Browse Source

Cleaning up cap sense Alpha code

- Added LGPL headers to appropriate files
- Removed *LOTS* of dead code
- Started standardizing formatting (important stuff done)
simple
Jacob Alexander 10 years ago
parent
commit
a8e35f5cf5
2 changed files with 192 additions and 302 deletions
  1. 180
    300
      Scan/avr-capsense/scan_loop.c
  2. 12
    2
      Scan/avr-capsense/scan_loop.h

+ 180
- 300
Scan/avr-capsense/scan_loop.c View File

@@ -1,7 +1,18 @@
/* Copyright (C) 2011-2013 by Joseph Makuch
* Additions by Jacob Alexander (2013)
*
* dfj, put whatever license here you want -HaaTa
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/

// ----- Includes -----
@@ -20,12 +31,7 @@

// ----- Defines -----

// TODO dfj defines...needs cleaning up and commenting...
#define LED_CONFIG (DDRD |= (1<<6))
#define LED_ON (PORTD &= ~(1<<6))
#define LED_OFF (PORTD |= (1<<6))
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))

// TODO dfj defines...needs commenting and maybe some cleaning...
#define MAX_PRESS_DELTA_MV 470
#define THRESHOLD_MV (MAX_PRESS_DELTA_MV >> 1)
//(2560 / (0x3ff/2)) ~= 5
@@ -36,161 +42,81 @@

#define BUMP_DETECTION 0
#define BUMP_THRESHOLD 0x50
//((THRESHOLD) * 3)
#define BUMP_REST_US 1200

#define STROBE_SETTLE 1
#define MUX_SETTLE 1

#define HYST 1
#define HYST_T 0x10

#define TEST_KEY_STROBE (0x05)
#define TEST_KEY_MASK (1 << 0)

#define ADHSM 7

/** Whether to use all of D and C, vs using E0, E1 instead of D6, D7,
* or alternately all of D, and E0,E1 and C0,..5 */
//#define ALL_D_C
//#define SHORT_D
#define SHORT_C

// rough offset voltage: one diode drop, about 50mV = 0x3ff * 50/3560 = 20
//#define OFFSET_VOLTAGE 0x14
//#define OFFSET_VOLTAGE 0x28


#define RIGHT_JUSTIFY 0
#define LEFT_JUSTIFY (0xff)

// set left or right justification here:
#define JUSTIFY_ADC RIGHT_JUSTIFY

#define ADLAR_MASK (1 << ADLAR)

#ifdef JUSTIFY_ADC
#define ADLAR_BITS ((ADLAR_MASK) & (JUSTIFY_ADC))
#else // defaults to right justification.
#define ADLAR_BITS 0
#endif


// full muxmask
#define FULL_MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2) | (1 << MUX3) | (1 << MUX4))

// F0-f7 pins only muxmask.
#define MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2))

#define SET_MUX(X) ((ADMUX) = (((ADMUX) & ~(MUX_MASK)) | ((X) & (MUX_MASK))))
#define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))

#define MUX_1_1 0x1e
#define MUX_GND 0x1f

// Strobe Masks
#define D_MASK (0xff)
#define E_MASK (0x03)
#define C_MASK (0xff)

// set ADC clock prescale
// set ADC clock prescale
#define PRESCALE_MASK ((1 << ADPS0) | (1 << ADPS1) | (1 << ADPS2))
#define PRESCALE_SHIFT (ADPS0)
#define PRESCALE 3


#ifdef EXTENDED_STROBE

#define STROBE_LINES 18

#else

// TODO Remove this define when unnecessary -HaaTa
#define STROBE_LINES 16

#endif

#define STROBE_LINES_XSHIFT 4
#define STROBE_LINES_MASK 0x0f
#define MUXES_COUNT 8
#define MUXES_COUNT_XSHIFT 3
#define MUXES_MASK 0x7

#define WARMUP_LOOPS ( 1024 )

#define RECOVERY_US 2

#define SAMPLES 10


#define SAMPLE_OFFSET ((SAMPLES) - MUXES_COUNT)
//#define SAMPLE_OFFSET 9
#define STROBE_OFFSET 0

#define SAMPLE_CONTROL 3

// TODO Figure out calculation or best way to determine at startup -HaaTa
//#define DEFAULT_KEY_BASE 0xc8
#define DEFAULT_KEY_BASE 0x95

#define KEY_COUNT ((STROBE_LINES) * (MUXES_COUNT))

#define LX2FX


#define RECOVERY_CONTROL 1
#define RECOVERY_SOURCE 0
#define RECOVERY_SINK 2

#define RECOVERY_SOURCE 0
#define RECOVERY_SINK 2
#define RECOVERY_MASK 0x03

#define ON 1
#define ON 1
#define OFF 0


// mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
#define MUX_MIX 2


#define IDLE_COUNT_MASK 0xff
#define IDLE_COUNT_MAX (IDLE_COUNT_MASK + 1)
#define IDLE_COUNT_SHIFT 8

#define KEYS_AVERAGES_MIX 2


#ifdef ALL_D_C

#define D_MASK (0xff)
#define D_SHIFT 0

#define E_MASK (0x00)
#define E_SHIFT 0

#define C_MASK (0xff)
#define C_SHIFT 8

#else
#if defined(SHORT_D)

#define D_MASK (0x3f)
#define D_SHIFT 0

#define E_MASK (0x03)
#define E_SHIFT 6

#define C_MASK (0xff)
#define C_SHIFT 8

#else
#if defined(SHORT_C)

#define D_MASK (0xff)
#define D_SHIFT 0

#define E_MASK (0x03)
#define E_SHIFT 6

#define C_MASK (0xff)
#define C_SHIFT 8
#endif
#endif
#endif


// av = (av << shift) - av + sample; av >>= shift
// e.g. 1 -> (av + sample) / 2 simple average of new and old
// 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new.
// 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new.
#define KEYS_AVERAGES_MIX_SHIFT 3



@@ -201,18 +127,11 @@
if ( KeyIndex_BufferUsed < KEYBOARD_BUFFER ) \
KeyIndex_Buffer[KeyIndex_BufferUsed++] = byte


// TODO dfj macros...needs cleaning up and commenting...
#define STROBE_CASE(SC_CASE, SC_REG_A) case (SC_CASE): PORT##SC_REG_A = \
(( (PORT##SC_REG_A) & ~(1 << (SC_CASE - SC_REG_A##_SHIFT)) ) | (1 << (SC_CASE - SC_REG_A##_SHIFT)))

#define SET_MUX(X) ((ADMUX) = (((ADMUX) & ~(MUX_MASK)) | ((X) & (MUX_MASK))))
// Select mux
#define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))





// ----- Variables -----

// Buffer used to inform the macro processing module which keys have been detected as pressed
@@ -221,39 +140,25 @@ volatile uint8_t KeyIndex_BufferUsed;


// TODO dfj variables...needs cleaning up and commenting
uint8_t blink = 0;
volatile uint16_t full_av = 0;

/**/ uint8_t ze_strober = 0;
uint8_t ze_strober = 0;

uint16_t samples [SAMPLES];

//int16_t gsamples [SAMPLES];

int16_t adc_mux_averages[MUXES_COUNT];
int16_t adc_strobe_averages[STROBE_LINES];

uint16_t adc_mux_averages [MUXES_COUNT];
uint16_t adc_strobe_averages[STROBE_LINES];

uint8_t cur_keymap[STROBE_LINES];
// /**/ int8_t last_keymap[STROBE_LINES];
uint8_t usb_keymap[STROBE_LINES];
uint16_t keys_down=0;

uint8_t dirty;
uint8_t unstable;
uint8_t usb_dirty;

uint16_t threshold = 0x25; // HaaTa Hack -TODO
//uint16_t threshold = 0x16; // HaaTa Hack -TODO
//uint16_t threshold = THRESHOLD;
uint16_t tests = 0;

uint8_t col_a=0;
uint8_t col_b=0;
uint8_t col_c=0;

uint8_t column=0;

uint8_t column = 0;

uint16_t keys_averages_acc[KEY_COUNT];
uint16_t keys_averages[KEY_COUNT];
@@ -261,30 +166,22 @@ uint16_t keys_averages_acc_count=0;

uint8_t full_samples[KEY_COUNT];

// 0x9f...f
// #define COUNT_MASK 0x9fff
// #define COUNT_HIGH_BIT (INT16_MIN)
// TODO: change this to 'booting', then count down.
uint16_t boot_count = 0;

uint16_t idle_count=0;
uint16_t idle_count = 0;
uint8_t idle = 1;

uint16_t count = 0;

uint8_t error = 0;
uint16_t error_data = 0;


int16_t mux_averages[MUXES_COUNT];
int16_t strobe_averages[STROBE_LINES];
uint16_t mux_averages[MUXES_COUNT];
uint16_t strobe_averages[STROBE_LINES];

uint8_t dump_count = 0;


//uint8_t column =0;
uint16_t db_delta = 0;
uint8_t db_sample = 0;
uint8_t db_sample = 0;
uint16_t db_threshold = 0;


@@ -314,23 +211,17 @@ inline void scan_setup()
// TODO dfj code...needs cleanup + commenting...
setup_ADC();

DDRC = C_MASK;
DDRC = C_MASK;
PORTC = 0;
DDRD = D_MASK;
DDRD = D_MASK;
PORTD = 0;
DDRE = E_MASK;
DDRE = E_MASK;
PORTE = 0 ;

//DDRC |= (1 << 6);
//PORTC &= ~(1<< 6);

//uint16_t strobe = 1;


// TODO all this code should probably be in scan_resetKeyboard
for (int i=0; i < STROBE_LINES; ++i) {
cur_keymap[i] = 0;
//last_keymap[i] = 0;
usb_keymap[i] = 0;
}

@@ -366,30 +257,31 @@ inline uint8_t scan_loop()
uint8_t strober = 0;
uint32_t full_av_acc = 0;

for (strober = 0; strober < STROBE_LINES; ++strober) {
for (strober = 0; strober < STROBE_LINES; ++strober)
{

uint8_t tries;
tries = 1;
while (tries++ && sampleColumn(strober)) { tries &= 0x7; } // don't waste this one just because the last one was poop.
uint8_t tries = 1;
while ( tries++ && sampleColumn( strober ) ) { tries &= 0x7; } // don't waste this one just because the last one was poop.
column = testColumn(strober);

idle |= column; // if column has any pressed keys, then we are not idle.

if( column != cur_keymap[strober] && (boot_count >= WARMUP_LOOPS) ) {
tests++;

if( column != cur_keymap[strober] && ( boot_count >= WARMUP_LOOPS ) )
{
cur_keymap[strober] = column;
usb_dirty = 1;
}

idle |= usb_dirty; // if any keys have changed inc. released, then we are not idle.

if(error == 0x50) {
if ( error == 0x50 )
{
error_data |= (((uint16_t)strober) << 12);
}

uint8_t strobe_line = strober << MUXES_COUNT_XSHIFT;
for(int i=0; i<MUXES_COUNT; ++i) {
for ( int i = 0; i < MUXES_COUNT; ++i )
{
// discard sketchy low bit, and meaningless high bits.
uint8_t sample = samples[SAMPLE_OFFSET + i] >> 1;
full_samples[strobe_line + i] = sample;
@@ -398,18 +290,13 @@ inline uint8_t scan_loop()
keys_averages_acc_count++;

strobe_averages[strober] = 0;
for (uint8_t i = SAMPLE_OFFSET; i < (SAMPLE_OFFSET + MUXES_COUNT); ++i) {
//samples[i] -= samples[i-SAMPLE_OFFSET]; // av; // + full_av); // -something.
//samples[i] -= OFFSET_VOLTAGE; // moved to sampleColumn.

for ( uint8_t i = SAMPLE_OFFSET; i < ( SAMPLE_OFFSET + MUXES_COUNT ); ++i )
{
full_av_acc += (samples[i]);
#ifdef COLLECT_STROBE_AVERAGES
mux_averages[i - SAMPLE_OFFSET] += samples[i];
strobe_averages[strober] += samples[i];
#endif
//samples[i] -= (full_av - HYST_T);

//++count;
}

#ifdef COLLECT_STROBE_AVERAGES
@@ -417,8 +304,8 @@ inline uint8_t scan_loop()
adc_strobe_averages[strober] >>= 1;

/** test if we went negative. */
if ((adc_strobe_averages[strober] & 0xFF00) && (boot_count
>= WARMUP_LOOPS)) {
if ( ( adc_strobe_averages[strober] & 0xFF00 ) && ( boot_count >= WARMUP_LOOPS ) )
{
error = 0xf; error_data = adc_strobe_averages[strober];
}
#endif
@@ -426,8 +313,8 @@ inline uint8_t scan_loop()

#ifdef VERIFY_TEST_PAD
// verify test key is not down.
if((cur_keymap[TEST_KEY_STROBE] & TEST_KEY_MASK) ) {
//count=0;
if ( ( cur_keymap[TEST_KEY_STROBE] & TEST_KEY_MASK ) )
{
error = 0x05;
error_data = cur_keymap[TEST_KEY_STROBE] << 8;
error_data += full_samples[TEST_KEY_STROBE * 8];
@@ -437,14 +324,14 @@ inline uint8_t scan_loop()

#ifdef COLLECT_STROBE_AVERAGES
// calc mux averages.
if (boot_count < WARMUP_LOOPS) {
if ( boot_count < WARMUP_LOOPS )
{
full_av += (full_av_acc >> (7));
full_av >>= 1;
//full_av = full_av_acc / count;
full_av_acc = 0;

for (int i=0; i < MUXES_COUNT; ++i) {
#define MUX_MIX 2 // mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
for ( int i = 0; i < MUXES_COUNT; ++i )
{
adc_mux_averages[i] = (adc_mux_averages[i] << MUX_MIX) - adc_mux_averages[i];
adc_mux_averages[i] += (mux_averages[i] >> 4);
adc_mux_averages[i] >>= MUX_MIX;
@@ -454,12 +341,6 @@ inline uint8_t scan_loop()
}
#endif

// av = (av << shift) - av + sample; av >>= shift
// e.g. 1 -> (av + sample) / 2 simple average of new and old
// 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new.
// 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new.
#define KEYS_AVERAGES_MIX_SHIFT 3

/** aggregate if booting, or if idle;
* else, if not booting, check for dirty USB.
* */
@@ -467,20 +348,23 @@ inline uint8_t scan_loop()
idle_count++;
idle_count &= IDLE_COUNT_MASK;

idle = idle && !keys_down;

if (boot_count < WARMUP_LOOPS) {
if ( boot_count < WARMUP_LOOPS )
{
error = 0x0C;
error_data = boot_count;
boot_count++;
} else { // count >= WARMUP_LOOPS
if (usb_dirty) {
for (int i=0; i < STROBE_LINES; ++i) {
}
else
{
if ( usb_dirty )
{
for ( int i = 0; i < STROBE_LINES; ++i )
{
usb_keymap[i] = cur_keymap[i];
}

dumpkeys();
usb_dirty=0;
usb_dirty = 0;
memset(((void *)keys_averages_acc), 0, (size_t)(KEY_COUNT * sizeof (uint16_t)));
keys_averages_acc_count = 0;
idle_count = 0;
@@ -488,10 +372,13 @@ inline uint8_t scan_loop()
_delay_us(100);
}

if (!idle_count) {
if(idle) {
if ( !idle_count )
{
if( idle )
{
// aggregate
for (uint8_t i = 0; i < KEY_COUNT; ++i) {
for ( uint8_t i = 0; i < KEY_COUNT; ++i )
{
uint16_t acc = keys_averages_acc[i] >> IDLE_COUNT_SHIFT;
uint32_t av = keys_averages[i];

@@ -504,7 +391,8 @@ inline uint8_t scan_loop()
}
keys_averages_acc_count = 0;

if(boot_count >= WARMUP_LOOPS) {
if ( boot_count >= WARMUP_LOOPS )
{
dump();
}

@@ -568,7 +456,7 @@ void scan_finishedWithUSBBuffer( uint8_t sentKeys )
}


void _delay_loop(uint8_t __count)
void _delay_loop( uint8_t __count )
{
__asm__ volatile (
"1: dec %0" "\n\t"
@@ -579,17 +467,16 @@ void _delay_loop(uint8_t __count)
}


void setup_ADC (void) {
void setup_ADC()
{
// disable adc digital pins.
DIDR1 |= (1 << AIN0D) | (1<<AIN1D); // set disable on pins 1,0.
//DIDR0 = 0xff; // disable all. (port F, usually). - testing w/o disable.
DDRF = 0x0;
PORTF = 0x0;
uint8_t mux = 0 & 0x1f; // 0 == first. // 0x1e = 1.1V ref.

// 0 = external aref 1,1 = 2.56V internal ref
uint8_t aref = ((1 << REFS1) | (1 << REFS0)) & ((1 << REFS1) | (1 << REFS0));
// uint8_t adlar = 0xff & (1 << ADLAR); // 1 := left justify bits, 0 := right
uint8_t adate = (1 << ADATE) & (1 << ADATE); // trigger enable
uint8_t trig = 0 & ((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2)); // 0 = free running
// ps2, ps1 := /64 ( 2^6 ) ps2 := /16 (2^4), ps1 := 4, ps0 :=2, PS1,PS0 := 8 (2^8)
@@ -597,10 +484,6 @@ void setup_ADC (void) {
uint8_t hispeed = (1 << ADHSM);
uint8_t en_mux = (1 << ACME);

//ADCSRA = (ADCSRA & ~PRESCALES) | ((1 << ADPS1) | (1 << ADPS2)); // 2, 1 := /64 ( 2^6 )
//ADCSRA = (ADCSRA & ~PRESCALES) | ((1 << ADPS0) | (1 << ADPS2)); // 2, 0 := /32 ( 2^5 )
//ADCSRA = (ADCSRA & ~PRESCALES) | ((1 << ADPS2)); // 2 := /16 ( 2^4 )

ADCSRA = (1 << ADEN) | prescale; // ADC enable

// select ref.
@@ -609,38 +492,23 @@ void setup_ADC (void) {
//ADMUX &= ~((1 << REFS1) | (1 << REFS0)); // 0,0 : aref.
ADMUX = aref | mux | ADLAR_BITS;

// enable MUX
// ADCSRB |= (1 << ACME); // enable
// ADCSRB &= ~(1 << ADEN); // ?

// select first mux.
//ADMUX = (ADMUX & ~MUXES); // start at 000 = ADC0

// clear adlar to left justify data
//ADMUX = ~();

// set adlar to right justify data
//ADMUX |= (1 << ADLAR);


// set free-running
ADCSRA |= adate; // trigger enable
ADCSRB = en_mux | hispeed | trig | (ADCSRB & ~((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2))); // trigger select free running

// ADCSRA |= (1 << ADATE); // tiggger enable

ADCSRA |= (1 << ADEN); // ADC enable
ADCSRA |= (1 << ADSC); // start conversions q
}


void recovery(uint8_t on) {
DDRB |= (1 << RECOVERY_CONTROL);
PORTB &= ~(1 << RECOVERY_SINK); // SINK always zero
DDRB &= ~(1 << RECOVERY_SOURCE); // SOURCE high imp
void recovery( uint8_t on )
{
DDRB |= (1 << RECOVERY_CONTROL);
PORTB &= ~(1 << RECOVERY_SINK); // SINK always zero
DDRB &= ~(1 << RECOVERY_SOURCE); // SOURCE high imp

if(on) {
if ( on )
{
// set strobes to sink to gnd.
DDRC |= C_MASK;
DDRD |= D_MASK;
@@ -650,38 +518,38 @@ void recovery(uint8_t on) {
PORTD &= ~D_MASK;
PORTE &= ~E_MASK;

DDRB |= (1 << RECOVERY_SINK); // SINK pull

DDRB |= (1 << RECOVERY_SINK); // SINK pull
PORTB |= (1 << RECOVERY_CONTROL);

PORTB |= (1 << RECOVERY_SOURCE); // SOURCE high
DDRB |= (1 << RECOVERY_SOURCE);
} else {
// _delay_loop(10);
DDRB |= (1 << RECOVERY_SOURCE);
}
else
{
PORTB &= ~(1 << RECOVERY_CONTROL);

DDRB &= ~(1 << RECOVERY_SOURCE);
DDRB &= ~(1 << RECOVERY_SOURCE);
PORTB &= ~(1 << RECOVERY_SOURCE); // SOURCE low
DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp

//DDRB &= ~(1 << RECOVERY_SINK);
DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp
}
}


void hold_sample(uint8_t on) {
if (!on) {
void hold_sample( uint8_t on )
{
if ( !on )
{
PORTB |= (1 << SAMPLE_CONTROL);
DDRB |= (1 << SAMPLE_CONTROL);
} else {
DDRB |= (1 << SAMPLE_CONTROL);
DDRB |= (1 << SAMPLE_CONTROL);
}
else
{
DDRB |= (1 << SAMPLE_CONTROL);
PORTB &= ~(1 << SAMPLE_CONTROL);
}
}


void strobe_w(uint8_t strobe_num) {
void strobe_w( uint8_t strobe_num )
{
PORTC &= ~(C_MASK);
PORTD &= ~(D_MASK);
PORTE &= ~(E_MASK);
@@ -873,65 +741,61 @@ void strobe_w(uint8_t strobe_num) {
}


inline uint16_t getADC() {
inline uint16_t getADC(void)
{
ADCSRA |= (1 << ADIF); // clear int flag by writing 1.

//wait for last read to complete.
while (! (ADCSRA & (1 << ADIF)));
while ( !( ADCSRA & (1 << ADIF) ) );

return ADC; // return sample
}


int sampleColumn_8x(uint8_t column, uint16_t * buffer) {
int sampleColumn_8x( uint8_t column, uint16_t * buffer )
{
// ensure all probe lines are driven low, and chill for recovery delay.
uint16_t sample;

ADCSRA |= (1 << ADEN) | (1 << ADSC); // enable and start conversions

// sync up with adc clock:
//sample = getADC();

PORTC &= ~C_MASK;
PORTD &= ~D_MASK;
PORTE &= ~E_MASK;

PORTF = 0;
DDRF = 0;
DDRF = 0;

recovery(OFF);
strobe_w(column);

hold_sample(OFF);
SET_FULL_MUX(0);
for(uint8_t i=0; i < STROBE_SETTLE; ++i) {
sample = getADC();
}
for ( uint8_t i = 0; i < STROBE_SETTLE; ++i ) { getADC(); }
hold_sample(ON);

#undef MUX_SETTLE

#if (MUX_SETTLE)
for(uint8_t mux=0; mux < 8; ++mux) {
for ( uint8_t mux = 0; mux < 8; ++mux )
{
SET_FULL_MUX(mux); // our sample will use this
// wait for mux to settle.
for(uint8_t i=0; i < MUX_SETTLE; ++i) {
sample = getADC();
}

// wait for mux to settle.
for ( uint8_t i = 0; i < MUX_SETTLE; ++i ) { getADC(); }

// retrieve current read.
buffer[mux] = getADC();// - OFFSET_VOLTAGE;

buffer[mux] = getADC();
}
#else
uint8_t mux=0;
uint8_t mux = 0;
SET_FULL_MUX(mux);
sample = getADC(); // throw away; unknown mux.
getADC(); // throw away; unknown mux.
do {
SET_FULL_MUX(mux + 1); // our *next* sample will use this

// retrieve current read.
buffer[mux] = getADC();// - OFFSET_VOLTAGE;
buffer[mux] = getADC();
mux++;

} while (mux < 8);
@@ -956,16 +820,18 @@ int sampleColumn_8x(uint8_t column, uint16_t * buffer) {
}


int sampleColumn(uint8_t column) {
int sampleColumn( uint8_t column )
{
int rval = 0;

rval = sampleColumn_8x(column, samples+SAMPLE_OFFSET);
rval = sampleColumn_8x( column, samples + SAMPLE_OFFSET );

#if (BUMP_DETECTION)
for(uint8_t i=0; i<8; ++i) {
if(samples[SAMPLE_OFFSET + i] - adc_mux_averages[i] > BUMP_THRESHOLD) {
for ( uint8_t i = 0; i < 8; ++i )
{
if ( samples[SAMPLE_OFFSET + i] - adc_mux_averages[i] > BUMP_THRESHOLD )
{
// was a hump

_delay_us(BUMP_REST_US);
rval++;
error = 0x50;
@@ -979,15 +845,15 @@ int sampleColumn(uint8_t column) {
}


uint8_t testColumn(uint8_t strobe)
uint8_t testColumn( uint8_t strobe )
{
uint8_t column = 0;
uint8_t bit = 1;
for (uint8_t i = 0; i < MUXES_COUNT; ++i)
for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
{
uint16_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + i];

if ((db_sample = samples[SAMPLE_OFFSET + i] >> 1) > (db_threshold = threshold) + (db_delta = delta))
if ( (db_sample = samples[SAMPLE_OFFSET + i] >> 1) > (db_threshold = threshold) + (db_delta = delta) )
{
column |= bit;
}
@@ -1014,17 +880,20 @@ uint8_t testColumn(uint8_t strobe)
}


void dumpkeys(void) {
//print(" \n");
if(error) {
/*
if (count >= WARMUP_LOOPS && error) {
void dumpkeys()
{
if ( error )
{
erro_print("Problem detected...");

if ( boot_count >= WARMUP_LOOPS )
{
dump();
}
*/

// Key scan debug
for (uint8_t i=0; i < STROBE_LINES; ++i) {
for ( uint8_t i = 0; i < STROBE_LINES; ++i )
{
printHex(usb_keymap[i]);
print(" ");
}
@@ -1039,16 +908,19 @@ void dumpkeys(void) {
}

// XXX Will be cleaned up eventually, but this will do for now :P -HaaTa
for (uint8_t i=0; i < STROBE_LINES; ++i) {
for(uint8_t j=0; j<MUXES_COUNT; ++j) {
if ( usb_keymap[i] & (1 << j) ) {
for ( uint8_t i = 0; i < STROBE_LINES; ++i )
{
for ( uint8_t j = 0; j < MUXES_COUNT; ++j )
{
if ( usb_keymap[i] & (1 << j) )
{
uint8_t key = (i << MUXES_COUNT_XSHIFT) + j;

// Add to the Macro processing buffer
// Automatically handles converting to a USB code and sending off to the PC
//bufferAdd( key );

if(usb_dirty)
if ( usb_dirty )
{
printHex( key );
print("\n");
@@ -1056,37 +928,47 @@ void dumpkeys(void) {
}
}
}
//if(usb_dirty) print("\n");
usb_keyboard_send();
}


void dump(void) {

//#define DEBUG_FULL_SAMPLES_AVERAGES
#ifdef DEBUG_FULL_SAMPLES_AVERAGES
if(!dump_count) { // we don't want to debug-out during the measurements.

// we don't want to debug-out during the measurements.
if ( !dump_count )
{
// Averages currently set per key
for(int i =0; i< KEY_COUNT; ++i) {
if(!(i & 0x0f)) {
for ( int i = 0; i < KEY_COUNT; ++i )
{
if ( !(i & 0x0f) )
{
print("\n");
} else if (!(i & 0x07)) {
}
else if ( !(i & 0x07) )
{
print(" ");
}

print(" ");
printHex (keys_averages[i]);
printHex( keys_averages[i] );
}

print("\n");

// Previously read full ADC scans?
for(int i =0; i< KEY_COUNT; ++i) {
if(!(i & 0x0f)) {
for ( int i = 0; i< KEY_COUNT; ++i)
{
if ( !(i & 0x0f) )
{
print("\n");
} else if (!(i & 0x07)) {
}
else if ( !(i & 0x07) )
{
print(" ");
}

print(" ");
printHex(full_samples[i]);
}
@@ -1102,7 +984,8 @@ void dump(void) {

// Previously read ADC scans on current strobe
print(" :");
for (uint8_t i=0; i < MUXES_COUNT; ++i) {
for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
{
print(" ");
printHex(full_samples[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
}
@@ -1110,19 +993,16 @@ void dump(void) {
// Averages current set on current strobe
print(" :");

for (uint8_t i=0; i < MUXES_COUNT; ++i) {
for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
{
print(" ");
printHex(keys_averages[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
}

#endif

//#define DEBUG_DELTA_SAMPLE_THRESHOLD
#ifdef DEBUG_DELTA_SAMPLE_THRESHOLD
print("\n");
//uint16_t db_delta = 0;
//uint16_t db_sample = 0;
//uint16_t db_threshold = 0;
printHex( db_delta );
print(" ");
printHex( db_sample );
@@ -1132,12 +1012,12 @@ void dump(void) {
printHex( column );
#endif

//#define DEBUG_USB_KEYMAP
#ifdef DEBUG_USB_KEYMAP
print("\n ");

// Current keymap values
for (uint8_t i=0; i < STROBE_LINES; ++i) {
for ( uint8_t i = 0; i < STROBE_LINES; ++i )
{
printHex(cur_keymap[i]);
print(" ");
}

+ 12
- 2
Scan/avr-capsense/scan_loop.h View File

@@ -1,7 +1,17 @@
/* Copyright (C) 2013 by Jacob Alexander
*
* dfj, put whatever license here you want
* This file will probably be removed though.
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef __SCAN_LOOP_H