/* Copyright (C) 2011-2013 by Joseph Makuch * Additions by Jacob Alexander (2013) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3.0 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see . */ // ----- Includes ----- // Compiler Includes #include // Project Includes #include #include // Local Includes #include "scan_loop.h" // ----- Defines ----- // TODO dfj defines...needs commenting and maybe some cleaning... #define MAX_PRESS_DELTA_MV 380 #define THRESHOLD_MV (MAX_PRESS_DELTA_MV >> 1) //(2560 / (0x3ff/2)) ~= 5 #define MV_PER_ADC 5 #define THRESHOLD (THRESHOLD_MV / MV_PER_ADC) #define STROBE_SETTLE 1 #define MUX_SETTLE 1 #define TEST_KEY_STROBE (0x05) #define TEST_KEY_MASK (1 << 0) #define ADHSM 7 #define RIGHT_JUSTIFY 0 #define LEFT_JUSTIFY (0xff) // set left or right justification here: #define JUSTIFY_ADC RIGHT_JUSTIFY #define ADLAR_MASK (1 << ADLAR) #ifdef JUSTIFY_ADC #define ADLAR_BITS ((ADLAR_MASK) & (JUSTIFY_ADC)) #else // defaults to right justification. #define ADLAR_BITS 0 #endif // full muxmask #define FULL_MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2) | (1 << MUX3) | (1 << MUX4)) // F0-f7 pins only muxmask. #define MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2)) // Strobe Masks #define D_MASK (0xff) #define E_MASK (0x03) #define C_MASK (0xff) // set ADC clock prescale #define PRESCALE_MASK ((1 << ADPS0) | (1 << ADPS1) | (1 << ADPS2)) #define PRESCALE_SHIFT (ADPS0) #define PRESCALE 3 // Max number of strobes supported by the hardware // Strobe lines are detected at startup, extra strobes cause anomalies like phantom keypresses #define MAX_STROBES 18 #define MUXES_COUNT 8 #define MUXES_COUNT_XSHIFT 3 #define WARMUP_LOOPS ( 1024 ) #define WARMUP_STOP (WARMUP_LOOPS - 1) #define SAMPLES 10 #define SAMPLE_OFFSET ((SAMPLES) - MUXES_COUNT) #define SAMPLE_CONTROL 3 // Starting average for keys, per key will adjust during runtime // XXX - A better method is needed to choose this value (i.e. not experimental) // The ideal average is not always found for weak keys if this is set too high... #define DEFAULT_KEY_BASE 0xB0 #define KEY_COUNT ((MAX_STROBES) * (MUXES_COUNT)) #define RECOVERY_CONTROL 1 #define RECOVERY_SOURCE 0 #define RECOVERY_SINK 2 #define ON 1 #define OFF 0 // mix in 1/4 of the current average to the running average. -> (@mux_mix = 2) #define MUX_MIX 2 #define IDLE_COUNT_MASK 0xff #define IDLE_COUNT_SHIFT 8 // av = (av << shift) - av + sample; av >>= shift // e.g. 1 -> (av + sample) / 2 simple average of new and old // 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new. // 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new. #define KEYS_AVERAGES_MIX_SHIFT 3 // ----- Macros ----- // Make sure we haven't overflowed the buffer #define bufferAdd(byte) \ if ( KeyIndex_BufferUsed < KEYBOARD_BUFFER ) \ KeyIndex_Buffer[KeyIndex_BufferUsed++] = byte // Select mux #define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK)))) // ----- Variables ----- // Buffer used to inform the macro processing module which keys have been detected as pressed volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER]; volatile uint8_t KeyIndex_BufferUsed; // TODO dfj variables...needs cleaning up and commenting volatile uint16_t full_av = 0; uint8_t ze_strober = 0; uint16_t samples [SAMPLES]; uint8_t cur_keymap[MAX_STROBES]; uint8_t keymap_change; uint16_t threshold = THRESHOLD; uint8_t column = 0; uint16_t keys_averages_acc[KEY_COUNT]; uint16_t keys_averages [KEY_COUNT]; uint8_t full_samples[KEY_COUNT]; // TODO: change this to 'booting', then count down. uint16_t boot_count = 0; uint16_t idle_count = 0; uint8_t idle = 1; uint8_t error = 0; uint16_t error_data = 0; uint8_t total_strobes = MAX_STROBES; uint8_t strobe_map[MAX_STROBES]; uint8_t dump_count = 0; uint16_t db_delta = 0; uint8_t db_sample = 0; uint16_t db_threshold = 0; // ----- Function Declarations ----- void dump( void ); void recovery( uint8_t on ); int sampleColumn( uint8_t column ); void setup_ADC( void ); void strobe_w( uint8_t strobe_num ); uint8_t testColumn( uint8_t strobe ); // ----- Functions ----- // Initial setup for cap sense controller inline void scan_setup() { // TODO dfj code...needs cleanup + commenting... setup_ADC(); DDRC = C_MASK; PORTC = 0; DDRD = D_MASK; PORTD = 0; DDRE = E_MASK; PORTE = 0 ; // Hardcoded strobes for debugging // Strobes start at 0 and go to 17 (18), not all Model Fs use all of the available strobes // The single row ribbon connector Model Fs only have a max of 16 strobes //#define KISHSAVER_STROBE #define TERMINAL_6110668_STROBE #ifdef KISHSAVER_STROBE total_strobes = 10; strobe_map[0] = 1; // Kishsaver doesn't use strobe 0 strobe_map[1] = 2; strobe_map[2] = 3; strobe_map[3] = 4; strobe_map[4] = 5; strobe_map[5] = 6; strobe_map[6] = 7; strobe_map[7] = 8; strobe_map[8] = 9; strobe_map[9] = 15; // Test point strobe (3 test points, sense 1, 4, 5) #elif defined(TERMINAL_6110668_STROBE) total_strobes = 16; strobe_map[0] = 0; strobe_map[1] = 1; strobe_map[2] = 2; strobe_map[3] = 3; strobe_map[4] = 4; strobe_map[5] = 5; strobe_map[6] = 6; strobe_map[7] = 7; strobe_map[8] = 8; strobe_map[9] = 9; strobe_map[10] = 10; strobe_map[11] = 11; strobe_map[12] = 12; strobe_map[13] = 13; strobe_map[14] = 14; strobe_map[15] = 15; #else // Strobe detection // TODO #endif // TODO all this code should probably be in scan_resetKeyboard for ( int i = 0; i < total_strobes; ++i) { cur_keymap[i] = 0; } for ( int i = 0; i < KEY_COUNT; ++i ) { keys_averages[i] = DEFAULT_KEY_BASE; keys_averages_acc[i] = (DEFAULT_KEY_BASE); } /** warm things up a bit before we start collecting data, taking real samples. */ for ( uint8_t i = 0; i < total_strobes; ++i ) { sampleColumn( strobe_map[i] ); } // Reset the keyboard before scanning, we might be in a wierd state // Also sets the KeyIndex_BufferUsed to 0 scan_resetKeyboard(); } // Main Detection Loop // This is where the important stuff happens inline uint8_t scan_loop() { // TODO dfj code...needs commenting + cleanup... uint8_t strober = 0; uint32_t full_av_acc = 0; for (strober = 0; strober < total_strobes; ++strober) { uint8_t tries = 1; while ( tries++ && sampleColumn( strobe_map[strober] ) ) { tries &= 0x7; } // don't waste this one just because the last one was poop. column = testColumn(strober); idle |= column; // if column has any pressed keys, then we are not idle. // TODO Is this needed anymore? Really only helps debug -HaaTa if( column != cur_keymap[strober] && ( boot_count >= WARMUP_LOOPS ) ) { cur_keymap[strober] = column; keymap_change = 1; } idle |= keymap_change; // if any keys have changed inc. released, then we are not idle. if ( error == 0x50 ) { error_data |= (((uint16_t)strober) << 12); } uint8_t strobe_line = strober << MUXES_COUNT_XSHIFT; for ( int i = 0; i < MUXES_COUNT; ++i ) { // discard sketchy low bit, and meaningless high bits. uint8_t sample = samples[SAMPLE_OFFSET + i] >> 1; full_samples[strobe_line + i] = sample; keys_averages_acc[strobe_line + i] += sample; } for ( uint8_t i = SAMPLE_OFFSET; i < ( SAMPLE_OFFSET + MUXES_COUNT ); ++i ) { full_av_acc += (samples[i]); } } // for strober #ifdef VERIFY_TEST_PAD // verify test key is not down. if ( ( cur_keymap[TEST_KEY_STROBE] & TEST_KEY_MASK ) ) { error = 0x05; error_data = cur_keymap[TEST_KEY_STROBE] << 8; error_data += full_samples[TEST_KEY_STROBE * 8]; } #endif /** aggregate if booting, or if idle; * else, if not booting, check for dirty USB. * */ idle_count++; idle_count &= IDLE_COUNT_MASK; // Warm up voltage references if ( boot_count < WARMUP_LOOPS ) { boot_count++; switch ( boot_count ) { // First loop case 1: // Show msg at first iteration only info_msg("Warming up the voltage references"); break; // Middle iterations case 300: case 600: case 900: case 1200: print("."); break; // Last loop case WARMUP_STOP: print("\n"); info_msg("Warmup finished using "); printInt16( WARMUP_LOOPS ); print(" iterations\n"); break; } } else { // Reset accumulators and idle flag/counter if ( keymap_change ) { for ( uint8_t c = 0; c < KEY_COUNT; ++c ) { keys_averages_acc[c] = 0; } idle_count = 0; idle = 0; keymap_change = 0; } if ( !idle_count ) { if( idle ) { // aggregate for ( uint8_t i = 0; i < KEY_COUNT; ++i ) { uint16_t acc = keys_averages_acc[i] >> IDLE_COUNT_SHIFT; uint32_t av = keys_averages[i]; av = (av << KEYS_AVERAGES_MIX_SHIFT) - av + acc; av >>= KEYS_AVERAGES_MIX_SHIFT; keys_averages[i] = av; keys_averages_acc[i] = 0; } } if ( boot_count >= WARMUP_LOOPS ) { dump(); } } } // Error case, should not occur in normal operation if ( error ) { erro_msg("Problem detected... "); // Keymap scan debug for ( uint8_t i = 0; i < total_strobes; ++i ) { printHex(cur_keymap[i]); print(" "); } print(" : "); printHex(error); error = 0; print(" : "); printHex(error_data); error_data = 0; // Display keymaps and other debug information if warmup completede if ( boot_count >= WARMUP_LOOPS ) { dump(); } } // Return non-zero if macro and USB processing should be delayed // Macro processing will always run if returning 0 // USB processing only happens once the USB send timer expires, if it has not, scan_loop will be called // after the macro processing has been completed return 0; } // Reset Keyboard void scan_resetKeyboard( void ) { // Empty buffer, now that keyboard has been reset KeyIndex_BufferUsed = 0; } // Send data to keyboard // NOTE: Only used for converters, since the scan module shouldn't handle sending data in a controller uint8_t scan_sendData( uint8_t dataPayload ) { return 0; } // Reset/Hold keyboard // NOTE: Only used for converters, not needed for full controllers void scan_lockKeyboard( void ) { } // NOTE: Only used for converters, not needed for full controllers void scan_unlockKeyboard( void ) { } // Signal KeyIndex_Buffer that it has been properly read // NOTE: Only really required for implementing "tricks" in converters for odd protocols void scan_finishedWithBuffer( uint8_t sentKeys ) { // Convenient place to clear the KeyIndex_Buffer KeyIndex_BufferUsed = 0; return; } // Signal KeyIndex_Buffer that it has been properly read and sent out by the USB module // NOTE: Only really required for implementing "tricks" in converters for odd protocols void scan_finishedWithUSBBuffer( uint8_t sentKeys ) { return; } void setup_ADC() { // disable adc digital pins. DIDR1 |= (1 << AIN0D) | (1<> 1) > (db_threshold = threshold) + (db_delta = delta) ) { column |= bit; // Only register keypresses once the warmup is complete if ( boot_count >= WARMUP_LOOPS ) { uint8_t key = (strobe << MUXES_COUNT_XSHIFT) + mux; // TODO Add debounce first // Add to the Macro processing buffer // Automatically handles converting to a USB code and sending off to the PC //bufferAdd( key ); #define KEYSCAN_THRESHOLD_DEBUG #ifdef KEYSCAN_THRESHOLD_DEBUG // Debug message // [:] : : : dbug_msg("0x"); printHex_op( key, 2 ); print(" ["); printInt8( strobe ); print(":"); printInt8( mux ); print("] : "); printHex( db_sample ); // Sense print(" : "); printHex( db_threshold ); print("+"); printHex( db_delta ); print("="); printHex( db_threshold + db_delta ); // Sense compare print(" : "); printHex( db_sample - ( db_threshold + db_delta ) ); // Margin print("\n"); #endif } } bit <<= 1; } return column; } void dump(void) { #ifdef DEBUG_FULL_SAMPLES_AVERAGES // we don't want to debug-out during the measurements. if ( !dump_count ) { // Averages currently set per key for ( int i = 0; i < KEY_COUNT; ++i ) { if ( !(i & 0x0f) ) { print("\n"); } else if ( !(i & 0x07) ) { print(" "); } print(" "); printHex( keys_averages[i] ); } print("\n"); // Previously read full ADC scans? for ( int i = 0; i< KEY_COUNT; ++i) { if ( !(i & 0x0f) ) { print("\n"); } else if ( !(i & 0x07) ) { print(" "); } print(" "); printHex(full_samples[i]); } } #endif #ifdef DEBUG_STROBE_SAMPLES_AVERAGES // Per strobe information uint8_t cur_strober = ze_strober; print("\n"); printHex(cur_strober); // Previously read ADC scans on current strobe print(" :"); for ( uint8_t i = 0; i < MUXES_COUNT; ++i ) { print(" "); printHex(full_samples[(cur_strober << MUXES_COUNT_XSHIFT) + i]); } // Averages current set on current strobe print(" :"); for ( uint8_t i = 0; i < MUXES_COUNT; ++i ) { print(" "); printHex(keys_averages[(cur_strober << MUXES_COUNT_XSHIFT) + i]); } #endif #ifdef DEBUG_DELTA_SAMPLE_THRESHOLD print("\n"); printHex( db_delta ); print(" "); printHex( db_sample ); print(" "); printHex( db_threshold ); print(" "); printHex( column ); #endif #ifdef DEBUG_USB_KEYMAP print("\n "); // Current keymap values for ( uint8_t i = 0; i < total_strobes; ++i ) { printHex(cur_keymap[i]); print(" "); } #endif ze_strober++; ze_strober &= 0xf; dump_count++; dump_count &= 0x0f; }