/* Copyright (C) 2015-2016 by Jacob Alexander * * This file is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this file. If not, see . */ // ----- Includes ----- // Compiler Includes #include // Project Includes #include #include #include #include // Interconnect module if compiled in #if defined(ConnectEnabled_define) #include #endif // Local Includes #include "lcd_scan.h" // ----- Defines ----- #define LCD_TOTAL_VISIBLE_PAGES 4 #define LCD_TOTAL_PAGES 9 #define LCD_PAGE_LEN 128 // ----- Macros ----- // Number of entries in the SPI0 TxFIFO #define SPI0_TxFIFO_CNT ( ( SPI0_SR & SPI_SR_TXCTR ) >> 12 ) // ----- Structs ----- // ----- Function Declarations ----- // CLI Functions void cliFunc_lcdCmd ( char* args ); void cliFunc_lcdColor( char* args ); void cliFunc_lcdDisp ( char* args ); void cliFunc_lcdInit ( char* args ); void cliFunc_lcdTest ( char* args ); // ----- Variables ----- // Default Image - Displays on startup const uint8_t STLcdDefaultImage[] = { STLcdDefaultImage_define }; // Full Toggle State uint8_t cliFullToggleState = 0; // Normal/Reverse Toggle State uint8_t cliNormalReverseToggleState = 0; // Scan Module command dictionary CLIDict_Entry( lcdCmd, "Send byte via SPI, second argument enables a0. Defaults to control." ); CLIDict_Entry( lcdColor, "Set backlight color. 3 16-bit numbers: R G B. i.e. 0xFFF 0x1444 0x32" ); CLIDict_Entry( lcdDisp, "Write byte(s) to given page starting at given address. i.e. 0x1 0x5 0xFF 0x00" ); CLIDict_Entry( lcdInit, "Re-initialize the LCD display." ); CLIDict_Entry( lcdTest, "Test out the LCD display." ); CLIDict_Def( lcdCLIDict, "ST LCD Module Commands" ) = { CLIDict_Item( lcdCmd ), CLIDict_Item( lcdColor ), CLIDict_Item( lcdDisp ), CLIDict_Item( lcdInit ), CLIDict_Item( lcdTest ), { 0, 0, 0 } // Null entry for dictionary end }; // ----- Interrupt Functions ----- // ----- Functions ----- inline void SPI_setup() { // Enable SPI internal clock SIM_SCGC6 |= SIM_SCGC6_SPI0; // Setup MOSI (SOUT) and SCLK (SCK) PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(2); PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(2); // Setup SS (PCS) PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(2); // Master Mode, CS0 SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(1); // DSPI Clock and Transfer Attributes // Frame Size: 8 bits // MSB First // CLK Low by default SPI0_CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_ASC(7) | SPI_CTAR_DT(7) | SPI_CTAR_CSSCK(7) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(7); } // Write buffer to SPI FIFO void SPI_write( uint8_t *buffer, uint8_t len ) { for ( uint8_t byte = 0; byte < len; byte++ ) { // Wait for SPI TxFIFO to have 4 or fewer entries while ( !( SPI0_SR & SPI_SR_TFFF ) ) delayMicroseconds(10); // Write byte to TxFIFO // CS0, CTAR0 SPI0_PUSHR = ( buffer[ byte ] & 0xff ) | SPI_PUSHR_PCS(1); // Indicate transfer has completed while ( !( SPI0_SR & SPI_SR_TCF ) ); SPI0_SR |= SPI_SR_TCF; } } // Write to a control register void LCD_writeControlReg( uint8_t byte ) { // Wait for TxFIFO to be empt while ( SPI0_TxFIFO_CNT != 0 ); // Set A0 low to enter control register mode GPIOC_PCOR |= (1<<7); // Write byte to SPI FIFO SPI_write( &byte, 1 ); // Wait for TxFIFO to be empty while ( SPI0_TxFIFO_CNT != 0 ); // Make sure data has transferred delayMicroseconds(10); // XXX Adjust if SPI speed changes // Set A0 high to go back to display register mode GPIOC_PSOR |= (1<<7); } // Write to display register // Pages 0-7 normal display // Page 8 icon buffer void LCD_writeDisplayReg( uint8_t page, uint8_t *buffer, uint8_t len ) { // Set the register page LCD_writeControlReg( 0xB0 | ( 0x0F & page ) ); // Set display start line LCD_writeControlReg( 0x40 ); // Reset Column Address LCD_writeControlReg( 0x10 ); LCD_writeControlReg( 0x00 ); // Write buffer to SPI SPI_write( buffer, len ); } inline void LCD_clearPage( uint8_t page ) { // Set the register page LCD_writeControlReg( 0xB0 | ( 0x0F & page ) ); // Set display start line LCD_writeControlReg( 0x40 ); // Reset Column Address LCD_writeControlReg( 0x10 ); LCD_writeControlReg( 0x00 ); for ( uint8_t page_reg = 0; page_reg < LCD_PAGE_LEN; page_reg++ ) { uint8_t byte = 0; // Write buffer to SPI SPI_write( &byte, 1 ); } // Wait for TxFIFO to be empty while ( SPI0_TxFIFO_CNT != 0 ); } // Clear Display void LCD_clear() { // Setup each page for ( uint8_t page = 0; page < LCD_TOTAL_PAGES; page++ ) { LCD_clearPage( page ); } // Reset Page, Start Line, and Column Address // Page LCD_writeControlReg( 0xB0 ); // Start Line LCD_writeControlReg( 0x40 ); // Reset Column Address LCD_writeControlReg( 0x10 ); LCD_writeControlReg( 0x00 ); } // Intialize display void LCD_initialize() { // ADC Select (Normal) LCD_writeControlReg( 0xA0 ); // LCD Off LCD_writeControlReg( 0xAE ); // COM Scan Output Direction LCD_writeControlReg( 0xC0 ); // LCD Bias (1/6 bias) LCD_writeControlReg( 0xA2 ); // Power Supply Operating Mode (Internal Only) LCD_writeControlReg( 0x2F ); // Internal Rb/Ra Ratio LCD_writeControlReg( 0x26 ); // Reset LCD_writeControlReg( 0xE2 ); // Electric volume mode set, and value LCD_writeControlReg( 0x81 ); LCD_writeControlReg( 0x00 ); // LCD On LCD_writeControlReg( 0xAF ); // Clear Display RAM LCD_clear(); } // Setup inline void LCD_setup() { // Register Scan CLI dictionary CLI_registerDictionary( lcdCLIDict, lcdCLIDictName ); // Initialize SPI SPI_setup(); // Setup Register Control Signal (A0) // Start in display register mode (1) GPIOC_PDDR |= (1<<7); PORTC_PCR7 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); GPIOC_PSOR |= (1<<7); // Setup LCD Reset pin (RST) // 0 - Reset, 1 - Normal Operation // Start in normal mode (1) GPIOC_PDDR |= (1<<8); PORTC_PCR8 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); GPIOC_PSOR |= (1<<8); // Run LCD intialization sequence LCD_initialize(); // Write default image to LCD for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ ) LCD_writeDisplayReg( page, (uint8_t*)&STLcdDefaultImage[page * LCD_PAGE_LEN], LCD_PAGE_LEN ); // Setup Backlight SIM_SCGC6 |= SIM_SCGC6_FTM0; FTM0_CNT = 0; // Reset counter // PWM Period // 16-bit maximum FTM0_MOD = 0xFFFF; // Set FTM to PWM output - Edge Aligned, Low-true pulses FTM0_C0SC = 0x24; // MSnB:MSnA = 10, ELSnB:ELSnA = 01 FTM0_C1SC = 0x24; FTM0_C2SC = 0x24; // Base FTM clock selection (72 MHz system clock) // @ 0xFFFF period, 72 MHz / (0xFFFF * 2) = Actual period // Higher pre-scalar will use the most power (also look the best) // Pre-scalar calculations // 0 - 72 MHz -> 549 Hz // 1 - 36 MHz -> 275 Hz // 2 - 18 MHz -> 137 Hz // 3 - 9 MHz -> 69 Hz (Slightly visible flicker) // 4 - 4 500 kHz -> 34 Hz (Visible flickering) // 5 - 2 250 kHz -> 17 Hz // 6 - 1 125 kHz -> 9 Hz // 7 - 562 500 Hz -> 4 Hz // Using a higher pre-scalar without flicker is possible but FTM0_MOD will need to be reduced // Which will reduce the brightness range // System clock, /w prescalar setting FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS( STLcdBacklightPrescalar_define ); // Red FTM0_C0V = STLcdBacklightRed_define; PORTC_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(4); // Green FTM0_C1V = STLcdBacklightGreen_define; PORTC_PCR2 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(4); // Blue FTM0_C2V = STLcdBacklightBlue_define; PORTC_PCR3 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(4); } // LCD State processing loop inline uint8_t LCD_scan() { return 0; } // Signal from parent Scan Module that available current has changed // current - mA void LCD_currentChange( unsigned int current ) { // TODO - Power savings? } // ----- Capabilities ----- // Takes 1 8 bit length and 4 16 bit arguments, each corresponding to a layer index // Ordered from top to bottom // The first argument indicates how many numbers to display (max 4), set to 0 to load default image uint16_t LCD_layerStackExact[4]; uint8_t LCD_layerStackExact_size = 0; typedef struct LCD_layerStackExact_args { uint8_t numArgs; uint16_t layers[4]; } LCD_layerStackExact_args; void LCD_layerStackExact_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("LCD_layerStackExact_capability(num,layer1,layer2,layer3,layer4)"); return; } // Read arguments LCD_layerStackExact_args *stack_args = (LCD_layerStackExact_args*)args; // Number data for LCD const uint8_t numbers[10][128] = { { STLcdNumber0_define }, { STLcdNumber1_define }, { STLcdNumber2_define }, { STLcdNumber3_define }, { STLcdNumber4_define }, { STLcdNumber5_define }, { STLcdNumber6_define }, { STLcdNumber7_define }, { STLcdNumber8_define }, { STLcdNumber9_define }, }; // Color data for numbers const uint16_t colors[10][3] = { { STLcdNumber0Color_define }, { STLcdNumber1Color_define }, { STLcdNumber2Color_define }, { STLcdNumber3Color_define }, { STLcdNumber4Color_define }, { STLcdNumber5Color_define }, { STLcdNumber6Color_define }, { STLcdNumber7Color_define }, { STLcdNumber8Color_define }, { STLcdNumber9Color_define }, }; // Only display if there are layers active if ( stack_args->numArgs > 0 ) { // Set the color according to the "top-of-stack" layer uint16_t layerIndex = stack_args->layers[0]; FTM0_C0V = colors[ layerIndex ][0]; FTM0_C1V = colors[ layerIndex ][1]; FTM0_C2V = colors[ layerIndex ][2]; // Iterate through each of the pages // XXX Many of the values here are hard-coded // Eventually a proper font rendering engine should take care of things like this... -HaaTa for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ ) { // Set the register page LCD_writeControlReg( 0xB0 | ( 0x0F & page ) ); // Set starting address LCD_writeControlReg( 0x10 ); LCD_writeControlReg( 0x00 ); // Write data for ( uint16_t layer = 0; layer < stack_args->numArgs; layer++ ) { layerIndex = stack_args->layers[ layer ]; // Default to 0, if over 9 if ( layerIndex > 9 ) { layerIndex = 0; } // Write page of number to display SPI_write( (uint8_t*)&numbers[ layerIndex ][ page * 32 ], 32 ); } // Blank out rest of display uint8_t data = 0; for ( uint8_t c = 0; c < 4 - stack_args->numArgs; c++ ) { for ( uint8_t byte = 0; byte < 32; byte++ ) { SPI_write( &data, 1 ); } } } } else { // Set default backlight FTM0_C0V = STLcdBacklightRed_define; FTM0_C1V = STLcdBacklightGreen_define; FTM0_C2V = STLcdBacklightBlue_define; // Write default image for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ ) LCD_writeDisplayReg( page, (uint8_t *)&STLcdDefaultImage[page * LCD_PAGE_LEN], LCD_PAGE_LEN ); } } // Determines the current layer stack, and sets the LCD output accordingly // Will only work on a master node when using the interconnect (use LCD_layerStackExact_capability instead) uint16_t LCD_layerStack_prevSize = 0; uint16_t LCD_layerStack_prevTop = 0; void LCD_layerStack_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("LCD_layerStack_capability()"); return; } // Parse the layer stack, top to bottom extern uint16_t macroLayerIndexStack[]; extern uint16_t macroLayerIndexStackSize; // Ignore if the stack size hasn't changed and the top of the stack is the same if ( macroLayerIndexStackSize == LCD_layerStack_prevSize && macroLayerIndexStack[macroLayerIndexStackSize - 1] == LCD_layerStack_prevTop ) { return; } LCD_layerStack_prevSize = macroLayerIndexStackSize; LCD_layerStack_prevTop = macroLayerIndexStack[macroLayerIndexStackSize - 1]; LCD_layerStackExact_args stack_args; memset( stack_args.layers, 0, sizeof( stack_args.layers ) ); // Use the LCD_layerStackExact_capability to set the LCD using the determined stack // Construct argument set for capability stack_args.numArgs = macroLayerIndexStackSize; for ( uint16_t layer = 1; layer <= macroLayerIndexStackSize; layer++ ) { stack_args.layers[ layer - 1 ] = macroLayerIndexStack[ macroLayerIndexStackSize - layer ]; } // Only deal with the interconnect if it has been compiled in #if defined(ConnectEnabled_define) if ( Connect_master ) { // generatedKeymap.h extern const Capability CapabilitiesList[]; // Broadcast layerStackExact remote capability (0xFF is the broadcast id) Connect_send_RemoteCapability( 0xFF, LCD_layerStackExact_capability_index, state, stateType, CapabilitiesList[ LCD_layerStackExact_capability_index ].argCount, (uint8_t*)&stack_args ); } #endif // Call LCD_layerStackExact directly LCD_layerStackExact_capability( state, stateType, (uint8_t*)&stack_args ); } // ----- CLI Command Functions ----- void cliFunc_lcdInit( char* args ) { LCD_initialize(); } void cliFunc_lcdTest( char* args ) { // Write default image for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ ) LCD_writeDisplayReg( page, (uint8_t *)&STLcdDefaultImage[page * LCD_PAGE_LEN], LCD_PAGE_LEN ); } void cliFunc_lcdCmd( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; print( NL ); // No \r\n by default after the command is entered curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // No args if ( *arg1Ptr == '\0' ) return; // SPI Command uint8_t cmd = (uint8_t)numToInt( arg1Ptr ); curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Single Arg if ( *arg1Ptr == '\0' ) goto cmd; // TODO Deal with a0 cmd: info_msg("Sending - "); printHex( cmd ); print( NL ); LCD_writeControlReg( cmd ); } void cliFunc_lcdColor( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Colors uint16_t rgb[3]; // Red, Green, Blue // Parse integers from 3 arguments for ( uint8_t color = 0; color < 3; color++ ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Give up if not enough args given if ( *arg1Ptr == '\0' ) return; // Convert argument to integer rgb[ color ] = numToInt( arg1Ptr ); } // Set PWM channels FTM0_C0V = rgb[0]; FTM0_C1V = rgb[1]; FTM0_C2V = rgb[2]; } void cliFunc_lcdDisp( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // First process page and starting address curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) return; uint8_t page = numToInt( arg1Ptr ); curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) return; uint8_t address = numToInt( arg1Ptr ); // Set the register page LCD_writeControlReg( 0xB0 | ( 0x0F & page ) ); // Set starting address LCD_writeControlReg( 0x10 | ( ( 0xF0 & address ) >> 4 ) ); LCD_writeControlReg( 0x00 | ( 0x0F & address )); // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; uint8_t value = numToInt( arg1Ptr ); // Write buffer to SPI SPI_write( &value, 1 ); } }