical Maximum (183),
0x19, 0x81, // Usage Minimum (129),
0x29, 0xB7, // Usage Maximum (183),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - System Control
// Consumer Control Collection - Media Keys
//
// NOTES:
// Not bothering with NKRO for this table. If there's a need, I can implement it. -HaaTa
// Using a 1KRO scheme
0x05, 0x0c, // Usage Page (Consumer),
0x09, 0x01, // Usage (Consumer Control),
0xA1, 0x01, // Collection (Application),
0x85, 0x06, // Report ID (6),
0x75, 0x10, // Report Size (16),
0x95, 0x01, // Report Count (1),
0x16, 0x20, 0x00, // Logical Minimum (32),
0x26, 0x9C, 0x02, // Logical Maximum (668),
0x05, 0x0C, // Usage Page (Consumer),
0x19, 0x20, // Usage Minimum (32),
0x2A, 0x9C, 0x02, // Usage Maximum (668),
0x81, 0x00, // Input (Data, Array),
0xc0, // End Collection - Consumer Control
};
// <Configuration> + <Keyboard HID> + <NKRO Keyboard HID> + <Serial CDC>
@ -442,7 +466,7 @@ static const uint8_t PROGMEM config1_descriptor[CONFIG1_DESC_SIZE] = {
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
33, // bCountryCode - Defaulting to US for now. TODO
0, // bCountryCode - Setting to 0/Undefined
1, // bNumDescriptors
0x22, // bDescriptorType
LSB(sizeof(keyboard_hid_report_desc)), // wDescriptorLength
@ -473,7 +497,7 @@ static const uint8_t PROGMEM config1_descriptor[CONFIG1_DESC_SIZE] = {
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
33, // bCountryCode - Defaulting to US for now. TODO
33, // bCountryCode - Setting to 0/Undefined
1, // bNumDescriptors
0x22, // bDescriptorType
// wDescriptorLength

View File

@ -1,12 +1,14 @@
Name = pjrcUSBCapabilities;
Version = 0.1;
Version = 0.2;
Author = "HaaTa (Jacob Alexander) 2014";
KLL = 0.3;
# Modified Date
Date = 2014-09-14;
Date = 2014-09-20;
# Capabilties available to the pjrcUSB output module
usbKeyOut => Output_usbCodeSend_capability( usbCode : 1 );
consCtrlOut => Output_consCtrlSend_capability( consCode : 2 );
sysCtrlOut => Output_sysCtrlSend_capability( sysCode : 1 );
usbKeyOut => Output_usbCodeSend_capability( usbCode : 1 );

View File

@ -44,6 +44,20 @@
// ----- Macros -----
// Used to build a bitmap lookup table from a byte addressable array
#define byteLookup( byte ) case (( byte ) * ( 8 )): bytePosition = byte; byteShift = 0; break; \
case (( byte ) * ( 8 ) + ( 1 )): bytePosition = byte; byteShift = 1; break; \
case (( byte ) * ( 8 ) + ( 2 )): bytePosition = byte; byteShift = 2; break; \
case (( byte ) * ( 8 ) + ( 3 )): bytePosition = byte; byteShift = 3; break; \
case (( byte ) * ( 8 ) + ( 4 )): bytePosition = byte; byteShift = 4; break; \
case (( byte ) * ( 8 ) + ( 5 )): bytePosition = byte; byteShift = 5; break; \
case (( byte ) * ( 8 ) + ( 6 )): bytePosition = byte; byteShift = 6; break; \
case (( byte ) * ( 8 ) + ( 7 )): bytePosition = byte; byteShift = 7; break
// ----- Function Declarations -----
void cliFunc_kbdProtocol( char* args );
@ -53,6 +67,7 @@ void cliFunc_setKeys ( char* args );
void cliFunc_setMod ( char* args );
// ----- Variables -----
// Output Module command dictionary
@ -70,39 +85,106 @@ const CLIDictItem outputCLIDict[] = {
// Which modifier keys are currently pressed
// 1=left ctrl, 2=left shift, 4=left alt, 8=left gui
// 16=right ctrl, 32=right shift, 64=right alt, 128=right gui
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer
uint8_t USBKeys_Modifiers = 0;
uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer
// Currently pressed keys, max is defined by USB_MAX_KEY_SEND
uint8_t USBKeys_Array [USB_MAX_KEY_SEND];
uint8_t USBKeys_ArrayCLI[USB_MAX_KEY_SEND]; // Separate CLI send buffer
uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS];
uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer
// System Control and Consumer Control 1KRO containers
uint8_t USBKeys_SysCtrl;
uint16_t USBKeys_ConsCtrl;
// The number of keys sent to the usb in the array
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;
uint8_t USBKeys_Sent = 0;
uint8_t USBKeys_SentCLI = 0;
// 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana
volatile uint8_t USBKeys_LEDs = 0;
volatile uint8_t USBKeys_LEDs = 0;
// Protocol setting from the host.
// 0 - Boot Mode (Default, until set by the host)
// 1 - NKRO Mode
volatile uint8_t USBKeys_Protocol = 1;
// 0 - Boot Mode
// 1 - NKRO Mode (Default, unless set by a BIOS or boot interface)
volatile uint8_t USBKeys_Protocol = 1;
// Indicate if USB should send update
// OS only needs update if there has been a change in state
uint8_t USBKeys_Changed = 0;
USBKeyChangeState USBKeys_Changed = USBKeyChangeState_None;
// the idle configuration, how often we send the report to the
// host (ms * 4) even when it hasn't changed
uint8_t USBKeys_Idle_Config = 125;
uint8_t USBKeys_Idle_Config = 125;
// count until idle timeout
uint8_t USBKeys_Idle_Count = 0;
uint8_t USBKeys_Idle_Count = 0;
// ----- Capabilities -----
// Sends a Consumer Control code to the USB Output buffer
void Output_consCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Output_consCtrlSend(consCode)");
return;
}
// Not implemented in Boot Mode
if ( USBKeys_Protocol == 0 )
{
warn_print("Consumer Control is not implemented for Boot Mode");
return;
}
// TODO Analog inputs
// Only indicate USB has changed if either a press or release has occured
if ( state == 0x01 || state == 0x03 )
USBKeys_Changed |= USBKeyChangeState_Consumer;
// Only send keypresses if press or hold state
if ( stateType == 0x00 && state == 0x03 ) // Release state
return;
// Set consumer control code
USBKeys_ConsCtrl = *(uint16_t*)(&args[0]);
}
// Sends a System Control code to the USB Output buffer
void Output_sysCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Output_sysCtrlSend(sysCode)");
return;
}
// Not implemented in Boot Mode
if ( USBKeys_Protocol == 0 )
{
warn_print("System Control is not implemented for Boot Mode");
return;
}
// TODO Analog inputs
// Only indicate USB has changed if either a press or release has occured
if ( state == 0x01 || state == 0x03 )
USBKeys_Changed |= USBKeyChangeState_System;
// Only send keypresses if press or hold state
if ( stateType == 0x00 && state == 0x03 ) // Release state
return;
// Set system control code
USBKeys_SysCtrl = args[0];
}
// Adds a single USB Code to the USB Output buffer
// Argument #1: USB Code
void Output_usbCodeSend_capability( uint8_t state, uint8_t stateType, uint8_t *args )
@ -114,35 +196,161 @@ void Output_usbCodeSend_capability( uint8_t state, uint8_t stateType, uint8_t *a
return;
}
// TODO Analog inputs
// Only indicate USB has changed if either a press or release has occured
if ( state == 0x01 || state == 0x03 )
USBKeys_Changed = 1;
// Depending on which mode the keyboard is in the USB needs Press/Hold/Release events
uint8_t keyPress = 0; // Default to key release, only used for NKRO
switch ( USBKeys_Protocol )
{
case 0: // Boot Mode
// TODO Analog inputs
// Only indicate USB has changed if either a press or release has occured
if ( state == 0x01 || state == 0x03 )
USBKeys_Changed = USBKeyChangeState_MainKeys;
// Only send keypresses if press or hold state
if ( stateType == 0x00 && state == 0x03 ) // Release state
return;
// Only send keypresses if press or hold state
if ( stateType == 0x00 && state == 0x03 ) // Release state
return;
break;
case 1: // NKRO Mode
// Only send press and release events
if ( stateType == 0x00 && state == 0x02 ) // Hold state
return;
// Determine if setting or unsetting the bitfield (press == set)
if ( stateType == 0x00 && state == 0x01 ) // Press state
keyPress = 1;
break;
}
// Get the keycode from arguments
uint8_t key = args[0];
// Set the modifier bit if this key is a modifier
if ( (key & 0xE0) == 0xE0 ) // AND with 0xE0 (Left Ctrl, first modifier)
// Depending on which mode the keyboard is in, USBKeys_Keys array is used differently
// Boot mode - Maximum of 6 byte codes
// NKRO mode - Each bit of the 26 byte corresponds to a key
// Bits 0 - 160 (first 20 bytes) correspond to USB Codes 4 - 164
// Bits 161 - 205 (last 6 bytes) correspond to USB Codes 176 - 221
// Bits 206 - 208 (last byte) correspond to the 3 padded bits in USB (unused)
uint8_t bytePosition = 0;
uint8_t byteShift = 0;
switch ( USBKeys_Protocol )
{
USBKeys_Modifiers |= 1 << (key ^ 0xE0); // Left shift 1 by key XOR 0xE0
}
// Normal USB Code
else
{
// USB Key limit reached (important for Boot Mode)
if ( USBKeys_Sent >= USBKeys_MaxSize )
case 0: // Boot Mode
// Set the modifier bit if this key is a modifier
if ( (key & 0xE0) == 0xE0 ) // AND with 0xE0 (Left Ctrl, first modifier)
{
warn_msg("USB Key limit reached");
errorLED( 1 );
return;
USBKeys_Modifiers |= 1 << (key ^ 0xE0); // Left shift 1 by key XOR 0xE0
}
// Normal USB Code
else
{
// USB Key limit reached
if ( USBKeys_Sent >= USB_BOOT_MAX_KEYS )
{
warn_print("USB Key limit reached");
return;
}
// Make sure key is within the USB HID range
if ( key <= 104 )
{
USBKeys_Keys[USBKeys_Sent++] = key;
}
// Invalid key
else
{
warn_msg("USB Code above 104/0x68 in Boot Mode: ");
printHex( key );
print( NL );
}
}
break;
case 1: // NKRO Mode
// Set the modifier bit if this key is a modifier
if ( (key & 0xE0) == 0xE0 ) // AND with 0xE0 (Left Ctrl, first modifier)
{
if ( keyPress )
{
USBKeys_Modifiers |= 1 << (key ^ 0xE0); // Left shift 1 by key XOR 0xE0
}
else // Release
{
USBKeys_Modifiers &= ~(1 << (key ^ 0xE0)); // Left shift 1 by key XOR 0xE0
}
USBKeys_Changed |= USBKeyChangeState_Modifiers;
break;
}
// First 20 bytes
else if ( key >= 4 && key <= 164 )
{
// Lookup (otherwise division or multiple checks are needed to do alignment)
uint8_t keyPos = key - 4; // Starting position in array
switch ( keyPos )
{
byteLookup( 0 );
byteLookup( 1 );
byteLookup( 2 );
byteLookup( 3 );
byteLookup( 4 );
byteLookup( 5 );
byteLookup( 6 );
byteLookup( 7 );
byteLookup( 8 );
byteLookup( 9 );
byteLookup( 10 );
byteLookup( 11 );
byteLookup( 12 );
byteLookup( 13 );
byteLookup( 14 );
byteLookup( 15 );
byteLookup( 16 );
byteLookup( 17 );
byteLookup( 18 );
byteLookup( 19 );
}
USBKeys_Changed |= USBKeyChangeState_MainKeys;
}
// Last 6 bytes
else if ( key >= 176 && key <= 221 )
{
// Lookup (otherwise division or multiple checks are needed to do alignment)
uint8_t keyPos = key - 176; // Starting position in array
switch ( keyPos )
{
byteLookup( 20 );
byteLookup( 21 );
byteLookup( 22 );
byteLookup( 23 );
byteLookup( 24 );
byteLookup( 25 );
}
USBKeys_Changed |= USBKeyChangeState_SecondaryKeys;
}
// Invalid key
else
{
warn_msg("USB Code not within 4-164 (0x4-0xA4) or 176-221 (0xB0-0xDD) NKRO Mode: ");
printHex( key );
print( NL );
break;
}
USBKeys_Array[USBKeys_Sent++] = key;
// Set/Unset
if ( keyPress )
{
USBKeys_Keys[bytePosition] |= (1 << byteShift);
USBKeys_Sent++;
}
else // Release
{
USBKeys_Keys[bytePosition] &= ~(1 << byteShift);
USBKeys_Sent++;
}
break;
}
}
@ -154,23 +362,22 @@ void Output_usbCodeSend_capability( uint8_t state, uint8_t stateType, uint8_t *a
inline void Output_setup()
{
// Initialize the USB, and then wait for the host to set configuration.
// If the Teensy is powered without a PC connected to the USB port,
// this will wait forever.
// This will hang forever if USB does not initialize
usb_init();
while ( !usb_configured() ) /* wait */ ;
while ( !usb_configured() );
// Register USB Output CLI dictionary
CLI_registerDictionary( outputCLIDict, outputCLIDictName );
// Wait an extra second for the PC's operating system to load drivers
// and do whatever it does to actually be ready for input
//_delay_ms(1000); // TODO (is this actually necessary?)
// Zero out USBKeys_Keys array
for ( uint8_t c = 0; c < USB_NKRO_BITFIELD_SIZE_KEYS; c++ )
USBKeys_Keys[ c ] = 0;
}
// USB Data Send
inline void Output_send(void)
inline void Output_send()
{
// Don't send update if USB has not changed
if ( !USBKeys_Changed )
@ -181,21 +388,31 @@ inline void Output_send(void)
return;
}
USBKeys_Changed = 0;
// TODO undo potentially old keys
for ( uint8_t c = USBKeys_Sent; c < USBKeys_MaxSize; c++ )
USBKeys_Array[c] = 0;
// Boot Mode Only, unset stale keys
if ( USBKeys_Protocol == 0 )
for ( uint8_t c = USBKeys_Sent; c < USB_BOOT_MAX_KEYS; c++ )
USBKeys_Keys[c] = 0;
// Send keypresses
usb_keyboard_send();
while ( USBKeys_Changed )
usb_keyboard_send();
// Clear modifiers and keys
USBKeys_Modifiers = 0;
USBKeys_Sent = 0;
USBKeys_Changed = USBKeyChangeState_None;
// Signal Scan Module we are finished
Scan_finishedWithOutput( USBKeys_Sent <= USBKeys_MaxSize ? USBKeys_Sent : USBKeys_MaxSize );
switch ( USBKeys_Protocol )
{
case 0: // Boot Mode
Scan_finishedWithOutput( USBKeys_Sent <= USB_BOOT_MAX_KEYS ? USBKeys_Sent : USB_BOOT_MAX_KEYS );
break;
case 1: // NKRO Mode
Scan_finishedWithOutput( USBKeys_Sent );
break;
}
}
@ -271,10 +488,11 @@ void cliFunc_readLEDs( char* args )
void cliFunc_sendKeys( char* args )
{
// Copy USBKeys_ArrayCLI to USBKeys_Array
// Copy USBKeys_KeysCLI to USBKeys_Keys
for ( uint8_t key = 0; key < USBKeys_SentCLI; ++key )
{
USBKeys_Array[key] = USBKeys_ArrayCLI[key];
// TODO
//USBKeys_Keys[key] = USBKeys_KeysCLI[key];
}
USBKeys_Sent = USBKeys_SentCLI;
@ -290,7 +508,7 @@ void cliFunc_setKeys( char* args )
char* arg2Ptr = args;
// Parse up to USBKeys_MaxSize args (whichever is least)
for ( USBKeys_SentCLI = 0; USBKeys_SentCLI < USBKeys_MaxSize; ++USBKeys_SentCLI )
for ( USBKeys_SentCLI = 0; USBKeys_SentCLI < USB_BOOT_MAX_KEYS; ++USBKeys_SentCLI )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
@ -300,7 +518,8 @@ void cliFunc_setKeys( char* args )
break;
// Add the USB code to be sent
USBKeys_ArrayCLI[USBKeys_SentCLI] = numToInt( arg1Ptr );
// TODO
//USBKeys_KeysCLI[USBKeys_SentCLI] = numToInt( arg1Ptr );
}
}

View File

@ -34,8 +34,25 @@
// ----- Defines -----
// Indicator for other modules through USBKeys_MaxSize for how capable the USB module is when sending large number of keypresses
#define USB_MAX_KEY_SEND 6
// Max size of key buffer needed for NKRO
// Boot mode uses only the first 6 bytes
#define USB_NKRO_BITFIELD_SIZE_KEYS 26
#define USB_BOOT_MAX_KEYS 6
// ----- Enumerations -----
// USB NKRO state transitions (indicates which Report ID's need refreshing)
// Boot mode just checks if any keys were changed (as everything is sent every time)
typedef enum USBKeyChangeState {
USBKeyChangeState_None = 0x00,
USBKeyChangeState_Modifiers = 0x01,
USBKeyChangeState_MainKeys = 0x02,
USBKeyChangeState_SecondaryKeys = 0x04,
USBKeyChangeState_System = 0x08,
USBKeyChangeState_Consumer = 0x10,
} USBKeyChangeState;
@ -43,23 +60,28 @@
// Variables used to communciate to the output module
// XXX Even if the output module is not USB, this is internally understood keymapping scheme
extern uint8_t USBKeys_Modifiers;
extern uint8_t USBKeys_Array[USB_MAX_KEY_SEND];
extern uint8_t USBKeys_Sent;
extern volatile uint8_t USBKeys_LEDs;
extern uint8_t USBKeys_Changed;
extern uint8_t USBKeys_Modifiers;
extern uint8_t USBKeys_Keys[USB_NKRO_BITFIELD_SIZE_KEYS];
extern uint8_t USBKeys_Sent;
extern volatile uint8_t USBKeys_LEDs;
static const uint8_t USBKeys_MaxSize = USB_MAX_KEY_SEND;
extern volatile uint8_t USBKeys_Protocol; // 0 - Boot Mode, 1 - NKRO Mode
extern uint8_t USBKeys_SysCtrl; // 1KRO container for System Control HID table
extern uint16_t USBKeys_ConsCtrl; // 1KRO container for Consumer Control HID table
extern volatile uint8_t USBKeys_Protocol; // 0 - Boot Mode, 1 - NKRO Mode
// Misc variables (XXX Some are only properly utilized using AVR)
extern uint8_t USBKeys_Idle_Config;
extern uint8_t USBKeys_Idle_Count;
extern uint8_t USBKeys_Idle_Config;
extern uint8_t USBKeys_Idle_Count;
extern USBKeyChangeState USBKeys_Changed;
// ----- Capabilities -----
void Output_consCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *args );
void Output_sysCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *args );
void Output_usbCodeSend_capability( uint8_t state, uint8_t stateType, uint8_t *args );