Archived
1
0

Adding debounce and reorganized code

- Added debounce mechanism, currently looks for 5 consecutive scans
- Temporarily disabled the test point strobe on the kishsaver (spams debug messages, and not useful anymore; needs to be addressed before strobe detection is implemented though)
- Reorganized code to cleanup the main scan loop function
This commit is contained in:
Jacob Alexander 2013-11-19 03:18:44 -05:00
parent c58e25d229
commit d5271befab

View File

@ -79,6 +79,9 @@
// Strobe lines are detected at startup, extra strobes cause anomalies like phantom keypresses
#define MAX_STROBES 18
// Number of consecutive samples required to pass debounce
#define DEBOUNCE_THRESHOLD 5
#define MUXES_COUNT 8
#define MUXES_COUNT_XSHIFT 3
@ -153,6 +156,7 @@ uint8_t column = 0;
uint16_t keys_averages_acc[KEY_COUNT];
uint16_t keys_averages [KEY_COUNT];
uint8_t keys_debounce [KEY_COUNT];
uint8_t full_samples[KEY_COUNT];
@ -184,6 +188,8 @@ void recovery( uint8_t on );
int sampleColumn( uint8_t column );
void capsense_scan( void );
void setup_ADC( void );
void strobe_w( uint8_t strobe_num );
@ -210,8 +216,8 @@ inline void scan_setup()
// Hardcoded strobes for debugging
// Strobes start at 0 and go to 17 (18), not all Model Fs use all of the available strobes
// The single row ribbon connector Model Fs only have a max of 16 strobes
//#define KISHSAVER_STROBE
#define TERMINAL_6110668_STROBE
#define KISHSAVER_STROBE
//#define TERMINAL_6110668_STROBE
//#define UNSAVER_STROBE
#ifdef KISHSAVER_STROBE
total_strobes = 10;
@ -225,7 +231,8 @@ inline void scan_setup()
strobe_map[6] = 7;
strobe_map[7] = 8;
strobe_map[8] = 9;
strobe_map[9] = 15; // Test point strobe (3 test points, sense 1, 4, 5)
// XXX - Disabling for now, not sure how to deal with test points yet (without spamming the debug)
//strobe_map[9] = 15; // Test point strobe (3 test points, sense 1, 4, 5)
#elif defined(TERMINAL_6110668_STROBE)
total_strobes = 16;
@ -277,6 +284,9 @@ inline void scan_setup()
{
keys_averages[i] = DEFAULT_KEY_BASE;
keys_averages_acc[i] = (DEFAULT_KEY_BASE);
// Reset debounce table
keys_debounce[i] = 0;
}
/** warm things up a bit before we start collecting data, taking real samples. */
@ -295,6 +305,91 @@ inline void scan_setup()
// Main Detection Loop
// This is where the important stuff happens
inline uint8_t scan_loop()
{
capsense_scan();
// Error case, should not occur in normal operation
if ( error )
{
erro_msg("Problem detected... ");
// Keymap scan debug
for ( uint8_t i = 0; i < total_strobes; ++i )
{
printHex(cur_keymap[i]);
print(" ");
}
print(" : ");
printHex(error);
error = 0;
print(" : ");
printHex(error_data);
error_data = 0;
// Display keymaps and other debug information if warmup completede
if ( boot_count >= WARMUP_LOOPS )
{
dump();
}
}
// Return non-zero if macro and USB processing should be delayed
// Macro processing will always run if returning 0
// USB processing only happens once the USB send timer expires, if it has not, scan_loop will be called
// after the macro processing has been completed
return 0;
}
// Reset Keyboard
void scan_resetKeyboard( void )
{
// Empty buffer, now that keyboard has been reset
KeyIndex_BufferUsed = 0;
}
// Send data to keyboard
// NOTE: Only used for converters, since the scan module shouldn't handle sending data in a controller
uint8_t scan_sendData( uint8_t dataPayload )
{
return 0;
}
// Reset/Hold keyboard
// NOTE: Only used for converters, not needed for full controllers
void scan_lockKeyboard( void )
{
}
// NOTE: Only used for converters, not needed for full controllers
void scan_unlockKeyboard( void )
{
}
// Signal KeyIndex_Buffer that it has been properly read
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
void scan_finishedWithBuffer( uint8_t sentKeys )
{
// Convenient place to clear the KeyIndex_Buffer
KeyIndex_BufferUsed = 0;
return;
}
// Signal KeyIndex_Buffer that it has been properly read and sent out by the USB module
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
void scan_finishedWithUSBBuffer( uint8_t sentKeys )
{
return;
}
inline void capsense_scan()
{
// TODO dfj code...needs commenting + cleanup...
uint8_t strober = 0;
@ -420,85 +515,6 @@ inline uint8_t scan_loop()
}
}
// Error case, should not occur in normal operation
if ( error )
{
erro_msg("Problem detected... ");
// Keymap scan debug
for ( uint8_t i = 0; i < total_strobes; ++i )
{
printHex(cur_keymap[i]);
print(" ");
}
print(" : ");
printHex(error);
error = 0;
print(" : ");
printHex(error_data);
error_data = 0;
// Display keymaps and other debug information if warmup completede
if ( boot_count >= WARMUP_LOOPS )
{
dump();
}
}
// Return non-zero if macro and USB processing should be delayed
// Macro processing will always run if returning 0
// USB processing only happens once the USB send timer expires, if it has not, scan_loop will be called
// after the macro processing has been completed
return 0;
}
// Reset Keyboard
void scan_resetKeyboard( void )
{
// Empty buffer, now that keyboard has been reset
KeyIndex_BufferUsed = 0;
}
// Send data to keyboard
// NOTE: Only used for converters, since the scan module shouldn't handle sending data in a controller
uint8_t scan_sendData( uint8_t dataPayload )
{
return 0;
}
// Reset/Hold keyboard
// NOTE: Only used for converters, not needed for full controllers
void scan_lockKeyboard( void )
{
}
// NOTE: Only used for converters, not needed for full controllers
void scan_unlockKeyboard( void )
{
}
// Signal KeyIndex_Buffer that it has been properly read
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
void scan_finishedWithBuffer( uint8_t sentKeys )
{
// Convenient place to clear the KeyIndex_Buffer
KeyIndex_BufferUsed = 0;
return;
}
// Signal KeyIndex_Buffer that it has been properly read and sent out by the USB module
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
void scan_finishedWithUSBBuffer( uint8_t sentKeys )
{
return;
}
@ -718,22 +734,38 @@ uint8_t testColumn( uint8_t strobe )
{
uint16_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + mux];
uint8_t key = (strobe << MUXES_COUNT_XSHIFT) + mux;
// Keypress detected
if ( (db_sample = samples[SAMPLE_OFFSET + mux] >> 1) > (db_threshold = threshold) + (db_delta = delta) )
{
column |= bit;
// Only register keypresses once the warmup is complete
if ( boot_count >= WARMUP_LOOPS )
// Only register keypresses once the warmup is complete, or not enough debounce info
if ( boot_count >= WARMUP_LOOPS && keys_debounce[key] <= DEBOUNCE_THRESHOLD )
{
uint8_t key = (strobe << MUXES_COUNT_XSHIFT) + mux;
// TODO Add debounce first
// Add to the Macro processing buffer
// Add to the Macro processing buffer if debounce criteria met
// Automatically handles converting to a USB code and sending off to the PC
//bufferAdd( key );
if ( keys_debounce[key] == DEBOUNCE_THRESHOLD )
{
#define KEYSCAN_DEBOUNCE_DEBUG
#ifdef KEYSCAN_DEBOUNCE_DEBUG
// Debug message
// <key> [<strobe>:<mux>] : <sense val> : <delta + threshold> : <margin>
print("0x");
printHex_op( key, 2 );
print(" ");
#endif
#define KEYSCAN_THRESHOLD_DEBUG
// Only add the key to the buffer once
// NOTE: Buffer can easily handle multiple adds, just more efficient
// and nicer debug messages :P
//bufferAdd( key );
}
keys_debounce[key]++;
//#define KEYSCAN_THRESHOLD_DEBUG
#ifdef KEYSCAN_THRESHOLD_DEBUG
// Debug message
// <key> [<strobe>:<mux>] : <sense val> : <delta + threshold> : <margin>
@ -757,6 +789,30 @@ uint8_t testColumn( uint8_t strobe )
#endif
}
}
// Clear debounce entry if no keypress detected
else
{
// If the key was previously pressed, remove from the buffer
for ( uint8_t c = 0; c < KeyIndex_BufferUsed; c++ )
{
// Key to release found
if ( KeyIndex_Buffer[c] == key )
{
// Shift keys from c position
for ( uint8_t k = c; k < KeyIndex_BufferUsed - 1; k++ )
KeyIndex_Buffer[k] = KeyIndex_Buffer[k + 1];
// Decrement Buffer
KeyIndex_BufferUsed--;
break;
}
}
// Clear debounce entry
keys_debounce[key] = 0;
}
bit <<= 1;
}