/* Copyright (C) 2014-2016 by Jacob Alexander * * This file is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this file. If not, see . */ // ----- Includes ----- // Compiler Includes #include // Project Includes #include #include #include #include // Interconnect module if compiled in #if defined(ConnectEnabled_define) #include #endif // Local Includes #include "led_scan.h" // ----- Defines ----- #define I2C_TxBufferLength 300 #define I2C_RxBufferLength 8 #define LED_BufferLength 144 // TODO Needs to be defined per keyboard #define LED_TotalChannels 144 // ----- Structs ----- typedef struct I2C_Buffer { uint16_t head; uint16_t tail; uint8_t sequencePos; uint16_t size; uint8_t *buffer; } I2C_Buffer; typedef struct LED_Buffer { uint8_t i2c_addr; uint8_t reg_addr; uint8_t buffer[LED_BufferLength]; } LED_Buffer; // ----- Function Declarations ----- // CLI Functions void cliFunc_i2cRecv ( char* args ); void cliFunc_i2cSend ( char* args ); void cliFunc_ledCtrl ( char* args ); void cliFunc_ledRPage( char* args ); void cliFunc_ledStart( char* args ); void cliFunc_ledTest ( char* args ); void cliFunc_ledWPage( char* args ); void cliFunc_ledZero ( char* args ); uint8_t I2C_TxBufferPop(); void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer ); uint16_t I2C_BufferLen( I2C_Buffer *buffer ); uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen ); // ----- Variables ----- // Scan Module command dictionary CLIDict_Entry( i2cRecv, "Send I2C sequence of bytes and expect a reply of 1 byte on the last sequence." NL "\t\tUse |'s to split sequences with a stop." ); CLIDict_Entry( i2cSend, "Send I2C sequence of bytes. Use |'s to split sequences with a stop." ); CLIDict_Entry( ledCtrl, "Basic LED control. Args: []" ); CLIDict_Entry( ledRPage, "Read the given register page." ); CLIDict_Entry( ledStart, "Disable software shutdown." ); CLIDict_Entry( ledTest, "Test out the led pages." ); CLIDict_Entry( ledWPage, "Write to given register page starting at address. i.e. 0x2 0x24 0xF0 0x12" ); CLIDict_Entry( ledZero, "Zero out LED register pages (non-configuration)." ); CLIDict_Def( ledCLIDict, "ISSI LED Module Commands" ) = { CLIDict_Item( i2cRecv ), CLIDict_Item( i2cSend ), CLIDict_Item( ledCtrl ), CLIDict_Item( ledRPage ), CLIDict_Item( ledStart ), CLIDict_Item( ledTest ), CLIDict_Item( ledWPage ), CLIDict_Item( ledZero ), { 0, 0, 0 } // Null entry for dictionary end }; // Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented // Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ]; volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ]; volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, (uint8_t*)I2C_TxBufferPtr }; volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, (uint8_t*)I2C_RxBufferPtr }; LED_Buffer LED_pageBuffer; // A bit mask determining which LEDs are enabled in the ISSI chip const uint8_t LED_ledEnableMask1[] = { 0xE8, // I2C address 0x00, // Starting register address ISSILedMask1_define }; // Default LED brightness const uint8_t LED_defaultBrightness1[] = { 0xE8, // I2C address 0x24, // Starting register address ISSILedBrightness1_define }; // ----- Interrupt Functions ----- void i2c0_isr() { cli(); // Disable Interrupts uint8_t status = I2C0_S; // Read I2C Bus status // Master Mode Transmit if ( I2C0_C1 & I2C_C1_TX ) { // Check current use of the I2C bus // Currently sending data if ( I2C_TxBuffer.sequencePos > 0 ) { // Make sure slave sent an ACK if ( status & I2C_S_RXAK ) { // NACK Detected, disable interrupt erro_print("I2C NAK detected..."); I2C0_C1 = I2C_C1_IICEN; // Abort Tx Buffer I2C_TxBuffer.head = 0; I2C_TxBuffer.tail = 0; I2C_TxBuffer.sequencePos = 0; } else { // Transmit byte I2C0_D = I2C_TxBufferPop(); } } // Receiving data else if ( I2C_RxBuffer.sequencePos > 0 ) { // Master Receive, addr sent if ( status & I2C_S_ARBL ) { // Arbitration Lost erro_print("Arbitration lost..."); // TODO Abort Rx I2C0_C1 = I2C_C1_IICEN; I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt } if ( status & I2C_S_RXAK ) { // Slave Address NACK Detected, disable interrupt erro_print("Slave Address I2C NAK detected..."); // TODO Abort Rx I2C0_C1 = I2C_C1_IICEN; } else { dbug_msg("Attempting to read byte - "); printHex( I2C_RxBuffer.sequencePos ); print( NL ); I2C0_C1 = I2C_RxBuffer.sequencePos == 1 ? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read : I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read } } else { /* dbug_msg("STOP - "); printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) ); print(NL); */ // Delay around STOP to make sure it actually happens... delayMicroseconds( 1 ); I2C0_C1 = I2C_C1_IICEN; // Send STOP delayMicroseconds( 7 ); // If there is another sequence, start sending if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size ) { // Clear status flags I2C0_S = I2C_S_IICIF | I2C_S_ARBL; // Wait...till the master dies while ( I2C0_S & I2C_S_BUSY ); // Enable I2C interrupt I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX; // Transmit byte I2C0_D = I2C_TxBufferPop(); } } } // Master Mode Receive else { // XXX Do we need to handle 2nd last byte? //I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv // Last byte if ( I2C_TxBuffer.sequencePos <= 1 ) { // Change to Tx mode I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; // Grab last byte I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer ); delayMicroseconds( 1 ); // Should be enough time before issuing the stop I2C0_C1 = I2C_C1_IICEN; // Send STOP } else { // Retrieve data I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer ); } } I2C0_S = I2C_S_IICIF; // Clear interrupt sei(); // Re-enable Interrupts } // ----- Functions ----- inline void I2C_setup() { // Enable I2C internal clock SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0 // External pull-up resistor PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2); PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2); // SCL Frequency Divider // 400kHz -> 120 (0x85) @ 48 MHz F_BUS I2C0_F = 0x85; I2C0_FLT = 4; I2C0_C1 = I2C_C1_IICEN; I2C0_C2 = I2C_C2_HDRS; // High drive select // Enable I2C Interrupt NVIC_ENABLE_IRQ( IRQ_I2C0 ); } void LED_zeroPages( uint8_t startPage, uint8_t numPages, uint8_t startReg, uint8_t endReg ) { // Page Setup uint8_t pageSetup[] = { 0xE8, 0xFD, 0x00 }; // Max length of a page + chip id + reg start uint8_t fullPage[ 0xB4 + 2 ] = { 0 }; // Max size of page fullPage[0] = 0xE8; // Set chip id fullPage[1] = startReg; // Set start reg // Iterate through given pages, zero'ing out the given register regions for ( uint8_t page = startPage; page < startPage + numPages; page++ ) { // Set page pageSetup[2] = page; // Setup page while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 ) delay(1); // Zero out page while ( I2C_Send( fullPage, endReg - startReg + 2, 0 ) == 0 ) delay(1); } } void LED_sendPage( uint8_t *buffer, uint8_t len, uint8_t page ) { // Page Setup uint8_t pageSetup[] = { 0xE8, 0xFD, page }; // Setup page while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 ) delay(1); // Write page to I2C Tx Buffer while ( I2C_Send( buffer, len, 0 ) == 0 ) delay(1); } void LED_writeReg( uint8_t reg, uint8_t val, uint8_t page ) { // Page Setup uint8_t pageSetup[] = { 0xE8, 0xFD, page }; // Reg Write Setup uint8_t writeData[] = { 0xE8, reg, val }; // Setup page while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 ) delay(1); while ( I2C_Send( writeData, sizeof( writeData ), 0 ) == 0 ) delay(1); } void LED_readPage( uint8_t len, uint8_t page ) { // Software shutdown must be enabled to read registers LED_writeReg( 0x0A, 0x00, 0x0B ); // Page Setup uint8_t pageSetup[] = { 0xE8, 0xFD, page }; // Setup page while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 ) delay(1); // Register Setup uint8_t regSetup[] = { 0xE8, 0x00 }; // Read each register in the page for ( uint8_t reg = 0; reg < len; reg++ ) { // Update register to read regSetup[1] = reg; // Configure register while ( I2C_Send( regSetup, sizeof( regSetup ), 0 ) == 0 ) delay(1); // Register Read Command uint8_t regReadCmd[] = { 0xE9 }; // Request single register byte while ( I2C_Send( regReadCmd, sizeof( regReadCmd ), 1 ) == 0 ) delay(1); dbug_print("NEXT"); } // Disable software shutdown LED_writeReg( 0x0A, 0x01, 0x0B ); } // Setup inline void LED_setup() { // Register Scan CLI dictionary CLI_registerDictionary( ledCLIDict, ledCLIDictName ); // Initialize I2C I2C_setup(); // Zero out Frame Registers // This needs to be done before disabling the hardware shutdown (or the leds will do undefined things) LED_zeroPages( 0x0B, 1, 0x00, 0x0C ); // Control Registers // Disable Hardware shutdown of ISSI chip (pull high) GPIOB_PDDR |= (1<<16); PORTB_PCR16 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); GPIOB_PSOR |= (1<<16); // Clear LED Pages LED_zeroPages( 0x00, 8, 0x00, 0xB4 ); // LED Registers // Enable LEDs based upon mask LED_sendPage( (uint8_t*)LED_ledEnableMask1, sizeof( LED_ledEnableMask1 ), 0 ); // Set default brightness LED_sendPage( (uint8_t*)LED_defaultBrightness1, sizeof( LED_defaultBrightness1 ), 0 ); // Do not disable software shutdown of ISSI chip unless current is high enough // Require at least 150 mA // May be enabled/disabled at a later time if ( Output_current_available() >= 150 ) { // Disable Software shutdown of ISSI chip LED_writeReg( 0x0A, 0x01, 0x0B ); } } inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer ) { uint8_t reTurn = 0; // If sendLen is greater than buffer fail right away if ( sendLen > buffer->size ) return 0; // Calculate new tail to determine if buffer has enough space // The first element specifies the expected number of bytes from the slave (+1) // The second element in the new buffer is the length of the buffer sequence (+1) uint16_t newTail = buffer->tail + sendLen + 2; if ( newTail >= buffer->size ) newTail -= buffer->size; if ( I2C_BufferLen( buffer ) < sendLen + 2 ) return 0; /* print("|"); printHex( sendLen + 2 ); print("|"); printHex( *tail ); print("@"); printHex( newTail ); print("@"); */ // If buffer is clean, return 1, otherwise 2 reTurn = buffer->head == buffer->tail ? 1 : 2; // Add to buffer, already know there is enough room (simplifies adding logic) uint8_t bufferHeaderPos = 0; for ( uint16_t c = 0; c < sendLen; c++ ) { // Add data to buffer switch ( bufferHeaderPos ) { case 0: buffer->buffer[ buffer->tail ] = recvLen; bufferHeaderPos++; c--; break; case 1: buffer->buffer[ buffer->tail ] = sendLen; bufferHeaderPos++; c--; break; default: buffer->buffer[ buffer->tail ] = data[ c ]; break; } // Check for wrap-around case if ( buffer->tail + 1 >= buffer->size ) { buffer->tail = 0; } // Normal case else { buffer->tail++; } } return reTurn; } inline uint16_t I2C_BufferLen( I2C_Buffer *buffer ) { // Tail >= Head if ( buffer->tail >= buffer->head ) return buffer->head + buffer->size - buffer->tail; // Head > Tail return buffer->head - buffer->tail; } void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer ) { dbug_msg("DATA: "); printHex( byte ); // Make sure buffer isn't full if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) ) { warn_msg("I2C_BufferPush failed, buffer full: "); printHex( byte ); print( NL ); return; } // Check for wrap-around case if ( buffer->tail + 1 >= buffer->size ) { buffer->tail = 0; } // Normal case else { buffer->tail++; } // Add byte to buffer buffer->buffer[ buffer->tail ] = byte; } uint8_t I2C_TxBufferPop() { // Return 0xFF if no buffer left (do not rely on this) if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size ) { erro_msg("No buffer to pop an entry from... "); printHex( I2C_TxBuffer.head ); print(" "); printHex( I2C_TxBuffer.tail ); print(" "); printHex( I2C_TxBuffer.sequencePos ); print(NL); return 0xFF; } // If there is currently no sequence being sent, the first entry in the RingBuffer is the length if ( I2C_TxBuffer.sequencePos == 0 ) { I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop I2C_RxBuffer.sequencePos = I2C_TxBufferPop(); I2C_TxBuffer.sequencePos = I2C_TxBufferPop(); } uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ]; // Prune head I2C_TxBuffer.head++; // Wrap-around case if ( I2C_TxBuffer.head >= I2C_TxBuffer.size ) I2C_TxBuffer.head = 0; // Decrement buffer sequence (until next stop will be sent) I2C_TxBuffer.sequencePos--; /* dbug_msg("Popping: "); printHex( data ); print(" "); printHex( I2C_TxBuffer.head ); print(" "); printHex( I2C_TxBuffer.tail ); print(" "); printHex( I2C_TxBuffer.sequencePos ); print(NL); */ return data; } uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen ) { // Check head and tail pointers // If full, return 0 // If empty, start up I2C Master Tx // If buffer is non-empty and non-full, just append to the buffer switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) ) { // Not enough buffer space... case 0: /* erro_msg("Not enough Tx buffer space... "); printHex( I2C_TxBuffer.head ); print(":"); printHex( I2C_TxBuffer.tail ); print("+"); printHex( sendLen ); print("|"); printHex( I2C_TxBuffer.size ); print( NL ); */ return 0; // Empty buffer, initialize I2C case 1: // Clear status flags I2C0_S = I2C_S_IICIF | I2C_S_ARBL; // Check to see if we already have control of the bus if ( I2C0_C1 & I2C_C1_MST ) { // Already the master (ah yeah), send a repeated start I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX; } // Otherwise, seize control else { // Wait...till the master dies while ( I2C0_S & I2C_S_BUSY ); // Now we're the master (ah yisss), get ready to send stuffs I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; } // Enable I2C interrupt I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX; // Depending on what type of transfer, the first byte is configured for R or W I2C0_D = I2C_TxBufferPop(); return 1; } // Dirty buffer, I2C already initialized return 2; } // LED State processing loop unsigned int LED_currentEvent = 0; inline uint8_t LED_scan() { // Check for current change event if ( LED_currentEvent ) { // TODO dim LEDs in low power mode instead of shutting off if ( LED_currentEvent < 150 ) { // Enable Software shutdown of ISSI chip LED_writeReg( 0x0A, 0x00, 0x0B ); } else { // Disable Software shutdown of ISSI chip LED_writeReg( 0x0A, 0x01, 0x0B ); } LED_currentEvent = 0; } return 0; } // Called by parent Scan Module whenver the available current has changed // current - mA void LED_currentChange( unsigned int current ) { // Delay action till next LED scan loop (as this callback sometimes occurs during interrupt requests) LED_currentEvent = current; } // ----- Capabilities ----- // Basic LED Control Capability typedef enum LedControlMode { // Single LED Modes LedControlMode_brightness_decrease, LedControlMode_brightness_increase, LedControlMode_brightness_set, // Set all LEDs (index argument not required) LedControlMode_brightness_decrease_all, LedControlMode_brightness_increase_all, LedControlMode_brightness_set_all, } LedControlMode; typedef struct LedControl { LedControlMode mode; // XXX Make sure to adjust the .kll capability if this variable is larger than 8 bits uint8_t amount; uint16_t index; } LedControl; void LED_control( LedControl *control ) { // Only send if we've completed all other transactions /* if ( I2C_TxBuffer.sequencePos > 0 ) return; */ // Configure based upon the given mode // TODO Perhaps do gamma adjustment? switch ( control->mode ) { case LedControlMode_brightness_decrease: // Don't worry about rolling over, the cycle is quick LED_pageBuffer.buffer[ control->index ] -= control->amount; break; case LedControlMode_brightness_increase: // Don't worry about rolling over, the cycle is quick LED_pageBuffer.buffer[ control->index ] += control->amount; break; case LedControlMode_brightness_set: LED_pageBuffer.buffer[ control->index ] = control->amount; break; case LedControlMode_brightness_decrease_all: for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ ) { // Don't worry about rolling over, the cycle is quick LED_pageBuffer.buffer[ channel ] -= control->amount; } break; case LedControlMode_brightness_increase_all: for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ ) { // Don't worry about rolling over, the cycle is quick LED_pageBuffer.buffer[ channel ] += control->amount; } break; case LedControlMode_brightness_set_all: for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ ) { LED_pageBuffer.buffer[ channel ] = control->amount; } break; } // Sync LED buffer with ISSI chip buffer // TODO Support multiple frames LED_pageBuffer.i2c_addr = 0xE8; // Chip 1 LED_pageBuffer.reg_addr = 0x24; // Brightness section LED_sendPage( (uint8_t*)&LED_pageBuffer, sizeof( LED_Buffer ), 0 ); } uint8_t LED_control_timer = 0; void LED_control_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("LED_control_capability(mode,amount,index)"); return; } // Only use capability on press // TODO Analog if ( stateType == 0x00 && state == 0x03 ) // Not on release return; // XXX // ISSI Chip locks up if we spam updates too quickly (might be an I2C bug on this side too -HaaTa) // Make sure we only send an update every 30 milliseconds at most // It may be possible to optimize speed even further, but will likely require serious time with a logic analyzer uint8_t currentTime = (uint8_t)systick_millis_count; int8_t compare = (int8_t)(currentTime - LED_control_timer) & 0x7F; if ( compare < 30 ) { return; } LED_control_timer = currentTime; // Set the input structure LedControl *control = (LedControl*)args; // Interconnect broadcasting #if defined(ConnectEnabled_define) uint8_t send_packet = 0; uint8_t ignore_node = 0; // By default send to the *next* node, which will determine where to go next extern uint8_t Connect_id; // connect_scan.c uint8_t addr = Connect_id + 1; switch ( control->mode ) { // Calculate the led address to send // If greater than the Total hannels // Set address - Total channels // Otherwise, ignore case LedControlMode_brightness_decrease: case LedControlMode_brightness_increase: case LedControlMode_brightness_set: // Ignore if led is on this node if ( control->index < LED_TotalChannels ) break; // Calculate new led index control->index -= LED_TotalChannels; ignore_node = 1; send_packet = 1; break; // Broadcast to all nodes // XXX Do not set broadcasting address // Will send command twice case LedControlMode_brightness_decrease_all: case LedControlMode_brightness_increase_all: case LedControlMode_brightness_set_all: send_packet = 1; break; } // Only send interconnect remote capability packet if necessary if ( send_packet ) { // generatedKeymap.h extern const Capability CapabilitiesList[]; // Broadcast layerStackExact remote capability (0xFF is the broadcast id) Connect_send_RemoteCapability( addr, LED_control_capability_index, state, stateType, CapabilitiesList[ LED_control_capability_index ].argCount, args ); } // If there is nothing to do on this node, ignore if ( ignore_node ) return; #endif // Modify led state of this node LED_control( control ); } // ----- CLI Command Functions ----- // TODO Currently not working correctly void cliFunc_i2cSend( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Buffer used after interpretting the args, will be sent to I2C functions // NOTE: Limited to 8 bytes currently (can be increased if necessary #define i2cSend_BuffLenMax 8 uint8_t buffer[ i2cSend_BuffLenMax ]; uint8_t bufferLen = 0; // No \r\n by default after the command is entered print( NL ); info_msg("Sending: "); // Parse args until a \0 is found while ( bufferLen < i2cSend_BuffLenMax ) { curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // If | is found, end sequence and start new one if ( *arg1Ptr == '|' ) { print("| "); I2C_Send( buffer, bufferLen, 0 ); bufferLen = 0; continue; } // Interpret the argument buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr ); // Print out the arg dPrint( arg1Ptr ); print(" "); } print( NL ); I2C_Send( buffer, bufferLen, 0 ); } void cliFunc_i2cRecv( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Buffer used after interpretting the args, will be sent to I2C functions // NOTE: Limited to 8 bytes currently (can be increased if necessary #define i2cSend_BuffLenMax 8 uint8_t buffer[ i2cSend_BuffLenMax ]; uint8_t bufferLen = 0; // No \r\n by default after the command is entered print( NL ); info_msg("Sending: "); // Parse args until a \0 is found while ( bufferLen < i2cSend_BuffLenMax ) { curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // If | is found, end sequence and start new one if ( *arg1Ptr == '|' ) { print("| "); I2C_Send( buffer, bufferLen, 0 ); bufferLen = 0; continue; } // Interpret the argument buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr ); // Print out the arg dPrint( arg1Ptr ); print(" "); } print( NL ); I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip } // TODO Currently not working correctly void cliFunc_ledRPage( char* args ) { // Parse number from argument // NOTE: Only first argument is used char* arg1Ptr; char* arg2Ptr; CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr ); // Default to 0 if no argument is given uint8_t page = 0; if ( arg1Ptr[0] != '\0' ) { page = (uint8_t)numToInt( arg1Ptr ); } // No \r\n by default after the command is entered print( NL ); LED_readPage( 0x1, page ); //LED_readPage( 0xB4, page ); } void cliFunc_ledWPage( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // First process page and starting address curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) return; uint8_t page[] = { 0xE8, 0xFD, numToInt( arg1Ptr ) }; curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) return; uint8_t data[] = { 0xE8, numToInt( arg1Ptr ), 0 }; // Set the register page while ( I2C_Send( page, sizeof( page ), 0 ) == 0 ) delay(1); // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; data[2] = numToInt( arg1Ptr ); // Write register location and data to I2C while ( I2C_Send( data, sizeof( data ), 0 ) == 0 ) delay(1); // Increment address data[1]++; } } void cliFunc_ledStart( char* args ) { print( NL ); // No \r\n by default after the command is entered LED_zeroPages( 0x0B, 1, 0x00, 0x0C ); // Control Registers //LED_zeroPages( 0x00, 8, 0x00, 0xB4 ); // LED Registers LED_writeReg( 0x0A, 0x01, 0x0B ); LED_sendPage( (uint8_t*)LED_ledEnableMask1, sizeof( LED_ledEnableMask1 ), 0 ); } void cliFunc_ledTest( char* args ) { print( NL ); // No \r\n by default after the command is entered LED_sendPage( (uint8_t*)LED_defaultBrightness1, sizeof( LED_defaultBrightness1 ), 0 ); } void cliFunc_ledZero( char* args ) { print( NL ); // No \r\n by default after the command is entered LED_zeroPages( 0x00, 8, 0x24, 0xB4 ); // Only PWMs } void cliFunc_ledCtrl( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; LedControl control; // First process mode curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) return; control.mode = numToInt( arg1Ptr ); // Next process amount curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) return; control.amount = numToInt( arg1Ptr ); // Finally process led index, if it exists // Default to 0 curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); control.index = *arg1Ptr == '\0' ? 0 : numToInt( arg1Ptr ); // Process request LED_control( &control ); }