/* Copyright (c) 2011,2012 Simon Schubert <2@0x2c.org>. * Modifications by Jacob Alexander 2014-2016 * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ // ----- Includes ----- // Local Includes #include "mchck.h" #include "dfu.desc.h" #include "debug.h" // ----- Variables ----- /** * Unfortunately we can't DMA directly to FlexRAM, so we'll have to stage here. */ static char staging[ USB_DFU_TRANSFER_SIZE ]; // ----- Functions ----- int sector_print( void* buf, size_t sector, size_t chunks ) { uint8_t* start = (uint8_t*)buf + sector * USB_DFU_TRANSFER_SIZE; uint8_t* end = (uint8_t*)buf + (sector + 1) * USB_DFU_TRANSFER_SIZE; uint8_t* pos = start; // Verify if sector erased FTFL.fccob.read_1s_section.fcmd = FTFL_FCMD_READ_1s_SECTION; FTFL.fccob.read_1s_section.addr = (uintptr_t)start; FTFL.fccob.read_1s_section.margin = FTFL_MARGIN_NORMAL; FTFL.fccob.read_1s_section.num_words = 250; // 2000 kB / 64 bits int retval = ftfl_submit_cmd(); #ifdef FLASH_DEBUG print( NL ); print("Block "); printHex( sector ); print(" "); printHex( (size_t)start ); print(" -> "); printHex( (size_t)end ); print(" Erased: "); printHex( retval ); print( NL ); #endif // Display sector for ( size_t line = 0; pos < end - 24; line++ ) { // Each Line printHex_op( (size_t)pos, 4 ); print(": "); // Each 2 byte chunk for ( size_t chunk = 0; chunk < chunks; chunk++ ) { // Print out the two bytes (second one first) printHex_op( *(pos + 1), 2 ); printHex_op( *pos, 2 ); print(" "); pos += 2; } print( NL ); } return retval; } static enum dfu_status setup_read( size_t off, size_t *len, void **buf ) { // Calculate starting address from offset *buf = (void*)&_app_rom + (USB_DFU_TRANSFER_SIZE / 4) * off; // Calculate length of transfer /* *len = *buf > (void*)(&_app_rom_end) - USB_DFU_TRANSFER_SIZE ? 0 : USB_DFU_TRANSFER_SIZE; */ // Check for error /* if ( *buf > (void*)&_app_rom_end ) return (DFU_STATUS_errADDRESS); */ return (DFU_STATUS_OK); } static enum dfu_status setup_write( size_t off, size_t len, void **buf ) { static int last = 0; #ifdef FLASH_DEBUG // Debug print("Setup Write: offset("); printHex( off ); print(") len("); printHex( len ); print(") last("); printHex( last ); printNL(")"); #endif if ( len > sizeof(staging) ) return (DFU_STATUS_errADDRESS); // We only allow the last write to be less than one sector size. if ( off == 0 ) last = 0; if ( last && len != 0 ) return (DFU_STATUS_errADDRESS); if ( len != USB_DFU_TRANSFER_SIZE ) { last = 1; memset( staging, 0xff, sizeof(staging) ); } *buf = staging; return (DFU_STATUS_OK); } static enum dfu_status finish_write( void *buf, size_t off, size_t len ) { void *target; // If nothing left to flash, this is still ok if ( len == 0 ) return (DFU_STATUS_OK); // If the binary is larger than the internal flash, error if ( off + (uintptr_t)&_app_rom + len > (uintptr_t)&_app_rom_end ) return (DFU_STATUS_errADDRESS); target = flash_get_staging_area( off + (uintptr_t)&_app_rom, USB_DFU_TRANSFER_SIZE ); if ( !target ) return (DFU_STATUS_errADDRESS); memcpy( target, buf, len ); // Depending on the error return a different status switch ( flash_program_sector( off + (uintptr_t)&_app_rom, USB_DFU_TRANSFER_SIZE ) ) { /* case FTFL_FSTAT_RDCOLERR: // Flash Read Collision Error case FTFL_FSTAT_ACCERR: // Flash Access Error case FTFL_FSTAT_FPVIOL: // Flash Protection Violation Error return (DFU_STATUS_errADDRESS); case FTFL_FSTAT_MGSTAT0: // Memory Controller Command Completion Error return (DFU_STATUS_errADDRESS); */ case 0: default: // No error return (DFU_STATUS_OK); } } static struct dfu_ctx dfu_ctx; void init_usb_bootloader( int config ) { dfu_init( setup_read, setup_write, finish_write, &dfu_ctx ); } void main() { #if defined(_mk20dx128vlf5_) // Kiibohd-dfu / Infinity // XXX McHCK uses B16 instead of A19 // Enabling LED to indicate we are in the bootloader GPIOA_PDDR |= (1<<19); // Setup pin - A19 - See Lib/pin_map.mchck for more details on pins PORTA_PCR19 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); GPIOA_PSOR |= (1<<19); #elif defined(_mk20dx256vlh7_) // Kiibohd-dfu // Enabling LED to indicate we are in the bootloader GPIOA_PDDR |= (1<<5); // Setup pin - A5 - See Lib/pin_map.mchck for more details on pins PORTA_PCR5 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); GPIOA_PSOR |= (1<<5); // TODO Add CMake configuration for disabling // Set LCD backlight on ICED to Red GPIOC_PDDR |= (1<<1); PORTC_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); GPIOC_PCOR |= (1<<1); #else #error "Incompatible chip for bootloader" #endif uart_serial_setup(); printNL( NL "Bootloader DFU-Mode" ); // Bootloader Enter Reasons print(" RCM_SRS0 - "); printHex( RCM_SRS0 & 0x60 ); print( NL " RCM_SRS1 - "); printHex( RCM_SRS1 & 0x02 ); print( NL " _app_rom - "); printHex( (uint32_t)_app_rom ); print( NL " Soft Rst - " ); printHex( memcmp( (uint8_t*)&VBAT, sys_reset_to_loader_magic, sizeof(sys_reset_to_loader_magic) ) == 0 ); print( NL ); #ifdef FLASH_DEBUG for ( uint8_t sector = 0; sector < 3; sector++ ) sector_print( &_app_rom, sector, 16 ); print( NL ); #endif flash_prepare_flashing(); usb_init( &dfu_device ); for (;;) { usb_poll(); } }