Browse Source

Various KType updates

- Updated port switching pins (split USB and UART switching)
- Added basic support for 2nd i2c bus
- Updated key matrix
- Fixed udev rules
- Added missing register defines
ICPad
Jacob Alexander 8 years ago
parent
commit
d1e969ce8f

+ 1
- 1
98-kiibohd.rules View File

@@ -4,7 +4,7 @@ ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="04[789]?", ENV{MTP_NO_PROBE}="1"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="04[789]?", MODE:="0666"

# Kiibohd Serial Interface
KERNEL=="ttyACM*", ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="04[789]?", SYMLINK+="kiibohd", MODE:="0666",
KERNEL=="ttyACM*", ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="04[789]?", SYMLINK+="kiibohd", MODE:="0666"
KERNEL=="ttyACM*", ATTRS{idVendor}=="1c11", ATTRS{idProduct}=="b04d", SYMLINK+="kiibohd", MODE:="0666"
KERNEL=="ttyACM*", ATTRS{idVendor}=="1c11", ATTRS{idProduct}=="f05c", SYMLINK+="kiibohd", MODE:="0666"


+ 15
- 1
Lib/mk20dx.h View File

@@ -1,7 +1,7 @@
/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
* Modified by Jacob Alexander 2014-2015
* Modified by Jacob Alexander 2014-2016
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
@@ -1457,6 +1457,20 @@ typedef struct {
#define I2C0_SLTH *(volatile uint8_t *)0x4006600A // I2C SCL Low Timeout Register High
#define I2C0_SLTL *(volatile uint8_t *)0x4006600B // I2C SCL Low Timeout Register Low

#define I2C1_A1 *(volatile uint8_t *)0x40067000 // I2C Address Register 1
#define I2C1_F *(volatile uint8_t *)0x40067001 // I2C Frequency Divider register
#define I2C1_C1 *(volatile uint8_t *)0x40067002 // I2C Control Register 1
#define I2C1_S *(volatile uint8_t *)0x40067003 // I2C Status register
#define I2C1_D *(volatile uint8_t *)0x40067004 // I2C Data I/O register
#define I2C1_C2 *(volatile uint8_t *)0x40067005 // I2C Control Register 2
#define I2C1_FLT *(volatile uint8_t *)0x40067006 // I2C Programmable Input Glitch Filter register
#define I2C1_RA *(volatile uint8_t *)0x40067007 // I2C Range Address register
#define I2C1_SMB *(volatile uint8_t *)0x40067008 // I2C SMBus Control and Status register
#define I2C1_A2 *(volatile uint8_t *)0x40067009 // I2C Address Register 2
#define I2C1_SLTH *(volatile uint8_t *)0x4006700A // I2C SCL Low Timeout Register High
#define I2C1_SLTL *(volatile uint8_t *)0x4006700B // I2C SCL Low Timeout Register Low


// Chapter 45: Universal Asynchronous Receiver/Transmitter (UART)
#define UART0_BDH *(volatile uint8_t *)0x4006A000 // UART Baud Rate Registers: High
#define UART0_BDL *(volatile uint8_t *)0x4006A001 // UART Baud Rate Registers: Low

+ 3
- 2
Macro/PixelMap/pixel.c View File

@@ -111,7 +111,7 @@ PixelBuf Pixel_Buffers[] = {


// Pixel Mapping
#define Pixel_TotalPixels 128 // TODO Generate
#define Pixel_TotalPixels 127 // TODO Generate
PixelElement Pixel_Mapping[] = {
// Function Row (1-16)
Pixel_RGBChannel(0,33,49), // 1
@@ -2593,7 +2593,8 @@ inline void Pixel_process()
uint16_t ch;

// Only update 50 positions at a time
for ( ch = Pixel_testPos; ch < Pixel_testPos + 50 && ch < Pixel_TotalChannels; ch++ )
for ( ch = Pixel_testPos; ch < Pixel_TotalChannels; ch++ )
//for ( ch = Pixel_testPos; ch < Pixel_testPos + 50 && ch < Pixel_TotalChannels; ch++ )
{
// Toggle channel
Pixel_channelToggle( ch );

+ 71
- 1
Output/usbMuxUart/output_com.c View File

@@ -39,6 +39,9 @@
#include <arm/usb_serial.h>
#endif

// KLL
#include <kll_defs.h>

// Local Includes
#include "output_com.h"

@@ -117,15 +120,25 @@ uint8_t USBKeys_SentCLI = 0;
// 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana
volatile uint8_t USBKeys_LEDs = 0;

// Currently pressed mouse buttons, bitmask, 0 represents no buttons pressed
volatile uint16_t USBMouse_Buttons = 0;

// Relative mouse axis movement, stores pending movement
volatile uint16_t USBMouse_Relative_x = 0;
volatile uint16_t USBMouse_Relative_y = 0;

// Protocol setting from the host.
// 0 - Boot Mode
// 1 - NKRO Mode (Default, unless set by a BIOS or boot interface)
volatile uint8_t USBKeys_Protocol = 1;
volatile uint8_t USBKeys_Protocol = USBProtocol_define;

// Indicate if USB should send update
// OS only needs update if there has been a change in state
USBKeyChangeState USBKeys_Changed = USBKeyChangeState_None;

// Indicate if USB should send update
USBMouseChangeState USBMouse_Changed = 0;

// the idle configuration, how often we send the report to the
// host (ms * 4) even when it hasn't changed
uint8_t USBKeys_Idle_Config = 125;
@@ -511,6 +524,63 @@ void Output_flashMode_capability( uint8_t state, uint8_t stateType, uint8_t *arg
Output_firmwareReload();
}

// Sends a mouse command over the USB Output buffer
// XXX This function *will* be changing in the future
// If you use it, be prepared that your .kll files will break in the future (post KLL 0.5)
// Argument #1: USB Mouse Button (16 bit)
// Argument #2: USB X Axis (16 bit) relative
// Argument #3: USB Y Axis (16 bit) relative
void Output_usbMouse_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Output_usbMouse(mouseButton,relX,relY)");
return;
}

// Determine which mouse button was sent
// The USB spec defines up to a max of 0xFFFF buttons
// The usual are:
// 1 - Button 1 - (Primary)
// 2 - Button 2 - (Secondary)
// 3 - Button 3 - (Tertiary)
uint16_t mouse_button = *(uint16_t*)(&args[0]);

// X/Y Relative Axis
uint16_t mouse_x = *(uint16_t*)(&args[2]);
uint16_t mouse_y = *(uint16_t*)(&args[4]);

// Adjust for bit shift
uint16_t mouse_button_shift = mouse_button - 1;

// Only send mouse button if in press or hold state
if ( stateType == 0x00 && state == 0x03 ) // Release state
{
// Release
if ( mouse_button )
USBMouse_Buttons &= ~(1 << mouse_button_shift);
}
else
{
// Press or hold
if ( mouse_button )
USBMouse_Buttons |= (1 << mouse_button_shift);

if ( mouse_x )
USBMouse_Relative_x = mouse_x;
if ( mouse_y )
USBMouse_Relative_y = mouse_y;
}

// Trigger updates
if ( mouse_button )
USBMouse_Changed |= USBMouseChangeState_Buttons;

if ( mouse_x || mouse_y )
USBMouse_Changed |= USBMouseChangeState_Relative;
}



// ----- Functions -----

+ 26
- 3
Scan/ISSILed/capabilities.kll View File

@@ -1,6 +1,6 @@
Name = ISSILedCapabilities;
Version = 0.2;
Author = "HaaTa (Jacob Alexander) 2015";
Author = "HaaTa (Jacob Alexander) 2015-2016";
KLL = 0.3d;

# Modified Date
@@ -22,12 +22,35 @@ Date = 2015-10-09;
# i.e. 23 then 144
ledControl => LED_control_capability( mode : 1, amount : 1, index : 2 );


# Defines available to the ISSILed sub-module

# Driver Chip
# Selects which driver chip being used
# Set to 1 to enable
# Valid Chips
# 31FL3731 - http://www.issi.com/WW/pdf/31FL3731.pdf (31FL3731C has the same datasheet)
# 31FL3732 - http://www.issi.com/WW/pdf/31FL3732.pdf
ISSI_Chip_31FL3731 => ISSI_Chip_31FL3731_define;
ISSI_Chip_31FL3732 => ISSI_Chip_31FL3732_define;
ISSI_Chip_31FL3731 = 0;
ISSI_Chip_31FL3732 = 0;

# Global Brightness
# 31FL3732 only
# 0 to 0xFF (255)
# See datasheet for current calculation, depends on Rext
ISSI_Global_Brightness => ISSI_Global_Brightness_define;
ISSI_Global_Brightness = 0xFF;

# Available ISSI Chips
ISSI_Chips => ISSI_Chips_define;
ISSI_Chips = 1; # 1 by default

# I2C Buses
ISSI_I2C_Buses => ISSI_I2C_Buses_define;
ISSI_I2C_Buses = 1; # 1 by default

# Default animation speed
# Can be set from 0 to 63 (A)
# Formula is TxA (T is approx 11ms)
@@ -40,9 +63,9 @@ ISSI_Chips = 1; # 1 by default
# For a 400 kHz I2C, with a single chip, updating all 144 channels, generally 30 fps is the max for continuous animations
# Each additional chip consumes more bandwidth
# 20 - 4.5 fps - Slow, but should always work without glitches
# See (http://www.issi.com/WW/pdf/31FL3731C.pdf) for details
# See chip datasheet (above) for details
ISSI_AnimationSpeed => ISSI_AnimationSpeed_define;
ISSI_AnimationSpeed = 20; # 20 by default
ISSI_AnimationSpeed = 4; # 20 by default

# LED Default Enable Mask
#

+ 130
- 54
Scan/ISSILed/i2c.c View File

@@ -1,6 +1,6 @@
/*
* Copyright ( C ) 2014 Jan Rychter
* Modifications ( C ) 2015 Jacob Alexander
* Copyright (C) 2014 Jan Rychter
* Modifications (C) 2015-2016 Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files ( the "Software" ), to deal
@@ -28,6 +28,7 @@

// Project Includes
#include <print.h>
#include <kll_defs.h>

// Local Includes
#include "i2c.h"
@@ -36,38 +37,78 @@

// ----- Variables -----

volatile I2C_Channel i2c_channels[1];
volatile I2C_Channel i2c_channels[ISSI_I2C_Buses_define];

uint32_t i2c_offset[] = {
0x0, // Bus 0
0x1000, // Bus 1
};



// ----- Functions -----

inline void i2c_setup( )
inline void i2c_setup()
{
// Enable I2C internal clock
SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0

// External pull-up resistor
PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);

// SCL Frequency Divider
// 1.8 MBaud ( likely higher than spec )
// 0x82 -> 36 MHz / (4 * 3) = 2.25 MBaud
// 0x80 => mul(4)
// 0x05 => ICL(5)
I2C0_F = 0x84;
I2C0_FLT = 4;
I2C0_C1 = I2C_C1_IICEN;
I2C0_C2 = I2C_C2_HDRS; // High drive select

// Enable I2C Interrupt
NVIC_ENABLE_IRQ( IRQ_I2C0 );
for ( uint8_t ch = 0; ch < ISSI_I2C_Buses_define; ch++ )
{
volatile uint8_t *I2C_F = (uint8_t*)(&I2C0_F) + i2c_offset[ch];
volatile uint8_t *I2C_FLT = (uint8_t*)(&I2C0_FLT) + i2c_offset[ch];
volatile uint8_t *I2C_C1 = (uint8_t*)(&I2C0_C1) + i2c_offset[ch];
volatile uint8_t *I2C_C2 = (uint8_t*)(&I2C0_C2) + i2c_offset[ch];

switch ( ch )
{
case 0:
// Enable I2C internal clock
SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0

// External pull-up resistor
PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);

break;

case 1:
// Enable I2C internal clock
SIM_SCGC4 |= SIM_SCGC4_I2C1; // Bus 1

// External pull-up resistor
PORTC_PCR10 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
PORTC_PCR11 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);

break;
}

// SCL Frequency Divider
// 1.8 MBaud ( likely higher than spec )
// 0x82 -> 36 MHz / (4 * 3) = 2.25 MBaud
// 0x80 => mul(4)
// 0x05 => ICL(5)
*I2C_F = 0x84;
*I2C_FLT = 4;
*I2C_C1 = I2C_C1_IICEN;
*I2C_C2 = I2C_C2_HDRS; // High drive select

switch ( ch )
{
case 0:
// Enable I2C Interrupt
NVIC_ENABLE_IRQ( IRQ_I2C0 );
break;

case 1:

// Enable I2C Interrupt
NVIC_ENABLE_IRQ( IRQ_I2C1 );
break;
}
}
}

uint8_t i2c_busy()
uint8_t i2c_busy( uint8_t ch )
{
volatile I2C_Channel *channel = &( i2c_channels[0] );
volatile I2C_Channel *channel = &( i2c_channels[ch] );
if ( channel->status == I2C_BUSY )
{
return 1;
@@ -76,19 +117,35 @@ uint8_t i2c_busy()
return 0;
}

uint8_t i2c_any_busy()
{
for ( uint8_t ch = 0; ch < ISSI_I2C_Buses_define; ch++ )
{
if ( i2c_busy( ch ) )
return 1;
}
return 0;
}


// These are here for readability and correspond to bit 0 of the address byte.
#define I2C_WRITING 0
#define I2C_READING 1

int32_t i2c_send_sequence(
uint8_t ch,
uint16_t *sequence,
uint32_t sequence_length,
uint8_t *received_data,
void ( *callback_fn )( void* ),
void *user_data
) {
volatile I2C_Channel *channel = &( i2c_channels[0] );
volatile I2C_Channel *channel = &( i2c_channels[ch] );

volatile uint8_t *I2C_C1 = (uint8_t*)(&I2C0_C1) + i2c_offset[ch];
volatile uint8_t *I2C_S = (uint8_t*)(&I2C0_S) + i2c_offset[ch];
volatile uint8_t *I2C_D = (uint8_t*)(&I2C0_D) + i2c_offset[ch];

int32_t result = 0;
uint8_t status;

@@ -118,13 +175,13 @@ int32_t i2c_send_sequence(
// reads_ahead does not need to be initialized

// Acknowledge the interrupt request, just in case
I2C0_S |= I2C_S_IICIF;
I2C0_C1 = ( I2C_C1_IICEN | I2C_C1_IICIE );
*I2C_S |= I2C_S_IICIF;
*I2C_C1 = ( I2C_C1_IICEN | I2C_C1_IICIE );

// Generate a start condition and prepare for transmitting.
I2C0_C1 |= ( I2C_C1_MST | I2C_C1_TX );
*I2C_C1 |= ( I2C_C1_MST | I2C_C1_TX );

status = I2C0_S;
status = *I2C_S;
if ( status & I2C_S_ARBL )
{
warn_print("Arbitration lost");
@@ -133,34 +190,42 @@ int32_t i2c_send_sequence(
}

// Write the first (address) byte.
I2C0_D = *channel->sequence++;
*I2C_D = *channel->sequence++;

// Everything is OK.
return result;

i2c_send_sequence_cleanup:
I2C0_C1 &= ~( I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX );
*I2C_C1 &= ~( I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX );
channel->status = I2C_ERROR;
return result;
}


void i2c0_isr()
void i2c_isr( uint8_t ch )
{
volatile I2C_Channel* channel = &i2c_channels[0];
volatile I2C_Channel* channel = &i2c_channels[ch];

volatile uint8_t *I2C_C1 = (uint8_t*)(&I2C0_C1) + i2c_offset[ch];
volatile uint8_t *I2C_S = (uint8_t*)(&I2C0_S) + i2c_offset[ch];
volatile uint8_t *I2C_D = (uint8_t*)(&I2C0_D) + i2c_offset[ch];

uint8_t element;
uint8_t status;

status = I2C0_S;
status = *I2C_S;

// Acknowledge the interrupt request
I2C0_S |= I2C_S_IICIF;
*I2C_S |= I2C_S_IICIF;

// Arbitration problem
if ( status & I2C_S_ARBL )
{
warn_print("Arbitration error");
I2C0_S |= I2C_S_ARBL;
warn_msg("Arbitration error. Bus: ");
printHex( ch );
print(NL);

*I2C_S |= I2C_S_ARBL;
goto i2c_isr_error;
}

@@ -174,17 +239,17 @@ void i2c0_isr()
// switch to TX mode, either to generate a repeated start condition, or to avoid triggering another I2C read
// when reading the contents of the data register.
case 0:
I2C0_C1 |= I2C_C1_TX;
*I2C_C1 |= I2C_C1_TX;

// Perform the final data register read now that it's safe to do so.
*channel->received_data++ = I2C0_D;
*channel->received_data++ = *I2C_D;

// Do we have a repeated start?
if ( ( channel->sequence < channel->sequence_end ) && ( *channel->sequence == I2C_RESTART ) )
{

// Generate a repeated start condition.
I2C0_C1 |= I2C_C1_RSTA;
*I2C_C1 |= I2C_C1_RSTA;

// A restart is processed immediately, so we need to get a new element from our sequence. This is safe, because
// a sequence cannot end with a RESTART: there has to be something after it. Note that the only thing that can
@@ -192,7 +257,7 @@ void i2c0_isr()
channel->txrx = I2C_WRITING;
channel->sequence++;
element = *channel->sequence;
I2C0_D = element;
*I2C_D = element;
}
else
{
@@ -202,12 +267,12 @@ void i2c0_isr()

case 1:
// do not ACK the final read
I2C0_C1 |= I2C_C1_TXAK;
*channel->received_data++ = I2C0_D;
*I2C_C1 |= I2C_C1_TXAK;
*channel->received_data++ = *I2C_D;
break;

default:
*channel->received_data++ = I2C0_D;
*channel->received_data++ = *I2C_D;
break;
}

@@ -234,7 +299,7 @@ void i2c0_isr()
// Do we have a restart? If so, generate repeated start and make sure TX is on.
if ( element == I2C_RESTART )
{
I2C0_C1 |= I2C_C1_RSTA | I2C_C1_TX;
*I2C_C1 |= I2C_C1_RSTA | I2C_C1_TX;

// A restart is processed immediately, so we need to get a new element from our sequence.
// This is safe, because a sequence cannot end with a RESTART: there has to be something after it.
@@ -242,7 +307,7 @@ void i2c0_isr()
element = *channel->sequence;

// Note that the only thing that can come after a restart is a write.
I2C0_D = element;
*I2C_D = element;
}
else
{
@@ -260,29 +325,29 @@ void i2c0_isr()
}

// Switch to RX mode.
I2C0_C1 &= ~I2C_C1_TX;
*I2C_C1 &= ~I2C_C1_TX;

// do not ACK the final read
if ( channel->reads_ahead == 1 )
{
I2C0_C1 |= I2C_C1_TXAK;
*I2C_C1 |= I2C_C1_TXAK;
}
// ACK all but the final read
else
{
I2C0_C1 &= ~( I2C_C1_TXAK );
*I2C_C1 &= ~( I2C_C1_TXAK );
}

// Dummy read comes first, note that this is not valid data!
// This only triggers a read, actual data will come in the next interrupt call and overwrite this.
// This is why we do not increment the received_data pointer.
*channel->received_data = I2C0_D;
*channel->received_data = *I2C_D;
channel->reads_ahead--;
}
// Not a restart, not a read, must be a write.
else
{
I2C0_D = element;
*I2C_D = element;
}
}
}
@@ -292,13 +357,14 @@ void i2c0_isr()

i2c_isr_stop:
// Generate STOP ( set MST=0 ), switch to RX mode, and disable further interrupts.
I2C0_C1 &= ~( I2C_C1_MST | I2C_C1_IICIE | I2C_C1_TXAK );
*I2C_C1 &= ~( I2C_C1_MST | I2C_C1_IICIE | I2C_C1_TXAK );
channel->status = I2C_AVAILABLE;

// Call the user-supplied callback function upon successful completion (if it exists).
if ( channel->callback_fn )
{
// Delay 10 microseconds before starting linked function
// TODO, is this chip dependent? -HaaTa
delayMicroseconds(10);
( *channel->callback_fn )( channel->user_data );
}
@@ -306,8 +372,18 @@ i2c_isr_stop:

i2c_isr_error:
// Generate STOP and disable further interrupts.
I2C0_C1 &= ~( I2C_C1_MST | I2C_C1_IICIE );
*I2C_C1 &= ~( I2C_C1_MST | I2C_C1_IICIE );
channel->status = I2C_ERROR;
return;
}

void i2c0_isr()
{
i2c_isr( 0 );
}

void i2c1_isr()
{
i2c_isr( 1 );
}


+ 7
- 11
Scan/ISSILed/i2c.h View File

@@ -1,6 +1,6 @@
/*
* Copyright (C) 2014 Jan Rychter
* Modifications (C) 2015 Jacob Alexander
* Modifications (C) 2015-2016 Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@@ -58,16 +58,10 @@ typedef struct {



// ----- Variables -----

extern volatile I2C_Channel i2c_channels[1];



// ----- Functions -----

/*
* I2C Module Setup - Channel 0 only
* I2C Module Setup
*/

void i2c_setup();
@@ -95,6 +89,7 @@ void i2c_setup();
*/

int32_t i2c_send_sequence(
uint8_t ch,
uint16_t *sequence,
uint32_t sequence_length,
uint8_t *received_data,
@@ -105,11 +100,12 @@ int32_t i2c_send_sequence(
/*
* Convenience macros
*/
#define i2c_send(seq, seq_len) i2c_send_sequence( seq, seq_len, 0, 0, 0 )
#define i2c_read(seq, seq_len, rec) i2c_send_sequence( seq, seq_len, rec, 0, 0 )
#define i2c_send(ch, seq, seq_len) i2c_send_sequence( ch, seq, seq_len, 0, 0, 0 )
#define i2c_read(ch, seq, seq_len, rec) i2c_send_sequence( ch, seq, seq_len, rec, 0, 0 )

/*
* Check if busy
*/
uint8_t i2c_busy();
uint8_t i2c_busy( uint8_t ch );
uint8_t i2c_any_busy();


+ 159
- 56
Scan/ISSILed/led_scan.c View File

@@ -52,34 +52,65 @@

// ISSI Addresses
// IS31FL3731 (max 4 channels per bus)
#if 1
#if ISSI_Chip_31FL3731_define == 1
#define ISSI_Ch1 0xE8
#define ISSI_Ch2 0xEA
#define ISSI_Ch3 0xEC
#define ISSI_Ch4 0xEE

// IS31FL3732 (max 16 channels per bus)
#elif ISSI_Chip_31FL3732_define == 1
#define ISSI_Ch1 0xA0
#define ISSI_Ch2 0xA2
#define ISSI_Ch3 0xA4
#define ISSI_Ch4 0xA6
#define ISSI_Ch5 0xA8
#define ISSI_Ch6 0xAA
#define ISSI_Ch7 0xAC
#define ISSI_Ch8 0xAE
#define ISSI_Ch9 0xB0
#define ISSI_Ch10 0xB2
#define ISSI_Ch11 0xB4
#define ISSI_Ch12 0xB6
#define ISSI_Ch13 0xB8
#define ISSI_Ch14 0xBA
#define ISSI_Ch15 0xBC
#define ISSI_Ch16 0xBE

#else
#define ISSI_Ch1 0xB0
#define ISSI_Ch2 0xB2
#define ISSI_Ch3 0xB4
#define ISSI_Ch4 0xB6
#error "ISSI Driver Chip not defined in Scan defaultMap.kll..."
#endif

// TODO Generate in KLL
#define LED_MapCh1_Bus_define 0x0
#define LED_MapCh1_Addr_define ISSI_Ch1
#define LED_MapCh2_Bus_define 0x0
#define LED_MapCh2_Addr_define ISSI_Ch2
#define LED_MapCh3_Bus_define 0x1
#define LED_MapCh3_Addr_define ISSI_Ch1
#define LED_MapCh4_Bus_define 0x1
#define LED_MapCh4_Addr_define ISSI_Ch2



// ----- Macros -----

#define LED_ChannelMapDefine(ch) \
{ \
LED_MapCh##ch##_Bus_define, /* I2C bus number */ \
LED_MapCh##ch##_Addr_define, /* I2C address */ \
}

#define LED_MaskDefine(ch) \
{ \
ISSI_Ch##ch, /* I2C address */ \
LED_MapCh##ch##_Addr_define, /* I2C address */ \
0x00, /* Starting register address */ \
{ ISSILedMask##ch##_define }, \
}

#define LED_BrightnessDefine(ch) \
{ \
ISSI_Ch##ch, /* I2C address */ \
LED_MapCh##ch##_Addr_define, /* I2C address */ \
0x24, /* Starting register address */ \
{ ISSILedBrightness##ch##_define }, \
}
@@ -100,6 +131,11 @@ typedef struct LED_EnableBuffer {
uint16_t buffer[LED_EnableBufferLength];
} LED_EnableBuffer;

typedef struct LED_ChannelMap {
uint8_t bus;
uint8_t addr;
} LED_ChannelMap;



// ----- Function Declarations -----
@@ -129,7 +165,7 @@ CLIDict_Def( ledCLIDict, "ISSI LED Module Commands" ) = {
};


volatile LED_Buffer LED_pageBuffer[ ISSI_Chips_define ];
volatile LED_Buffer LED_pageBuffer[ISSI_Chips_define];

uint8_t LED_FrameBuffersReady; // Starts at maximum, reset on interrupt from ISSI
volatile uint8_t LED_FrameBufferReset; // INTB interrupt received, reset available buffer count when ready
@@ -138,6 +174,21 @@ volatile uint8_t LED_FrameBufferReset; // INTB interrupt received, reset availa

uint8_t LED_displayFPS; // Display fps to cli

// TODO - Autogenerate for each keyboard
// ISSI Driver Channel to Bus:Address mapping
const LED_ChannelMap LED_ChannelMapping[ISSI_Chips_define] = {
LED_ChannelMapDefine( 1 ),
#if ISSI_Chips_define >= 2
LED_ChannelMapDefine( 2 ),
#endif
#if ISSI_Chips_define >= 3
LED_ChannelMapDefine( 3 ),
#endif
#if ISSI_Chips_define >= 4
LED_ChannelMapDefine( 4 ),
#endif
};

// Enable mask and default brightness for ISSI chip channel
const LED_EnableBuffer LED_ledEnableMask[ISSI_Chips_define] = {
LED_MaskDefine( 1 ),
@@ -192,7 +243,7 @@ void portb_isr()

// ----- Functions -----

void LED_zeroPages( uint8_t addr, uint8_t startPage, uint8_t numPages, uint8_t startReg, uint8_t endReg )
void LED_zeroPages( uint8_t bus, uint8_t addr, uint8_t startPage, uint8_t numPages, uint8_t startReg, uint8_t endReg )
{
// Clear Page
// Max length of a page + chip id + reg start
@@ -207,20 +258,20 @@ void LED_zeroPages( uint8_t addr, uint8_t startPage, uint8_t numPages, uint8_t s
uint16_t pageSetup[] = { addr, 0xFD, page };

// Setup page
while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
while ( i2c_send( bus, pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);

// Zero out page
while ( i2c_send( clearPage, 2 + endReg - startReg ) == -1 )
while ( i2c_send( bus, clearPage, 2 + endReg - startReg ) == -1 )
delay(1);
}

// Wait until finished zero'ing
while ( i2c_busy() )
while ( i2c_busy( bus ) )
delay(1);
}

void LED_sendPage( uint8_t addr, uint16_t *buffer, uint32_t len, uint8_t page )
void LED_sendPage( uint8_t bus, uint8_t addr, uint16_t *buffer, uint32_t len, uint8_t page )
{
/*
info_msg("I2C Send Page Addr: ");
@@ -236,11 +287,11 @@ void LED_sendPage( uint8_t addr, uint16_t *buffer, uint32_t len, uint8_t page )
uint16_t pageSetup[] = { addr, 0xFD, page };

// Setup page
while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
while ( i2c_send( bus, pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);

// Write page to I2C Tx Buffer
while ( i2c_send( buffer, len ) == -1 )
while ( i2c_send( bus, buffer, len ) == -1 )
delay(1);
}

@@ -253,9 +304,10 @@ void LED_syncReg( uint8_t reg, uint8_t val, uint8_t page )
// Setup each of the pages
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
pageSetup[0] = LED_pageBuffer[ ch ].i2c_addr;
pageSetup[0] = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;

while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
while ( i2c_send( bus, pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);
}

@@ -265,20 +317,21 @@ void LED_syncReg( uint8_t reg, uint8_t val, uint8_t page )
// Write to all the registers
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
writeData[0] = LED_pageBuffer[ ch ].i2c_addr;
writeData[0] = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;

// Delay very little to help with synchronization
while ( i2c_send( writeData, sizeof( writeData ) / 2 ) == -1 )
while ( i2c_send( bus, writeData, sizeof( writeData ) / 2 ) == -1 )
delayMicroseconds(10);
}

// Delay until written
while ( i2c_busy() )
while ( i2c_any_busy() )
delay(1);
}

// Write address
void LED_writeReg( uint8_t addr, uint8_t reg, uint8_t val, uint8_t page )
void LED_writeReg( uint8_t bus, uint8_t addr, uint8_t reg, uint8_t val, uint8_t page )
{
// Page Setup
uint16_t pageSetup[] = { addr, 0xFD, page };
@@ -287,37 +340,37 @@ void LED_writeReg( uint8_t addr, uint8_t reg, uint8_t val, uint8_t page )
uint16_t writeData[] = { addr, reg, val };

// Setup page
while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
while ( i2c_send( bus, pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);

// Write register
while ( i2c_send( writeData, sizeof( writeData ) / 2 ) == -1 )
while ( i2c_send( bus, writeData, sizeof( writeData ) / 2 ) == -1 )
delay(1);

// Delay until written
while ( i2c_busy() )
while ( i2c_busy( bus ) )
delay(1);
}

// Read address
// TODO Not working?
uint8_t LED_readReg( uint8_t addr, uint8_t reg, uint8_t page )
uint8_t LED_readReg( uint8_t bus, uint8_t addr, uint8_t reg, uint8_t page )
{
// Software shutdown must be enabled to read registers
LED_writeReg( addr, 0x0A, 0x00, 0x0B );
LED_writeReg( bus, addr, 0x0A, 0x00, 0x0B );

// Page Setup
uint16_t pageSetup[] = { addr, 0xFD, page };

// Setup page
while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
while ( i2c_send( bus, pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);

// Register Setup
uint16_t regSetup[] = { addr, reg };

// Configure register
while ( i2c_send( regSetup, sizeof( regSetup ) / 2 ) == -1 )
while ( i2c_send( bus, regSetup, sizeof( regSetup ) / 2 ) == -1 )
delay(1);

// Register Read Command
@@ -325,11 +378,11 @@ uint8_t LED_readReg( uint8_t addr, uint8_t reg, uint8_t page )
uint8_t recv_data;

// Request single register byte
while ( i2c_read( regReadCmd, sizeof( regReadCmd ) / 2, &recv_data ) == -1 )
while ( i2c_read( bus, regReadCmd, sizeof( regReadCmd ) / 2, &recv_data ) == -1 )
delay(1);

// Disable software shutdown
LED_writeReg( addr, 0x0A, 0x01, 0x0B );
LED_writeReg( bus, addr, 0x0A, 0x01, 0x0B );

return recv_data;
}
@@ -352,13 +405,15 @@ void LED_reset()
// Enable LEDs based upon mask
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_zeroPages( addr, 0x00, 8, 0x00, 0xB4 ); // LED Registers
uint8_t addr = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;
LED_zeroPages( bus, addr, 0x00, 8, 0x00, 0xB4 ); // LED Registers

// For each page
for ( uint8_t pg = 0; pg < LED_FrameBuffersMax * 2; pg++ )
{
LED_sendPage(
bus,
addr,
(uint16_t*)&LED_ledEnableMask[ ch ],
sizeof( LED_EnableBuffer ) / 2,
@@ -367,20 +422,33 @@ void LED_reset()
}
}

// Set global brightness control
#if ISSI_Chip_31FL3732_define == 1
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;
// See, 31FL3732 datasheet for details on calculation
// Depends on Rext
LED_writeReg( bus, addr, 0x04, ISSI_Global_Brightness_define, 0x0B );
}
#endif

// Setup ISSI auto frame play, but do not start yet
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
uint8_t addr = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;
// CNS 1 loop, FNS 4 frames - 0x14
LED_writeReg( addr, 0x02, 0x14, 0x0B );
LED_writeReg( bus, addr, 0x02, 0x14, 0x0B );

// Default refresh speed - TxA
// T is typically 11ms
// A is 1 to 64 (where 0 is 64)
LED_writeReg( addr, 0x03, ISSI_AnimationSpeed_define, 0x0B );
LED_writeReg( bus, addr, 0x03, ISSI_AnimationSpeed_define, 0x0B );

// Set MODE to Auto Frame Play
LED_writeReg( addr, 0x00, 0x08, 0x0B );
LED_writeReg( bus, addr, 0x00, 0x08, 0x0B );
}

// Do not disable software shutdown of ISSI chip unless current is high enough
@@ -391,8 +459,9 @@ void LED_reset()
// Disable Software shutdown of ISSI chip
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_writeReg( addr, 0x0A, 0x01, 0x0B );
uint8_t addr = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;
LED_writeReg( bus, addr, 0x0A, 0x01, 0x0B );
}
}
}
@@ -407,18 +476,18 @@ inline void LED_setup()
i2c_setup();

// Setup LED_pageBuffer addresses and brightness section
LED_pageBuffer[0].i2c_addr = ISSI_Ch1;
LED_pageBuffer[0].i2c_addr = LED_MapCh1_Addr_define;
LED_pageBuffer[0].reg_addr = 0x24;
#if ISSI_Chips_define >= 2
LED_pageBuffer[1].i2c_addr = ISSI_Ch2;
LED_pageBuffer[1].i2c_addr = LED_MapCh2_Addr_define;
LED_pageBuffer[1].reg_addr = 0x24;
#endif
#if ISSI_Chips_define >= 3
LED_pageBuffer[2].i2c_addr = ISSI_Ch3;
LED_pageBuffer[2].i2c_addr = LED_MapCh3_Addr_define;
LED_pageBuffer[2].reg_addr = 0x24;
#endif
#if ISSI_Chips_define >= 4
LED_pageBuffer[3].i2c_addr = ISSI_Ch4;
LED_pageBuffer[3].i2c_addr = LED_MapCh4_Addr_define;
LED_pageBuffer[3].reg_addr = 0x24;
#endif

@@ -431,8 +500,9 @@ inline void LED_setup()
// This needs to be done before disabling the hardware shutdown (or the leds will do undefined things)
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_zeroPages( addr, 0x0B, 1, 0x00, 0x0C ); // Control Registers
uint8_t addr = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;
LED_zeroPages( bus, addr, 0x0B, 1, 0x00, 0x0C ); // Control Registers
}

// Disable Hardware shutdown of ISSI chip (pull high)
@@ -455,6 +525,7 @@ inline void LED_setup()

// LED Linked Send
// Call-back for i2c write when updating led display
// TODO Optimize linked send for multiple i2c buses
uint8_t LED_chipSend;
void LED_linkedSend()
{
@@ -476,6 +547,9 @@ void LED_linkedSend()
// Update ISSI Frame State
Pixel_FrameState = FrameState_Sending;

// Lookup bus number
uint8_t bus = LED_ChannelMapping[ LED_chipSend ].bus;

// Debug
/*
dbug_msg("Linked Send: chip(");
@@ -500,6 +574,7 @@ void LED_linkedSend()

// Send, and recursively call this function when finished
while ( i2c_send_sequence(
bus,
(uint16_t*)&LED_pageBuffer[ LED_chipSend ],
sizeof( LED_Buffer ) / 2,
0,
@@ -527,8 +602,9 @@ inline void LED_scan()
// Enable Software shutdown of ISSI chip
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_writeReg( addr, 0x0A, 0x00, 0x0B );
uint8_t addr = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;
LED_writeReg( bus, addr, 0x0A, 0x00, 0x0B );
}
}
else
@@ -536,8 +612,9 @@ inline void LED_scan()
// Disable Software shutdown of ISSI chip
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_writeReg( addr, 0x0A, 0x01, 0x0B );
uint8_t addr = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;
LED_writeReg( bus, addr, 0x0A, 0x01, 0x0B );
}
}

@@ -602,11 +679,12 @@ inline void LED_scan()
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
// Page Setup
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
uint8_t addr = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;
uint16_t pageSetup[] = { addr, 0xFD, LED_FrameBufferPage };

// Send each update
while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
while ( i2c_send( bus, pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);
}

@@ -699,7 +777,12 @@ void LED_control( LedControl *control )
// TODO Support multiple frames
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
LED_sendPage( LED_pageBuffer[ ch ].i2c_addr, (uint16_t*)&LED_pageBuffer[ ch ], sizeof( LED_Buffer ) / 2, 0 );
LED_sendPage(
LED_ChannelMapping[ ch ].bus,
LED_ChannelMapping[ ch ].addr,
(uint16_t*)&LED_pageBuffer[ ch ],
sizeof( LED_Buffer ) / 2, 0
);
}
}

@@ -806,6 +889,7 @@ void LED_control_capability( uint8_t state, uint8_t stateType, uint8_t *args )
// TODO Currently not working correctly
void cliFunc_i2cSend( char* args )
{
/*
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
@@ -850,6 +934,7 @@ void cliFunc_i2cSend( char* args )
print( NL );

i2c_send( buffer, bufferLen );
*/
}

/*
@@ -917,8 +1002,11 @@ void cliFunc_ledReset( char* args )

for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
LED_zeroPages( LED_ledEnableMask[ ch ].i2c_addr, 0x0B, 1, 0x00, 0x0C ); // Control Registers

LED_zeroPages(
LED_ChannelMapping[ ch ].bus,
LED_ChannelMapping[ ch ].addr,
0x0B, 1, 0x00, 0x0C
); // Control Registers
}

// Clear buffers
@@ -928,6 +1016,18 @@ void cliFunc_ledReset( char* args )
}

LED_reset();

// TODO Remove me
/*
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
LED_sendPage(
LED_ChannelMapping[ ch ].bus,
LED_ChannelMapping[ ch ].addr,
0x0B, 1, 0x00, 0x0C
); // Control Registers
}
*/
}

void cliFunc_ledSpeed( char* args )
@@ -969,12 +1069,13 @@ void cliFunc_ledSpeed( char* args )
// Set refresh speed per ISSI chip
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
uint8_t addr = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;

// Default refresh speed - TxA
// T is typically 11ms
// A is 1 to 64 (where 0 is 64)
LED_writeReg( addr, 0x03, speed, 0x0B );
LED_writeReg( bus, addr, 0x03, speed, 0x0B );
}
}

@@ -1039,8 +1140,10 @@ void cliFunc_ledNFrame( char* args )
// XXX It is more efficient to only send positions that are used
// However, this may actually have more addressing overhead
// For simplicity, just sending the full 144 positions per ISSI chip
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
uint8_t addr = LED_ChannelMapping[ ch ].addr;
uint8_t bus = LED_ChannelMapping[ ch ].bus;
LED_sendPage(
bus,
addr,
(uint16_t*)&LED_pageBuffer[ ch ],
sizeof( LED_Buffer ) / 2,

+ 13
- 17
Scan/KType/defaultMap.kll View File

@@ -1,6 +1,6 @@
Name = KType;
Version = 0.1;
Author = "HaaTa (Jacob Alexander) 2015";
Version = 0.2;
Author = "HaaTa (Jacob Alexander) 2015-2016";
KLL = 0.3c;

# Modified Date
@@ -115,11 +115,20 @@ S0x5D : U"Down";
S0x5E : U"Right";


# Driver Chip
ISSI_Chip_31FL3732 = 1;

# Global Brightness
ISSI_Global_Brightness = 0xFF; # 0xFF by default (max)

# Available ISSI Chips
ISSI_Chips = 4; # 1 by default
ISSI_Chips = 4; # 2 by default

# I2C Buses
ISSI_I2C_Buses = 2; # 1 by default

# Default animation speed
ISSI_AnimationSpeed = 14; # 20 by default
ISSI_AnimationSpeed = 6; # 20 by default

# LED Default Enable Mask
#
@@ -175,19 +184,6 @@ ISSILedMask4 = "
0xFF, 0xFF, /* C9-1 -> C9-16 */
";

# Disabled for now
#ISSILedMask4 = "
# 0x00, 0x00, /* C1-1 -> C1-16 */
# 0x00, 0x00, /* C2-1 -> C2-16 */
# 0x00, 0x00, /* C3-1 -> C3-16 */
# 0x00, 0x00, /* C4-1 -> C4-16 */
# 0x00, 0x00, /* C5-1 -> C5-16 */
# 0x00, 0x00, /* C6-1 -> C6-16 */
# 0x00, 0x00, /* C7-1 -> C7-16 */
# 0x00, 0x00, /* C8-1 -> C8-16 */
# 0x00, 0x00, /* C9-1 -> C9-16 */
#";

ISSILedBrightness1 = "
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, /* C1-1 -> C1-16 */
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, /* C2-1 -> C2-16 */

+ 3
- 3
Scan/KType/matrix.h View File

@@ -1,4 +1,4 @@
/* Copyright (C) 2014-2015 by Jacob Alexander
/* Copyright (C) 2014-2016 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@@ -49,8 +49,8 @@
// PTC1..5

// Define Rows (Sense) and Columns (Strobes)
GPIO_Pin Matrix_cols[] = { gpio(B,2), gpio(B,3), gpio(B,18), gpio(B,19), gpio(C,0), gpio(C,8), gpio(C,9), gpio(C,10), gpio(C,11), gpio(D,0) };
GPIO_Pin Matrix_rows[] = { gpio(D,1), gpio(D,4), gpio(D,5), gpio(D,6), gpio(D,7), gpio(C,1), gpio(C,2), gpio(C,3), gpio(C,4), gpio(C,5) };
GPIO_Pin Matrix_cols[] = { gpio(B,2), gpio(B,3), gpio(B,18), gpio(B,19), gpio(C,0), gpio(C,8), gpio(C,9), gpio(D,0), gpio(D,1), gpio(D,4) };
GPIO_Pin Matrix_rows[] = { gpio(D,5), gpio(D,6), gpio(D,7), gpio(C,1), gpio(C,2), gpio(C,3), gpio(C,4), gpio(C,5), gpio(C,6), gpio(C,7) };

// Define type of scan matrix
Config Matrix_type = Config_Pulldown;

+ 1
- 1
Scan/KType/scan_loop.c View File

@@ -82,7 +82,7 @@ inline uint8_t Scan_loop()
Port_scan();

// Scan Matrix
Matrix_scan( Scan_scanCount++ );
//Matrix_scan( Scan_scanCount++ );

// Process any interconnect commands
Connect_scan();

+ 9
- 1
Scan/MatrixARM/matrix_scan.c View File

@@ -409,7 +409,15 @@ void Matrix_scan( uint16_t scanNum )

case KeyState_Invalid:
default:
erro_print("Matrix scan bug!! Report me!");
erro_msg("Matrix scan bug!! Report me! - ");
printHex( state->prevState );
print(" Col: ");
printHex( strobe );
print(" Row: ");
printHex( sense );
print(" Key: ");
printHex( key );
print( NL );
break;
}


+ 4
- 1
Scan/PortSwap/capabilities.kll View File

@@ -10,5 +10,8 @@ Date = 2015-10-23;
portCross => Port_cross_capability();

# Capability to swap the USB port mapping
portSwap => Port_swap_capability();
portSwapUSB => Port_usb_capability();

# Capability to swap the interconnect port mapping
portSwapInter => Port_uart_capability();


+ 54
- 14
Scan/PortSwap/port_scan.c View File

@@ -1,4 +1,4 @@
/* Copyright (C) 2015 by Jacob Alexander
/* Copyright (C) 2015-2016 by Jacob Alexander
*
* This file is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@@ -52,7 +52,8 @@

// CLI Functions
void cliFunc_portCross( char* args );
void cliFunc_portSwap ( char* args );
void cliFunc_portUART ( char* args );
void cliFunc_portUSB ( char* args );



@@ -62,11 +63,13 @@ uint32_t Port_lastcheck_ms;

// Scan Module command dictionary
CLIDict_Entry( portCross, "Cross interconnect pins." );
CLIDict_Entry( portSwap, "Swap USB ports manually, forces usb and interconnect to re-negotiate if necessary." );
CLIDict_Entry( portUSB, "Swap USB ports manually, forces usb and interconnect to re-negotiate if necessary." );
CLIDict_Entry( portUART, "Swap interconnect ports." );

CLIDict_Def( portCLIDict, "Port Swap Module Commands" ) = {
CLIDict_Item( portCross ),
CLIDict_Item( portSwap ),
CLIDict_Item( portUART ),
CLIDict_Item( portUSB ),
{ 0, 0, 0 } // Null entry for dictionary end
};

@@ -74,18 +77,26 @@ CLIDict_Def( portCLIDict, "Port Swap Module Commands" ) = {

// ----- Functions -----

void Port_swap()
void Port_usb_swap()
{
info_print("USB Port Swap");

// PTA13 - USB Swap
GPIOA_PTOR |= (1<<13);
// PTA4 - USB Swap
GPIOA_PTOR |= (1<<4);

// Re-initialize usb
// Call usb_configured() to check if usb is ready
usb_init();
}

void Port_uart_swap()
{
info_print("Interconnect Line Swap");

// PTA13 - UART Swap
GPIOA_PTOR |= (1<<13);
}

void Port_cross()
{
info_print("Interconnect Line Cross");
@@ -103,13 +114,19 @@ inline void Port_setup()
// Register Scan CLI dictionary
CLI_registerDictionary( portCLIDict, portCLIDictName );

// PTA4 - USB Swap
// Start, disabled
GPIOA_PDDR |= (1<<4);
PORTA_PCR4 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOA_PCOR |= (1<<4);

// PTA12 - UART Tx/Rx cross-over
// Start, disabled
GPIOA_PDDR |= (1<<12);
PORTA_PCR12 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOA_PCOR |= (1<<12);

// PTA13 - USB Swap
// PTA13 - UART Swap
// Start, disabled
GPIOA_PDDR |= (1<<13);
PORTA_PCR13 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
@@ -136,7 +153,7 @@ inline uint8_t Port_scan()
// USB not initialized, attempt to swap
if ( !usb_configured() )
{
Port_swap();
Port_usb_swap();
}
}

@@ -155,12 +172,29 @@ void Port_currentChange( unsigned int current )

// ----- Capabilities -----

void Port_swap_capability( uint8_t state, uint8_t stateType, uint8_t *args )
void Port_uart_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Port_uart_capability()");
return;
}

// Only only release
// TODO Analog
if ( state != 0x03 )
return;

Port_uart_swap();
}

void Port_usb_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Port_swap_capability()");
print("Port_usb_capability()");
return;
}

@@ -169,7 +203,7 @@ void Port_swap_capability( uint8_t state, uint8_t stateType, uint8_t *args )
if ( state != 0x03 )
return;

Port_swap();
Port_usb_swap();
}

void Port_cross_capability( uint8_t state, uint8_t stateType, uint8_t *args )
@@ -193,10 +227,16 @@ void Port_cross_capability( uint8_t state, uint8_t stateType, uint8_t *args )

// ----- CLI Command Functions -----

void cliFunc_portSwap( char* args )
void cliFunc_portUART( char* args )
{
print( NL );
Port_uart_swap();
}

void cliFunc_portUSB( char* args )
{
print( NL );
Port_swap();
Port_usb_swap();
}

void cliFunc_portCross( char* args )

+ 1
- 1
Scan/UARTConnect/connect_scan.c View File

@@ -1161,7 +1161,7 @@ void Connect_scan()
}

// Limit how often we do cable checks
//uint32_t time_compare = 0x007; // Used for debugging cables -HaaTa
//uint32_t time_compare = 0x007; // XXX Used for debugging cables -HaaTa
uint32_t time_compare = 0x7FF; // Must be all 1's, 0x3FF is valid, 0x4FF is not
uint32_t current_time = systick_millis_count;
if ( Connect_lastCheck != current_time