/* Copyright (C) 2014 by Jacob Alexander * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // ----- Includes ----- // Compiler Includes #include // Project Includes #include #include #include #include // Local Includes #include "scan_loop.h" #include "macro.h" typedef struct I2C_Buffer { uint16_t head; uint16_t tail; uint8_t sequencePos; uint16_t size; uint8_t *buffer; } I2C_Buffer; // ----- Function Declarations ----- // CLI Functions void cliFunc_echo( char* args ); void cliFunc_i2cRecv( char* args ); void cliFunc_i2cSend( char* args ); void cliFunc_ledZero( char* args ); uint8_t I2C_TxBufferPop(); void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer ); uint16_t I2C_BufferLen( I2C_Buffer *buffer ); uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen ); // ----- Variables ----- // Scan Module command dictionary CLIDict_Entry( echo, "Example command, echos the arguments." ); CLIDict_Entry( i2cRecv, "Send I2C sequence of bytes and expect a reply of 1 byte on the last sequence. Use |'s to split sequences with a stop." ); CLIDict_Entry( i2cSend, "Send I2C sequence of bytes. Use |'s to split sequences with a stop." ); CLIDict_Entry( ledZero, "Zero out LED register pages (non-configuration)." ); CLIDict_Def( scanCLIDict, "Scan Module Commands" ) = { CLIDict_Item( echo ), CLIDict_Item( i2cRecv ), CLIDict_Item( i2cSend ), CLIDict_Item( ledZero ), { 0, 0, 0 } // Null entry for dictionary end }; // Number of scans since the last USB send uint16_t Scan_scanCount = 0; // Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented // Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent #define I2C_TxBufferLength 300 #define I2C_RxBufferLength 8 volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ]; volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ]; volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, (uint8_t*)I2C_TxBufferPtr }; volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, (uint8_t*)I2C_RxBufferPtr }; void I2C_setup() { // Enable I2C internal clock SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0 // External pull-up resistor PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2); PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2); // SCL Frequency Divider // 400kHz -> 120 (0x85) @ 48 MHz F_BUS I2C0_F = 0x85; I2C0_FLT = 4; I2C0_C1 = I2C_C1_IICEN; I2C0_C2 = I2C_C2_HDRS; // High drive select // Enable I2C Interrupt NVIC_ENABLE_IRQ( IRQ_I2C0 ); } // ----- Interrupt Functions ----- void i2c0_isr() { cli(); // Disable Interrupts uint8_t status = I2C0_S; // Read I2C Bus status // Master Mode Transmit if ( I2C0_C1 & I2C_C1_TX ) { // Check current use of the I2C bus // Currently sending data if ( I2C_TxBuffer.sequencePos > 0 ) { // Make sure slave sent an ACK if ( status & I2C_S_RXAK ) { // NACK Detected, disable interrupt erro_print("I2C NAK detected..."); I2C0_C1 = I2C_C1_IICEN; // Abort Tx Buffer I2C_TxBuffer.head = 0; I2C_TxBuffer.tail = 0; I2C_TxBuffer.sequencePos = 0; } else { // Transmit byte I2C0_D = I2C_TxBufferPop(); } } // Receiving data else if ( I2C_RxBuffer.sequencePos > 0 ) { // Master Receive, addr sent if ( status & I2C_S_ARBL ) { // Arbitration Lost erro_print("Arbitration lost..."); // TODO Abort Rx I2C0_C1 = I2C_C1_IICEN; I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt } if ( status & I2C_S_RXAK ) { // Slave Address NACK Detected, disable interrupt erro_print("Slave Address I2C NAK detected..."); // TODO Abort Rx I2C0_C1 = I2C_C1_IICEN; } else { dbug_print("Attempting to read byte"); I2C0_C1 = I2C_RxBuffer.sequencePos == 1 ? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read : I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read } } else { /* dbug_msg("STOP - "); printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) ); print(NL); */ // Delay around STOP to make sure it actually happens... delayMicroseconds( 1 ); I2C0_C1 = I2C_C1_IICEN; // Send STOP delayMicroseconds( 7 ); // If there is another sequence, start sending if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size ) { // Clear status flags I2C0_S = I2C_S_IICIF | I2C_S_ARBL; // Wait...till the master dies while ( I2C0_S & I2C_S_BUSY ); // Enable I2C interrupt I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX; // Transmit byte I2C0_D = I2C_TxBufferPop(); } } } // Master Mode Receive else { // XXX Do we need to handle 2nd last byte? //I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv // Last byte if ( I2C_TxBuffer.sequencePos <= 1 ) { // Change to Tx mode I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; // Grab last byte I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer ); delayMicroseconds( 1 ); // Should be enough time before issuing the stop I2C0_C1 = I2C_C1_IICEN; // Send STOP } else { // Retrieve data I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer ); } } I2C0_S = I2C_S_IICIF; // Clear interrupt sei(); // Re-enable Interrupts } // ----- Functions ----- void LED_zeroPages( uint8_t startPage, uint8_t numPages, uint8_t pageLen ) { // Page Setup uint8_t pageSetup[] = { 0xE8, 0xFD, 0x00 }; // Max length of a page + chip id + reg start uint8_t fullPage[ 0xB3 + 2 ] = { 0 }; fullPage[0] = 0xE8; // Set chip id, starting reg is already 0x00 // Iterate through given pages, zero'ing out the given register regions for ( uint8_t page = startPage; page < startPage + numPages; page++ ) { // Set page pageSetup[2] = page; // Setup page while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 ) delay(1); // Zero out page while ( I2C_Send( fullPage, pageLen + 2, 0 ) == 0 ) delay(1); } } // Setup inline void LED_setup() { I2C_setup(); // Zero out Frame Registers LED_zeroPages( 0x00, 8, 0xB3 ); // LED Registers LED_zeroPages( 0x0B, 1, 0x0C ); // Control Registers // Disable Hardware shutdown of ISSI chip (pull high) GPIOD_PDDR |= (1<<1); PORTD_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); GPIOD_PSOR |= (1<<1); } inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer ) { uint8_t reTurn = 0; // If sendLen is greater than buffer fail right away if ( sendLen > buffer->size ) return 0; // Calculate new tail to determine if buffer has enough space // The first element specifies the expected number of bytes from the slave (+1) // The second element in the new buffer is the length of the buffer sequence (+1) uint16_t newTail = buffer->tail + sendLen + 2; if ( newTail >= buffer->size ) newTail -= buffer->size; if ( I2C_BufferLen( buffer ) < sendLen + 2 ) return 0; /* print("|"); printHex( sendLen + 2 ); print("|"); printHex( *tail ); print("@"); printHex( newTail ); print("@"); */ // If buffer is clean, return 1, otherwise 2 reTurn = buffer->head == buffer->tail ? 1 : 2; // Add to buffer, already know there is enough room (simplifies adding logic) uint8_t bufferHeaderPos = 0; for ( uint16_t c = 0; c < sendLen; c++ ) { // Add data to buffer switch ( bufferHeaderPos ) { case 0: buffer->buffer[ buffer->tail ] = recvLen; bufferHeaderPos++; c--; break; case 1: buffer->buffer[ buffer->tail ] = sendLen; bufferHeaderPos++; c--; break; default: buffer->buffer[ buffer->tail ] = data[ c ]; break; } // Check for wrap-around case if ( buffer->tail + 1 >= buffer->size ) { buffer->tail = 0; } // Normal case else { buffer->tail++; } } return reTurn; } inline uint16_t I2C_BufferLen( I2C_Buffer *buffer ) { // Tail >= Head if ( buffer->tail >= buffer->head ) return buffer->head + buffer->size - buffer->tail; // Head > Tail return buffer->head - buffer->tail; } void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer ) { // Make sure buffer isn't full if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) ) { warn_msg("I2C_BufferPush failed, buffer full: "); printHex( byte ); print( NL ); return; } // Check for wrap-around case if ( buffer->tail + 1 >= buffer->size ) { buffer->tail = 0; } // Normal case else { buffer->tail++; } // Add byte to buffer buffer->buffer[ buffer->tail ] = byte; } uint8_t I2C_TxBufferPop() { // Return 0xFF if no buffer left (do not rely on this) if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size ) { erro_msg("No buffer to pop an entry from... "); printHex( I2C_TxBuffer.head ); print(" "); printHex( I2C_TxBuffer.tail ); print(" "); printHex( I2C_TxBuffer.sequencePos ); print(NL); return 0xFF; } // If there is currently no sequence being sent, the first entry in the RingBuffer is the length if ( I2C_TxBuffer.sequencePos == 0 ) { I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop I2C_RxBuffer.sequencePos = I2C_TxBufferPop(); I2C_TxBuffer.sequencePos = I2C_TxBufferPop(); } uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ]; // Prune head I2C_TxBuffer.head++; // Wrap-around case if ( I2C_TxBuffer.head >= I2C_TxBuffer.size ) I2C_TxBuffer.head = 0; // Decrement buffer sequence (until next stop will be sent) I2C_TxBuffer.sequencePos--; /* dbug_msg("Popping: "); printHex( data ); print(" "); printHex( I2C_TxBuffer.head ); print(" "); printHex( I2C_TxBuffer.tail ); print(" "); printHex( I2C_TxBuffer.sequencePos ); print(NL); */ return data; } uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen ) { // Check head and tail pointers // If full, return 0 // If empty, start up I2C Master Tx // If buffer is non-empty and non-full, just append to the buffer switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) ) { // Not enough buffer space... case 0: /* erro_msg("Not enough Tx buffer space... "); printHex( I2C_TxBuffer.head ); print(":"); printHex( I2C_TxBuffer.tail ); print("+"); printHex( sendLen ); print("|"); printHex( I2C_TxBuffer.size ); print( NL ); */ return 0; // Empty buffer, initialize I2C case 1: // Clear status flags I2C0_S = I2C_S_IICIF | I2C_S_ARBL; // Check to see if we already have control of the bus if ( I2C0_C1 & I2C_C1_MST ) { // Already the master (ah yeah), send a repeated start I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX; } // Otherwise, seize control else { // Wait...till the master dies while ( I2C0_S & I2C_S_BUSY ); // Now we're the master (ah yisss), get ready to send stuffs I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; } // Enable I2C interrupt I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX; // Depending on what type of transfer, the first byte is configured for R or W I2C0_D = I2C_TxBufferPop(); return 1; } // Dirty buffer, I2C already initialized return 2; } // LED State processing loop inline uint8_t LED_loop() { // I2C Busy // S & I2C_S_BUSY //I2C_S_BUSY } // Setup inline void Scan_setup() { // Register Scan CLI dictionary CLI_registerDictionary( scanCLIDict, scanCLIDictName ); // Setup GPIO pins for matrix scanning //Matrix_setup(); // Reset scan count Scan_scanCount = 0; // Setup LED Drivers LED_setup(); } // Main Detection Loop inline uint8_t Scan_loop() { //Matrix_scan( Scan_scanCount++ ); //LED_scan(); return 0; } // Signal from Macro Module that all keys have been processed (that it knows about) inline void Scan_finishedWithMacro( uint8_t sentKeys ) { } // Signal from Output Module that all keys have been processed (that it knows about) inline void Scan_finishedWithOutput( uint8_t sentKeys ) { // Reset scan loop indicator (resets each key debounce state) // TODO should this occur after USB send or Macro processing? Scan_scanCount = 0; } // ----- CLI Command Functions ----- // XXX Just an example command showing how to parse arguments (more complex than generally needed) void cliFunc_echo( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Parse args until a \0 is found while ( 1 ) { print( NL ); // No \r\n by default after the command is entered curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Print out the arg dPrint( arg1Ptr ); } } void cliFunc_i2cSend( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Buffer used after interpretting the args, will be sent to I2C functions // NOTE: Limited to 8 bytes currently (can be increased if necessary #define i2cSend_BuffLenMax 8 uint8_t buffer[ i2cSend_BuffLenMax ]; uint8_t bufferLen = 0; // No \r\n by default after the command is entered print( NL ); info_msg("Sending: "); // Parse args until a \0 is found while ( bufferLen < i2cSend_BuffLenMax ) { curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // If | is found, end sequence and start new one if ( *arg1Ptr == '|' ) { print("| "); I2C_Send( buffer, bufferLen, 0 ); bufferLen = 0; continue; } // Interpret the argument buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr ); // Print out the arg dPrint( arg1Ptr ); print(" "); } print( NL ); I2C_Send( buffer, bufferLen, 0 ); } void cliFunc_i2cRecv( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Buffer used after interpretting the args, will be sent to I2C functions // NOTE: Limited to 8 bytes currently (can be increased if necessary #define i2cSend_BuffLenMax 8 uint8_t buffer[ i2cSend_BuffLenMax ]; uint8_t bufferLen = 0; // No \r\n by default after the command is entered print( NL ); info_msg("Sending: "); // Parse args until a \0 is found while ( bufferLen < i2cSend_BuffLenMax ) { curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // If | is found, end sequence and start new one if ( *arg1Ptr == '|' ) { print("| "); I2C_Send( buffer, bufferLen, 0 ); bufferLen = 0; continue; } // Interpret the argument buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr ); // Print out the arg dPrint( arg1Ptr ); print(" "); } print( NL ); I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip } void cliFunc_ledZero( char* args ) { print( NL ); // No \r\n by default after the command is entered LED_zeroPages( 0x00, 8, 0xB3 ); }