/* Copyright (C) 2014-2016 by Jacob Alexander * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // ----- Includes ----- // Compiler Includes #include // Project Includes #include #include #include #include // USB Includes #if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_) #elif defined(_mk20dx128_) || defined(_mk20dx128vlf5_) || defined(_mk20dx256_) || defined(_mk20dx256vlh7_) #include #include #include #include #include "arm/usb_mouse.h" #endif // KLL #include // Local Includes #include "output_com.h" // ----- Macros ----- // Used to build a bitmap lookup table from a byte addressable array #define byteLookup( byte ) \ case (( byte ) * ( 8 )): bytePosition = byte; byteShift = 0; break; \ case (( byte ) * ( 8 ) + ( 1 )): bytePosition = byte; byteShift = 1; break; \ case (( byte ) * ( 8 ) + ( 2 )): bytePosition = byte; byteShift = 2; break; \ case (( byte ) * ( 8 ) + ( 3 )): bytePosition = byte; byteShift = 3; break; \ case (( byte ) * ( 8 ) + ( 4 )): bytePosition = byte; byteShift = 4; break; \ case (( byte ) * ( 8 ) + ( 5 )): bytePosition = byte; byteShift = 5; break; \ case (( byte ) * ( 8 ) + ( 6 )): bytePosition = byte; byteShift = 6; break; \ case (( byte ) * ( 8 ) + ( 7 )): bytePosition = byte; byteShift = 7; break // ----- Function Declarations ----- void cliFunc_kbdProtocol( char* args ); void cliFunc_outputDebug( char* args ); void cliFunc_readLEDs ( char* args ); void cliFunc_readUART ( char* args ); void cliFunc_sendKeys ( char* args ); void cliFunc_sendUART ( char* args ); void cliFunc_setKeys ( char* args ); void cliFunc_setMod ( char* args ); void cliFunc_usbInitTime( char* args ); // ----- Variables ----- // Output Module command dictionary CLIDict_Entry( kbdProtocol, "Keyboard Protocol Mode: 0 - Boot, 1 - OS/NKRO Mode" ); CLIDict_Entry( outputDebug, "Toggle Output Debug mode." ); CLIDict_Entry( readLEDs, "Read LED byte:" NL "\t\t1 NumLck, 2 CapsLck, 4 ScrlLck, 16 Kana, etc." ); CLIDict_Entry( readUART, "Read UART buffer until empty." ); CLIDict_Entry( sendKeys, "Send the prepared list of USB codes and modifier byte." ); CLIDict_Entry( sendUART, "Send characters over UART0." ); CLIDict_Entry( setKeys, "Prepare a space separated list of USB codes (decimal). Waits until \033[35msendKeys\033[0m." ); CLIDict_Entry( setMod, "Set the modfier byte:" NL "\t\t1 LCtrl, 2 LShft, 4 LAlt, 8 LGUI, 16 RCtrl, 32 RShft, 64 RAlt, 128 RGUI" ); CLIDict_Entry( usbInitTime, "Displays the time in ms from usb_init() till the last setup call." ); CLIDict_Def( outputCLIDict, "USB Module Commands" ) = { CLIDict_Item( kbdProtocol ), CLIDict_Item( outputDebug ), CLIDict_Item( readLEDs ), CLIDict_Item( readUART ), CLIDict_Item( sendKeys ), CLIDict_Item( sendUART ), CLIDict_Item( setKeys ), CLIDict_Item( setMod ), CLIDict_Item( usbInitTime ), { 0, 0, 0 } // Null entry for dictionary end }; // Which modifier keys are currently pressed // 1=left ctrl, 2=left shift, 4=left alt, 8=left gui // 16=right ctrl, 32=right shift, 64=right alt, 128=right gui uint8_t USBKeys_Modifiers = 0; uint8_t USBKeys_ModifiersCLI = 0; // Separate CLI send buffer // Currently pressed keys, max is defined by USB_MAX_KEY_SEND uint8_t USBKeys_Keys [USB_NKRO_BITFIELD_SIZE_KEYS]; uint8_t USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer // System Control and Consumer Control 1KRO containers uint8_t USBKeys_SysCtrl; uint16_t USBKeys_ConsCtrl; // The number of keys sent to the usb in the array uint8_t USBKeys_Sent = 0; uint8_t USBKeys_SentCLI = 0; // 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana volatile uint8_t USBKeys_LEDs = 0; // Currently pressed mouse buttons, bitmask, 0 represents no buttons pressed volatile uint16_t USBMouse_Buttons = 0; // Relative mouse axis movement, stores pending movement volatile uint16_t USBMouse_Relative_x = 0; volatile uint16_t USBMouse_Relative_y = 0; // Protocol setting from the host. // 0 - Boot Mode // 1 - NKRO Mode (Default, unless set by a BIOS or boot interface) volatile uint8_t USBKeys_Protocol = USBProtocol_define; // Indicate if USB should send update // OS only needs update if there has been a change in state USBKeyChangeState USBKeys_Changed = USBKeyChangeState_None; // Indicate if USB should send update USBMouseChangeState USBMouse_Changed = 0; // the idle configuration, how often we send the report to the // host (ms * 4) even when it hasn't changed // 0 - Disables uint8_t USBKeys_Idle_Config = 0; // Count until idle timeout uint32_t USBKeys_Idle_Expiry = 0; uint8_t USBKeys_Idle_Count = 0; // Indicates whether the Output module is fully functional // 0 - Not fully functional, 1 - Fully functional // 0 is often used to show that a USB cable is not plugged in (but has power) volatile uint8_t Output_Available = 0; // Debug control variable for Output modules // 0 - Debug disabled (default) // 1 - Debug enabled uint8_t Output_DebugMode = 0; // mA - Set by outside module if not using USB (i.e. Interconnect) // Generally set to 100 mA (low power) or 500 mA (high power) uint16_t Output_ExtCurrent_Available = 0; // mA - Set by USB module (if exists) // Initially 100 mA, but may be negotiated higher (e.g. 500 mA) uint16_t Output_USBCurrent_Available = 0; // USB Init Time (ms) volatile uint32_t USBInit_TimeStart; volatile uint32_t USBInit_TimeEnd; volatile uint16_t USBInit_Ticks; // ----- Capabilities ----- // Set Boot Keyboard Protocol void Output_kbdProtocolBoot_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { #if enableKeyboard_define == 1 // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Output_kbdProtocolBoot()"); return; } // Only set if necessary if ( USBKeys_Protocol == 0 ) return; // TODO Analog inputs // Only set on key press if ( stateType != 0x01 ) return; // Flush the key buffers Output_flushBuffers(); // Set the keyboard protocol to Boot Mode USBKeys_Protocol = 0; #endif } // Set NKRO Keyboard Protocol void Output_kbdProtocolNKRO_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { #if enableKeyboard_define == 1 // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Output_kbdProtocolNKRO()"); return; } // Only set if necessary if ( USBKeys_Protocol == 1 ) return; // TODO Analog inputs // Only set on key press if ( stateType != 0x01 ) return; // Flush the key buffers Output_flushBuffers(); // Set the keyboard protocol to NKRO Mode USBKeys_Protocol = 1; #endif } // Toggle Keyboard Protocol void Output_toggleKbdProtocol_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { #if enableKeyboard_define == 1 // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Output_toggleKbdProtocol()"); return; } // Only toggle protocol if release state if ( stateType == 0x00 && state == 0x03 ) { // Flush the key buffers Output_flushBuffers(); // Toggle the keyboard protocol Mode USBKeys_Protocol = !USBKeys_Protocol; } #endif } // Sends a Consumer Control code to the USB Output buffer void Output_consCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { #if enableKeyboard_define == 1 // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Output_consCtrlSend(consCode)"); return; } // Not implemented in Boot Mode if ( USBKeys_Protocol == 0 ) { warn_print("Consumer Control is not implemented for Boot Mode"); return; } // TODO Analog inputs // Only indicate USB has changed if either a press or release has occured if ( state == 0x01 || state == 0x03 ) USBKeys_Changed |= USBKeyChangeState_Consumer; // Only send keypresses if press or hold state if ( stateType == 0x00 && state == 0x03 ) // Release state { USBKeys_ConsCtrl = 0; return; } // Set consumer control code USBKeys_ConsCtrl = *(uint16_t*)(&args[0]); #endif } // Ignores the given key status update // Used to prevent fall-through, this is the None keyword in KLL void Output_noneSend_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Output_noneSend()"); return; } // Nothing to do, because that's the point :P } // Sends a System Control code to the USB Output buffer void Output_sysCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { #if enableKeyboard_define == 1 // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Output_sysCtrlSend(sysCode)"); return; } // Not implemented in Boot Mode if ( USBKeys_Protocol == 0 ) { warn_print("System Control is not implemented for Boot Mode"); return; } // TODO Analog inputs // Only indicate USB has changed if either a press or release has occured if ( state == 0x01 || state == 0x03 ) USBKeys_Changed |= USBKeyChangeState_System; // Only send keypresses if press or hold state if ( stateType == 0x00 && state == 0x03 ) // Release state { USBKeys_SysCtrl = 0; return; } // Set system control code USBKeys_SysCtrl = args[0]; #endif } // Adds a single USB Code to the USB Output buffer // Argument #1: USB Code void Output_usbCodeSend_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { #if enableKeyboard_define == 1 // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Output_usbCodeSend(usbCode)"); return; } // Depending on which mode the keyboard is in the USB needs Press/Hold/Release events uint8_t keyPress = 0; // Default to key release, only used for NKRO switch ( USBKeys_Protocol ) { case 0: // Boot Mode // TODO Analog inputs // Only indicate USB has changed if either a press or release has occured if ( state == 0x01 || state == 0x03 ) USBKeys_Changed = USBKeyChangeState_MainKeys; // Only send keypresses if press or hold state if ( stateType == 0x00 && state == 0x03 ) // Release state return; break; case 1: // NKRO Mode // Only send press and release events if ( stateType == 0x00 && state == 0x02 ) // Hold state return; // Determine if setting or unsetting the bitfield (press == set) if ( stateType == 0x00 && state == 0x01 ) // Press state keyPress = 1; break; } // Get the keycode from arguments uint8_t key = args[0]; // Depending on which mode the keyboard is in, USBKeys_Keys array is used differently // Boot mode - Maximum of 6 byte codes // NKRO mode - Each bit of the 26 byte corresponds to a key // Bits 0 - 45 (bytes 0 - 5) correspond to USB Codes 4 - 49 (Main) // Bits 48 - 161 (bytes 6 - 20) correspond to USB Codes 51 - 164 (Secondary) // Bits 168 - 213 (bytes 21 - 26) correspond to USB Codes 176 - 221 (Tertiary) // Bits 214 - 216 unused uint8_t bytePosition = 0; uint8_t byteShift = 0; switch ( USBKeys_Protocol ) { case 0: // Boot Mode // Set the modifier bit if this key is a modifier if ( (key & 0xE0) == 0xE0 ) // AND with 0xE0 (Left Ctrl, first modifier) { USBKeys_Modifiers |= 1 << (key ^ 0xE0); // Left shift 1 by key XOR 0xE0 } // Normal USB Code else { // USB Key limit reached if ( USBKeys_Sent >= USB_BOOT_MAX_KEYS ) { warn_print("USB Key limit reached"); return; } // Make sure key is within the USB HID range if ( key <= 104 ) { USBKeys_Keys[USBKeys_Sent++] = key; } // Invalid key else { warn_msg("USB Code above 104/0x68 in Boot Mode: "); printHex( key ); print( NL ); } } break; case 1: // NKRO Mode // Set the modifier bit if this key is a modifier if ( (key & 0xE0) == 0xE0 ) // AND with 0xE0 (Left Ctrl, first modifier) { if ( keyPress ) { USBKeys_Modifiers |= 1 << (key ^ 0xE0); // Left shift 1 by key XOR 0xE0 } else // Release { USBKeys_Modifiers &= ~(1 << (key ^ 0xE0)); // Left shift 1 by key XOR 0xE0 } USBKeys_Changed |= USBKeyChangeState_Modifiers; break; } // First 6 bytes else if ( key >= 4 && key <= 49 ) { // Lookup (otherwise division or multiple checks are needed to do alignment) // Starting at 0th position, each byte has 8 bits, starting at 4th bit uint8_t keyPos = key + (0 * 8 - 4); // Starting position in array, Ignoring 4 keys switch ( keyPos ) { byteLookup( 0 ); byteLookup( 1 ); byteLookup( 2 ); byteLookup( 3 ); byteLookup( 4 ); byteLookup( 5 ); } USBKeys_Changed |= USBKeyChangeState_MainKeys; } // Next 14 bytes else if ( key >= 51 && key <= 155 ) { // Lookup (otherwise division or multiple checks are needed to do alignment) // Starting at 6th byte position, each byte has 8 bits, starting at 51st bit uint8_t keyPos = key + (6 * 8 - 51); // Starting position in array switch ( keyPos ) { byteLookup( 6 ); byteLookup( 7 ); byteLookup( 8 ); byteLookup( 9 ); byteLookup( 10 ); byteLookup( 11 ); byteLookup( 12 ); byteLookup( 13 ); byteLookup( 14 ); byteLookup( 15 ); byteLookup( 16 ); byteLookup( 17 ); byteLookup( 18 ); byteLookup( 19 ); } USBKeys_Changed |= USBKeyChangeState_SecondaryKeys; } // Next byte else if ( key >= 157 && key <= 164 ) { // Lookup (otherwise division or multiple checks are needed to do alignment) uint8_t keyPos = key + (20 * 8 - 157); // Starting position in array, Ignoring 6 keys switch ( keyPos ) { byteLookup( 20 ); } USBKeys_Changed |= USBKeyChangeState_TertiaryKeys; } // Last 6 bytes else if ( key >= 176 && key <= 221 ) { // Lookup (otherwise division or multiple checks are needed to do alignment) uint8_t keyPos = key + (21 * 8 - 176); // Starting position in array switch ( keyPos ) { byteLookup( 21 ); byteLookup( 22 ); byteLookup( 23 ); byteLookup( 24 ); byteLookup( 25 ); byteLookup( 26 ); } USBKeys_Changed |= USBKeyChangeState_QuartiaryKeys; } // Received 0x00 // This is a special USB Code that internally indicates a "break" // It is used to send "nothing" in order to break up sequences of USB Codes else if ( key == 0x00 ) { USBKeys_Changed |= USBKeyChangeState_MainKeys; // Also flush out buffers just in case Output_flushBuffers(); break; } // Invalid key else { warn_msg("USB Code not within 4-49 (0x4-0x31), 51-155 (0x33-0x9B), 157-164 (0x9D-0xA4), 176-221 (0xB0-0xDD) or 224-231 (0xE0-0xE7) NKRO Mode: "); printHex( key ); print( NL ); break; } // Set/Unset if ( keyPress ) { USBKeys_Keys[bytePosition] |= (1 << byteShift); USBKeys_Sent++; } else // Release { USBKeys_Keys[bytePosition] &= ~(1 << byteShift); USBKeys_Sent++; } break; } #endif } void Output_flashMode_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Output_flashMode()"); return; } // Start flash mode Output_firmwareReload(); } // Sends a mouse command over the USB Output buffer // XXX This function *will* be changing in the future // If you use it, be prepared that your .kll files will break in the future (post KLL 0.5) // Argument #1: USB Mouse Button (16 bit) // Argument #2: USB X Axis (16 bit) relative // Argument #3: USB Y Axis (16 bit) relative void Output_usbMouse_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { #if enableMouse_define == 1 // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Output_usbMouse(mouseButton,relX,relY)"); return; } // Determine which mouse button was sent // The USB spec defines up to a max of 0xFFFF buttons // The usual are: // 1 - Button 1 - (Primary) // 2 - Button 2 - (Secondary) // 3 - Button 3 - (Tertiary) uint16_t mouse_button = *(uint16_t*)(&args[0]); // X/Y Relative Axis uint16_t mouse_x = *(uint16_t*)(&args[2]); uint16_t mouse_y = *(uint16_t*)(&args[4]); // Adjust for bit shift uint16_t mouse_button_shift = mouse_button - 1; // Only send mouse button if in press or hold state if ( stateType == 0x00 && state == 0x03 ) // Release state { // Release if ( mouse_button ) USBMouse_Buttons &= ~(1 << mouse_button_shift); } else { // Press or hold if ( mouse_button ) USBMouse_Buttons |= (1 << mouse_button_shift); if ( mouse_x ) USBMouse_Relative_x = mouse_x; if ( mouse_y ) USBMouse_Relative_y = mouse_y; } // Trigger updates if ( mouse_button ) USBMouse_Changed |= USBMouseChangeState_Buttons; if ( mouse_x || mouse_y ) USBMouse_Changed |= USBMouseChangeState_Relative; #endif } // ----- Functions ----- // Flush Key buffers void Output_flushBuffers() { // Zero out USBKeys_Keys array for ( uint8_t c = 0; c < USB_NKRO_BITFIELD_SIZE_KEYS; c++ ) USBKeys_Keys[ c ] = 0; // Zero out other key buffers USBKeys_ConsCtrl = 0; USBKeys_Modifiers = 0; USBKeys_SysCtrl = 0; } // USB Module Setup inline void Output_setup() { // Setup UART uart_serial_setup(); // Initialize the USB // If a USB connection does not exist, just ignore it // All usb related functions will non-fatally fail if called // If the USB initialization is delayed, then functionality will just be delayed usb_init(); // Register USB Output CLI dictionary CLI_registerDictionary( outputCLIDict, outputCLIDictName ); // Flush key buffers Output_flushBuffers(); } // USB Data Send inline void Output_send() { // USB status checks // Non-standard USB state manipulation, usually does nothing usb_device_check(); // Boot Mode Only, unset stale keys // XXX - Behaves oddly on Mac OSX, might help with corrupted packets specific to OSX? -HaaTa /* // Check if idle count has been exceed, this forces usb_keyboard_send and usb_mouse_send to update // TODO Add joystick as well (may be endpoint specific, currently not kept track of) if ( usb_configuration && USBKeys_Idle_Config && ( USBKeys_Idle_Expiry < systick_millis_count || USBKeys_Idle_Expiry + USBKeys_Idle_Config * 4 >= systick_millis_count ) ) { USBKeys_Changed = USBKeyChangeState_All; USBMouse_Changed = USBMouseChangeState_All; } */ #if enableMouse_define == 1 // Process mouse actions while ( USBMouse_Changed ) usb_mouse_send(); #endif #if enableKeyboard_define == 1 if ( USBKeys_Protocol == 0 ) for ( uint8_t c = USBKeys_Sent; c < USB_BOOT_MAX_KEYS; c++ ) USBKeys_Keys[c] = 0; // Send keypresses while there are pending changes while ( USBKeys_Changed ) usb_keyboard_send(); // Clear keys sent USBKeys_Sent = 0; // Signal Scan Module we are finished switch ( USBKeys_Protocol ) { case 0: // Boot Mode // Clear modifiers only in boot mode USBKeys_Modifiers = 0; Scan_finishedWithOutput( USBKeys_Sent <= USB_BOOT_MAX_KEYS ? USBKeys_Sent : USB_BOOT_MAX_KEYS ); break; case 1: // NKRO Mode Scan_finishedWithOutput( USBKeys_Sent ); break; } #endif } // Sets the device into firmware reload mode void Output_firmwareReload() { usb_device_reload(); } // USB Input buffer available inline unsigned int Output_availablechar() { #if enableVirtualSerialPort_define == 1 return usb_serial_available() + uart_serial_available(); #else return uart_serial_available(); #endif } // USB Get Character from input buffer inline int Output_getchar() { #if enableVirtualSerialPort_define == 1 // XXX Make sure to check output_availablechar() first! Information is lost with the cast (error codes) (AVR) if ( usb_serial_available() > 0 ) { return (int)usb_serial_getchar(); } #endif if ( uart_serial_available() > 0 ) { return (int)uart_serial_getchar(); } return -1; } // USB Send Character to output buffer inline int Output_putchar( char c ) { #if enableVirtualSerialPort_define == 1 // First send to UART uart_serial_putchar( c ); // Then send to USB return usb_serial_putchar( c ); #else return uart_serial_putchar( c ); #endif } // USB Send String to output buffer, null terminated inline int Output_putstr( char* str ) { #if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_) // AVR uint16_t count = 0; #elif defined(_mk20dx128_) || defined(_mk20dx128vlf5_) || defined(_mk20dx256_) || defined(_mk20dx256vlh7_) // ARM uint32_t count = 0; #endif // Count characters until NULL character, then send the amount counted while ( str[count] != '\0' ) count++; #if enableVirtualSerialPort_define == 1 // First send to UART uart_serial_write( str, count ); // Then send to USB return usb_serial_write( str, count ); #else return uart_serial_write( str, count ); #endif } // Soft Chip Reset inline void Output_softReset() { usb_device_software_reset(); } // Update USB current (mA) // Triggers power change event void Output_update_usb_current( unsigned int current ) { // Only signal if changed if ( current == Output_USBCurrent_Available ) return; // Update USB current Output_USBCurrent_Available = current; /* XXX Affects sleep states due to USB messages unsigned int total_current = Output_current_available(); info_msg("USB Available Current Changed. Total Available: "); printInt32( total_current ); print(" mA" NL); */ // Send new total current to the Scan Modules Scan_currentChange( Output_current_available() ); } // Update external current (mA) // Triggers power change event void Output_update_external_current( unsigned int current ) { // Only signal if changed if ( current == Output_ExtCurrent_Available ) return; // Update external current Output_ExtCurrent_Available = current; unsigned int total_current = Output_current_available(); info_msg("External Available Current Changed. Total Available: "); printInt32( total_current ); print(" mA" NL); // Send new total current to the Scan Modules Scan_currentChange( Output_current_available() ); } // Power/Current Available unsigned int Output_current_available() { unsigned int total_current = 0; // Check for USB current source total_current += Output_USBCurrent_Available; // Check for external current source total_current += Output_ExtCurrent_Available; // XXX If the total available current is still 0 // Set to 100 mA, which is generally a safe assumption at startup // before we've been able to determine actual available current if ( total_current == 0 ) { total_current = 100; } return total_current; } // ----- CLI Command Functions ----- void cliFunc_kbdProtocol( char* args ) { print( NL ); info_msg("Keyboard Protocol: "); printInt8( USBKeys_Protocol ); } void cliFunc_outputDebug( char* args ) { // Parse number from argument // NOTE: Only first argument is used char* arg1Ptr; char* arg2Ptr; CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr ); // Default to 1 if no argument is given Output_DebugMode = 1; if ( arg1Ptr[0] != '\0' ) { Output_DebugMode = (uint16_t)numToInt( arg1Ptr ); } } void cliFunc_readLEDs( char* args ) { print( NL ); info_msg("LED State: "); printInt8( USBKeys_LEDs ); } void cliFunc_readUART( char* args ) { print( NL ); // Read UART buffer until empty while ( uart_serial_available() > 0 ) { char out[] = { (char)uart_serial_getchar(), '\0' }; dPrint( out ); } } void cliFunc_sendKeys( char* args ) { // Copy USBKeys_KeysCLI to USBKeys_Keys for ( uint8_t key = 0; key < USBKeys_SentCLI; ++key ) { // TODO //USBKeys_Keys[key] = USBKeys_KeysCLI[key]; } USBKeys_Sent = USBKeys_SentCLI; // Set modifier byte USBKeys_Modifiers = USBKeys_ModifiersCLI; } void cliFunc_sendUART( char* args ) { // Write all args to UART uart_serial_write( args, lenStr( args ) ); } void cliFunc_setKeys( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Parse up to USBKeys_MaxSize args (whichever is least) for ( USBKeys_SentCLI = 0; USBKeys_SentCLI < USB_BOOT_MAX_KEYS; ++USBKeys_SentCLI ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Add the USB code to be sent // TODO //USBKeys_KeysCLI[USBKeys_SentCLI] = numToInt( arg1Ptr ); } } void cliFunc_setMod( char* args ) { // Parse number from argument // NOTE: Only first argument is used char* arg1Ptr; char* arg2Ptr; CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr ); USBKeys_ModifiersCLI = numToInt( arg1Ptr ); } void cliFunc_usbInitTime( char* args ) { // Calculate overall USB initialization time // XXX A protocol analyzer will be more accurate, however, this is built-in and easier to collect data print(NL); info_msg("USB Init Time: "); printInt32( USBInit_TimeEnd - USBInit_TimeStart ); print(" ms - "); printInt16( USBInit_Ticks ); print(" ticks"); }