Archived
1
0

Basic debug trigger/result macro viewer

- Moderate changes to the trigger and result macro data structures
- The debug macro viewers are nearly equivalent to what the main macro processors will do
This commit is contained in:
Jacob Alexander 2014-07-24 22:22:35 -07:00
parent 643c7e934a
commit ff05e1ccb7
2 changed files with 417 additions and 109 deletions

View File

@ -49,6 +49,15 @@ typedef struct ResultMacro {
uint8_t stateType;
} ResultMacro;
// Guide, key element
#define ResultGuideSize( guidePtr ) sizeof( ResultGuide ) / 4 - 1 + guidePtr->argCount
typedef struct ResultGuide {
void *function;
unsigned int argCount;
unsigned int *args;
} ResultGuide;
// -- Trigger Macro
// Defines the sequence of combinations to Trigger a Result Macro
@ -56,42 +65,79 @@ typedef struct ResultMacro {
// * 0x00 Normal (Press/Hold/Release)
// * 0x01 LED State (On/Off)
// * 0x02 Analog (Threshold)
// * 0x03-0xFF Reserved
// * 0x03-0xFE Reserved
// * 0xFF Debug State
//
// Flag State:
// * Not processed - 0x00 (all flag states)
// * On/Off - 0x01/0x02
// Key State:
// * Off - 0x00 (all flag states)
// * On - 0x01
// * Press/Hold/Release - 0x01/0x02/0x03
// * Threshold (Range) - 0x01 (Released), 0x10 (Light press), 0xFF (Max press)
// * Debug - 0xFF (Print capability name)
//
// Combo Length of 0 signifies end of sequence
//
// TriggerMacro.guide -> [<combo length>|<key1 type>|<key1>...<keyn type>|<keyn>|<combo length>...|0]
// TriggerMacro.state -> [<key1 flag>...<keyn flag>...]
// TriggerMacro.result -> <pointer to result macro>
// TriggerMacro.guide -> [<combo length>|<key1 type>|<key1 state>|<key1>...<keyn type>|<keyn state>|<keyn>|<combo length>...|0]
// TriggerMacro.result -> <index to result macro>
// TriggerMacro.pos -> <current combo position>
typedef struct TriggerMacro {
uint8_t *guide;
uint8_t *state;
ResultMacro *result;
unsigned int result;
unsigned int pos;
} TriggerMacro;
// Guide, key element
#define TriggerGuideSize sizeof( TriggerGuide )
typedef struct TriggerGuide {
uint8_t type;
uint8_t state;
uint8_t scancode;
} TriggerGuide;
// ----- Macros -----
#define debugPrint_cap( arg ) (unsigned int) debugPrint_capability, 1, arg
void debugPrint_capability( uint8_t state, uint8_t stateType, uint8_t arg )
void debugPrint_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("debugPrint");
return;
}
dbug_msg("Capability Print: ");
print(" statetype( ");
printHex( stateType );
print(" ) state ( ");
printHex( state );
print(" ) arg ( ");
printHex( arg );
printHex( args[0] );
print( " )" NL );
}
#define debugPrint2_cap( arg1, arg2 ) (unsigned int) debugPrint2_capability, 2, arg1, arg2
void debugPrint2_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("debugPrint2");
return;
}
dbug_msg("Capability Print: ");
print(" statetype( ");
printHex( stateType );
print(" ) state ( ");
printHex( state );
print(" ) arg1 ( ");
printHex( args[0] );
print(" ) arg2 ( ");
printHex( args[1] );
print( " )" NL );
}
@ -99,48 +145,72 @@ void debugPrint_capability( uint8_t state, uint8_t stateType, uint8_t arg )
// -- Result Macros
// Guide_RM / Define_RM Pair
// Guide_RM( name ) = result;
// * name - Result Macro name
// Guide_RM( index ) = result;
// * index - Result Macro index number
// * result - Result Macro guide (see ResultMacro)
// Define_RM( name );
// * name - Result Macro name
// Define_RM( index );
// * index - Result Macro index number
// Must be used after Guide_RM
#define Guide_RM( name ) \
static unsigned int name##_guide[]
#define Define_RM( name ) \
ResultMacro name = { name##_guide, 0, 0, 0 }
#define Guide_RM( index ) static unsigned int rm##index##_guide[]
#define Define_RM( index ) { rm##index##_guide, 0, 0, 0 }
Guide_RM( rm1 ) = { 1, debugPrint_cap( 0xBA ), 0 };
Define_RM( rm1 );
Guide_RM( 0 ) = { 1, debugPrint_cap( 0xDA ), 0 };
Guide_RM( 1 ) = { 1, debugPrint_cap( 0xBE ), 1, debugPrint_cap( 0xEF ), 0 };
Guide_RM( 2 ) = { 2, debugPrint_cap( 0xFA ), debugPrint_cap( 0xAD ), 0 };
Guide_RM( 3 ) = { 1, debugPrint2_cap( 0xCA, 0xFE ), 0 };
// Total number of result macros (rm's)
// Used to create pending rm's table
#define ResultMacroNum sizeof( ResultMacroList )
// Indexed Table of Result Macros
ResultMacro ResultMacroList[] = {
Define_RM( 0 ),
Define_RM( 1 ),
Define_RM( 2 ),
Define_RM( 3 ),
};
// -- Trigger Macros
// NOTES:
// Compiler must calculate number of combos per macro to define the size of the state array
// ( sizeof( macro_guide ) - ( <number of combos> + 1 ) ) / 2 = <length of guide array>
#define GuideSize( name, combos ) ( sizeof( name##_guide ) - ( combos + 1 ) ) / 2
// Guide_TM / Define_TM Pair
// Guide_TM( name ) = trigger;
// * name - Trigger Macro name
// Guide_TM / Define_TM Trigger Setup
// Guide_TM( index ) = trigger;
// * index - Trigger Macro index number
// * trigger - Trigger Macro guide (see TriggerMacro)
// Define_TM( name, result );
// * name - Trigger Macro name
// * result - Result Macro which is triggered by this Trigger Macro
#define Guide_TM( name ) static uint8_t name##_guide[]
#define Define_TM( name, result ) \
uint8_t name##_state[ GuideSize( name, 1 ) ] = { 0 }; \
TriggerMacro name = { name##_guide, name##_state, &result, 0 }
#define tm( number ) (unsigned int)&tm##number
// Define_TM( index, result );
// * index - Trigger Macro index number
// * result - Result Macro index number which is triggered by this Trigger Macro
#define Guide_TM( index ) static uint8_t tm##index##_guide[]
#define Define_TM( index, result ) { tm##index##_guide, result, 0 }
#define tm( index ) (unsigned int)&TriggerMacroList[ index ]
Guide_TM( tm1 ) = { 1, 0x00, 0x73, 0 };
Define_TM( tm1, rm1 );
Guide_TM( 0 ) = { 1, 0x10, 0x01, 0x73, 0 };
Guide_TM( 1 ) = { 1, 0x0F, 0x01, 0x73, 1, 0x00, 0x01, 0x75, 0 };
Guide_TM( 2 ) = { 2, 0xF0, 0x01, 0x73, 0x00, 0x01, 0x74, 0 };
// Total number of trigger macros (tm's)
// Used to create pending tm's table
#define TriggerMacroNum sizeof( TriggerMacroList )
// Indexed Table of Trigger Macros
TriggerMacro TriggerMacroList[] = {
Define_TM( 0, 0 ),
Define_TM( 1, 1 ),
Define_TM( 2, 2 ),
};
// ----- Trigger Maps -----
// MaxScanCode
// - This is retrieved from the KLL configuration
// - Should be corollated with the max scan code in the scan module
// - Maximum value is 0x100 (0x0 to 0xFF)
// - Increasing it beyond the keyboard's capabilities is just a waste of ram...
#define MaxScanCode 0x100
// Define_TL( layer, scanCode ) = triggerList;
// * layer - basename of the layer
// * scanCode - Hex value of the scanCode
@ -268,9 +338,9 @@ Define_TL( default, 0x6F ) = { 0 };
Define_TL( default, 0x70 ) = { 0 };
Define_TL( default, 0x71 ) = { 0 };
Define_TL( default, 0x72 ) = { 0 };
Define_TL( default, 0x73 ) = { 1, tm(1) };
Define_TL( default, 0x74 ) = { 0 };
Define_TL( default, 0x75 ) = { 0 };
Define_TL( default, 0x73 ) = { 3, tm(0), tm(1), tm(2) };
Define_TL( default, 0x74 ) = { 1, tm(2) };
Define_TL( default, 0x75 ) = { 1, tm(1) };
Define_TL( default, 0x76 ) = { 0 };
Define_TL( default, 0x77 ) = { 0 };
Define_TL( default, 0x78 ) = { 0 };

View File

@ -38,26 +38,38 @@
// ----- Function Declarations -----
void cliFunc_capList ( char* args );
void cliFunc_capSelect ( char* args );
void cliFunc_lookComb ( char* args );
void cliFunc_lookDefault( char* args );
void cliFunc_lookPartial( char* args );
void cliFunc_macroDebug ( char* args );
void cliFunc_capList ( char* args );
void cliFunc_capSelect ( char* args );
void cliFunc_keyPress ( char* args );
void cliFunc_keyRelease( char* args );
void cliFunc_layerLatch( char* args );
void cliFunc_layerList ( char* args );
void cliFunc_layerLock ( char* args );
void cliFunc_macroDebug( char* args );
void cliFunc_macroList ( char* args );
void cliFunc_macroProc ( char* args );
void cliFunc_macroShow ( char* args );
void cliFunc_macroStep ( char* args );
// ----- Variables -----
// Macro Module command dictionary
char* macroCLIDictName = "Macro Module Commands (Not all commands fully work yet...)";
char* macroCLIDictName = "Macro Module Commands";
CLIDictItem macroCLIDict[] = {
{ "capList", "Prints an indexed list of all non USB keycode capabilities.", cliFunc_capList },
{ "capSelect", "Triggers the specified capability." NL "\t\t\033[35mU10\033[0m USB Code 0x0A, \033[35mK11\033[0m Keyboard Capability 0x0B, \033[35mS12\033[0m Scancode 0x0C", cliFunc_capSelect },
{ "lookComb", "Do a lookup on the Combined map." NL "\t\t\033[35mS10\033[0m Scancode 0x0A, \033[35mU11\033[0m USB Code 0x0B", cliFunc_lookComb },
{ "lookDefault", "Do a lookup on the Default map." NL "\t\t\033[35mS10\033[0m Scancode 0x0A", cliFunc_lookDefault },
{ "lookPartial", "Do a lookup on the layered Partial maps." NL "\t\t\033[35mS10\033[0m Scancode 0x0A, \033[35mU11\033[0m USB Code 0x0B", cliFunc_lookPartial },
{ "capSelect", "Triggers the specified capability." NL "\t\t\033[35mU10\033[0m USB Code 0x0A, \033[35mK11\033[0m Keyboard Capability 0x0B", cliFunc_capSelect },
{ "keyPress", "Send key-presses to the macro module. Held until released. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A", cliFunc_keyPress },
{ "keyRelease", "Release a key-press from the macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A", cliFunc_keyRelease },
{ "layerLatch", "Latch the specified indexed layer." NL "\t\t\033[35mL15\033[0m Indexed Layer 0x0F", cliFunc_layerLatch },
{ "layerList", "List available layers.", cliFunc_layerList },
{ "layerLock", "Lock the specified indexed layer." NL "\t\t\033[35mL2\033[0m Indexed Layer 0x02", cliFunc_layerLock },
{ "macroDebug", "Disables/Enables sending USB keycodes to the Output Module and prints U/K codes.", cliFunc_macroDebug },
{ "macroList", "List the defined trigger and result macros.", cliFunc_macroList },
{ "macroProc", "Pause/Resume macro processing.", cliFunc_macroProc },
{ "macroShow", "Show the macro corresponding to the given index or scan-code." NL "\t\t\033[35mT16\033[0m Indexed Trigger Macro 0x10, \033[35mR12\033[0m Indexed Result Macro 0x0C", cliFunc_macroShow },
{ "macroStep", "Do N macro processing steps. Defaults to 1.", cliFunc_macroStep },
{ 0, 0, 0 } // Null entry for dictionary end
};
@ -65,16 +77,24 @@ CLIDictItem macroCLIDict[] = {
// Macro debug flag - If set, clears the USB Buffers after signalling processing completion
uint8_t macroDebugMode = 0;
// Macro pause flag - If set, the macro module pauses processing, unless unset, or the step counter is non-zero
uint8_t macroPauseMode = 0;
// Macro step counter - If non-zero, the step counter counts down every time the macro module does one processing loop
unsigned int macroStepCounter = 0;
// Key Trigger List Buffer
// * Item 1: scan code
// * Item 2: state
// ...
uint8_t macroTriggerListBuffer[0xFF * 2] = { 0 }; // Each key has a state to be cached (this can be decreased to save RAM)
uint8_t macroTriggerListBuffer[MaxScanCode * 2] = { 0 }; // Each key has a state to be cached
uint8_t macroTriggerListBufferSize = 0;
// TODO, figure out a good way to scale this array size without wasting too much memory, but not rejecting macros
// Possibly could be calculated by the KLL compiler
TriggerMacro *triggerMacroPendingList[30];
// XXX It may be possible to calculate the worst case using the KLL compiler
TriggerMacro *triggerMacroPendingList[TriggerMacroNum];
@ -177,7 +197,7 @@ void Macro_evalTriggerMacro( TriggerMacro *triggerMacro )
/*
inline void Macro_bufferAdd( uint8_t byte )
{
// Make sure we haven't overflowed the key buffer
@ -222,6 +242,7 @@ inline void Macro_bufferRemove( uint8_t byte )
erro_msg("Could not find key to release: ");
printHex( key );
}
*/
inline void Macro_finishWithUSBBuffer( uint8_t sentKeys )
{
@ -233,6 +254,17 @@ inline void Macro_process()
if ( USBKeys_Sent != 0 )
return;
// If the pause flag is set, only process if the step counter is non-zero
if ( macroPauseMode && macroStepCounter == 0 )
{
return;
}
// Proceed, decrementing the step counter
else
{
macroStepCounter--;
}
// Loop through macro trigger buffer
for ( uint8_t index = 0; index < macroTriggerListBufferSize; index += 2 )
{
@ -323,6 +355,12 @@ inline void Macro_setup()
// Disable Macro debug mode
macroDebugMode = 0;
// Disable Macro pause flag
macroPauseMode = 0;
// Set Macro step counter to zero
macroStepCounter = 0;
// Make sure macro trigger buffer is empty
macroTriggerListBufferSize = 0;
}
@ -351,12 +389,6 @@ void cliFunc_capSelect( char* args )
// TODO
break;
// Scancode
case 'S':
// Add to the USB Buffer using the DefaultMap lookup
Macro_bufferAdd( decToInt( &arg1Ptr[1] ) );
break;
// USB Code
case 'U':
// Just add the key to the USB Buffer
@ -368,71 +400,75 @@ void cliFunc_capSelect( char* args )
}
}
void cliFunc_lookComb( char* args )
void cliFunc_keyPress( char* args )
{
// Parse code from argument
// NOTE: Only first argument is used
// Parse codes from arguments
char* curArgs;
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
char* arg2Ptr = args;
// Depending on the first character, the lookup changes
switch ( arg1Ptr[0] )
// Process all args
for ( ;; )
{
// Scancode
case 'S':
// TODO
break;
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// USB Code
case 'U':
// TODO
break;
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Ignore non-Scancode numbers
switch ( arg1Ptr[0] )
{
// Scancode
case 'S':
Macro_keyState( (uint8_t)decToInt( &arg1Ptr[1] ), 0x01 ); // Press scancode
break;
}
}
}
void cliFunc_lookDefault( char* args )
void cliFunc_keyRelease( char* args )
{
// Parse code from argument
// NOTE: Only first argument is used
// Parse codes from arguments
char* curArgs;
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
char* arg2Ptr = args;
// Depending on the first character, the lookup changes
switch ( arg1Ptr[0] )
// Process all args
for ( ;; )
{
// Scancode
case 'S':
print( NL );
printInt8( DefaultMap_Lookup[decToInt( &arg1Ptr[1] )] );
print(" ");
printHex( DefaultMap_Lookup[decToInt( &arg1Ptr[1] )] );
break;
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Ignore non-Scancode numbers
switch ( arg1Ptr[0] )
{
// Scancode
case 'S':
Macro_keyState( (uint8_t)decToInt( &arg1Ptr[1] ), 0x03 ); // Release scancode
break;
}
}
}
void cliFunc_lookPartial( char* args )
void cliFunc_layerLatch( char* args )
{
// Parse code from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// TODO
}
// Depending on the first character, the lookup changes
switch ( arg1Ptr[0] )
{
// Scancode
case 'S':
// TODO
break;
void cliFunc_layerList( char* args )
{
// TODO
}
// USB Code
case 'U':
// TODO
break;
}
void cliFunc_layerLock( char* args )
{
// TODO
}
void cliFunc_macroDebug( char* args )
@ -445,3 +481,205 @@ void cliFunc_macroDebug( char* args )
printInt8( macroDebugMode );
}
void cliFunc_macroList( char* args )
{
// TODO
}
void cliFunc_macroProc( char* args )
{
// Toggle macro pause mode
macroPauseMode = macroPauseMode ? 0 : 1;
print( NL );
info_msg("Macro Processing Mode: ");
printInt8( macroPauseMode );
}
void macroDebugShowTrigger( unsigned int index )
{
// Only proceed if the macro exists
if ( index >= TriggerMacroNum )
return;
// Trigger Macro Show
TriggerMacro *macro = &TriggerMacroList[ index ];
print( NL );
info_msg("Trigger Macro Index: ");
printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit)
print( NL );
// Read the comboLength for combo in the sequence (sequence of combos)
unsigned int pos = 0;
uint8_t comboLength = macro->guide[ pos ];
// Iterate through and interpret the guide
while ( comboLength != 0 )
{
// Initial position of the combo
unsigned int comboPos = ++pos;
// Iterate through the combo
while ( pos < comboLength * TriggerGuideSize + comboPos )
{
// Assign TriggerGuide element (key type, state and scancode)
TriggerGuide *guide = (TriggerGuide*)(&macro->guide[ pos ]);
// Display guide information about trigger key
printHex( guide->scancode );
print("|");
printHex( guide->type );
print("|");
printHex( guide->state );
// Increment position
pos += TriggerGuideSize;
// Only show combo separator if there are combos left in the sequence element
if ( pos < comboLength * TriggerGuideSize + comboPos )
print("+");
}
// Read the next comboLength
comboLength = macro->guide[ pos ];
// Only show sequence separator if there is another combo to process
if ( comboLength != 0 )
print(";");
}
// Display current position
print( NL "Position: " );
printInt16( (uint16_t)macro->pos ); // Hopefully large enough :P (can't assume 32-bit)
// Display result macro index
print( NL "Result Macro Index: " );
printInt16( (uint16_t)macro->result ); // Hopefully large enough :P (can't assume 32-bit)
}
void macroDebugShowResult( unsigned int index )
{
// Only proceed if the macro exists
if ( index >= ResultMacroNum )
return;
// Trigger Macro Show
ResultMacro *macro = &ResultMacroList[ index ];
print( NL );
info_msg("Result Macro Index: ");
printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit)
print( NL );
// Read the comboLength for combo in the sequence (sequence of combos)
unsigned int pos = 0;
uint8_t comboLength = macro->guide[ pos++ ];
// Iterate through and interpret the guide
while ( comboLength != 0 )
{
// Function Counter, used to keep track of the combos processed
unsigned int funcCount = 0;
// Iterate through the combo
while ( funcCount < comboLength )
{
// Assign TriggerGuide element (key type, state and scancode)
ResultGuide *guide = (ResultGuide*)(&macro->guide[ pos ]);
// Display Function Ptr Address
printHex( (unsigned int)guide->function );
print("|");
// Display/Lookup Capability Name (utilize debug mode of capability)
void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(guide->function);
capability( 0xFF, 0xFF, 0 );
// Display Argument(s)
print("(");
for ( unsigned int arg = 0; arg < guide->argCount; arg++ )
{
// Arguments are only 8 bit values (guides are 32 bit for function pointers)
printHex( (uint8_t)(unsigned int)(&guide->args)[ arg ] );
// Only show arg separator if there are args left
if ( arg + 1 < guide->argCount )
print(",");
}
print(")");
// Increment position
pos += ResultGuideSize( guide );
// Increment function count
funcCount++;
// Only show combo separator if there are combos left in the sequence element
if ( funcCount < comboLength )
print("+");
}
// Read the next comboLength
comboLength = macro->guide[ pos++ ];
// Only show sequence separator if there is another combo to process
if ( comboLength != 0 )
print(";");
}
// Display current position
print( NL "Position: " );
printInt16( (uint16_t)macro->pos ); // Hopefully large enough :P (can't assume 32-bit)
// Display final trigger state/type
print( NL "Final Trigger State (State/Type): " );
printHex( macro->state );
print("/");
printHex( macro->stateType );
}
void cliFunc_macroShow( char* args )
{
// Parse codes from arguments
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Process all args
for ( ;; )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Ignore invalid codes
switch ( arg1Ptr[0] )
{
// Indexed Trigger Macro
case 'T':
macroDebugShowTrigger( decToInt( &arg1Ptr[1] ) );
break;
// Indexed Result Macro
case 'R':
macroDebugShowResult( decToInt( &arg1Ptr[1] ) );
break;
}
}
}
void cliFunc_macroStep( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// Set the macro step counter, negative int's are cast to uint
macroStepCounter = (unsigned int)decToInt( arg1Ptr );
}