/* Copyright (C) 2014 by Jacob Alexander * * This file is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this file. If not, see . */ // ----- Includes ----- // Compiler Includes #include // Project Includes #include #include #include #include #include // Keymaps #include "usb_hid.h" #include #include "generatedKeymap.h" // TODO Use actual generated version // Local Includes #include "macro.h" // ----- Function Declarations ----- void cliFunc_capList ( char* args ); void cliFunc_capSelect ( char* args ); void cliFunc_keyPress ( char* args ); void cliFunc_keyRelease( char* args ); void cliFunc_layerList ( char* args ); void cliFunc_layerState( char* args ); void cliFunc_macroDebug( char* args ); void cliFunc_macroList ( char* args ); void cliFunc_macroProc ( char* args ); void cliFunc_macroShow ( char* args ); void cliFunc_macroStep ( char* args ); // ----- Variables ----- // Macro Module command dictionary char* macroCLIDictName = "Macro Module Commands"; CLIDictItem macroCLIDict[] = { { "capList", "Prints an indexed list of all non USB keycode capabilities.", cliFunc_capList }, { "capSelect", "Triggers the specified capabilities. First two args are state and stateType." NL "\t\t\033[35mK11\033[0m Keyboard Capability 0x0B", cliFunc_capSelect }, { "keyPress", "Send key-presses to the macro module. Held until released. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A", cliFunc_keyPress }, { "keyRelease", "Release a key-press from the macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A", cliFunc_keyRelease }, { "layerList", "List available layers.", cliFunc_layerList }, { "layerState", "Modify specified indexed layer state ." NL "\t\t\033[35mL2\033[0m Indexed Layer 0x02" NL "\t\t0 Off, 1 Shift, 2 Latch, 4 Lock States", cliFunc_layerState }, { "macroDebug", "Disables/Enables sending USB keycodes to the Output Module and prints U/K codes.", cliFunc_macroDebug }, { "macroList", "List the defined trigger and result macros.", cliFunc_macroList }, { "macroProc", "Pause/Resume macro processing.", cliFunc_macroProc }, { "macroShow", "Show the macro corresponding to the given index." NL "\t\t\033[35mT16\033[0m Indexed Trigger Macro 0x10, \033[35mR12\033[0m Indexed Result Macro 0x0C", cliFunc_macroShow }, { "macroStep", "Do N macro processing steps. Defaults to 1.", cliFunc_macroStep }, { 0, 0, 0 } // Null entry for dictionary end }; // Macro debug flag - If set, clears the USB Buffers after signalling processing completion uint8_t macroDebugMode = 0; // Macro pause flag - If set, the macro module pauses processing, unless unset, or the step counter is non-zero uint8_t macroPauseMode = 0; // Macro step counter - If non-zero, the step counter counts down every time the macro module does one processing loop unsigned int macroStepCounter = 0; // Key Trigger List Buffer // * Item 1: scan code // * Item 2: state // ... uint8_t macroTriggerListBuffer[MaxScanCode * 2] = { 0 }; // Each key has a state to be cached uint8_t macroTriggerListBufferSize = 0; // TODO, figure out a good way to scale this array size without wasting too much memory, but not rejecting macros // Possibly could be calculated by the KLL compiler // XXX It may be possible to calculate the worst case using the KLL compiler TriggerMacro *triggerMacroPendingList[TriggerMacroNum]; // ----- Functions ----- // Looks up the trigger list for the given scan code (from the active layer) unsigned int *Macro_layerLookup( uint8_t scanCode ) { // TODO - No layer fallthrough lookup return default_scanMap[ scanCode ]; } // Update the scancode key state // States: // * 0x00 - Reserved // * 0x01 - Pressed // * 0x02 - Held // * 0x03 - Released // * 0x04 - Unpressed (this is currently ignored) inline void Macro_keyState( uint8_t scanCode, uint8_t state ) { // Only add to macro trigger list if one of three states switch ( state ) { case 0x01: // Pressed case 0x02: // Held case 0x03: // Released macroTriggerListBuffer[ macroTriggerListBufferSize++ ] = scanCode; macroTriggerListBuffer[ macroTriggerListBufferSize++ ] = state; break; } } // Update the scancode analog state // States: // * 0x00 - Reserved // * 0x01 - Released // * 0x02-0xFF - Analog value (low to high) inline void Macro_analogState( uint8_t scanCode, uint8_t state ) { // TODO } // Update led state // States: // * 0x00 - Reserved // * 0x01 - On // * 0x02 - Off inline void Macro_ledState( uint8_t ledCode, uint8_t state ) { // TODO } // Evaluate/Update the TriggerMacro void Macro_evalTriggerMacro( TriggerMacro *triggerMacro ) { // Which combo in the sequence is being evaluated unsigned int comboPos = triggerMacro->pos; // If combo length is more than 1, cancel trigger macro if an incorrect key is found uint8_t comboLength = triggerMacro->guide[ comboPos ]; // Iterate over list of keys currently pressed for ( uint8_t keyPressed = 0; keyPressed < macroTriggerListBufferSize; keyPressed += 2 ) { // Compare with keys in combo for ( unsigned int comboKey = 0; comboKey < comboLength; comboKey++ ) { // Lookup key in combo uint8_t guideKey = triggerMacro->guide[ comboPos + comboKey + 2 ]; // TODO Only Press/Hold/Release atm // Sequence Case if ( comboLength == 1 ) { // If key matches and only 1 key pressed, increment the TriggerMacro combo position if ( guideKey == macroTriggerListBuffer[ keyPressed ] && macroTriggerListBufferSize == 1 ) { triggerMacro->pos += comboLength * 2 + 1; // TODO check if TriggerMacro is finished, register ResultMacro return; } // If key does not match or more than 1 key pressed, reset the TriggerMacro combo position triggerMacro->pos = 0; return; } // Combo Case else { // TODO } } } } /* inline void Macro_bufferAdd( uint8_t byte ) { // Make sure we haven't overflowed the key buffer // Default function for adding keys to the KeyIndex_Buffer, does a DefaultMap_Lookup if ( KeyIndex_BufferUsed < KEYBOARD_BUFFER ) { uint8_t key = DefaultMap_Lookup[byte]; for ( uint8_t c = 0; c < KeyIndex_BufferUsed; c++ ) { // Key already in the buffer if ( KeyIndex_Buffer[c] == key ) return; } // Add to the buffer KeyIndex_Buffer[KeyIndex_BufferUsed++] = key; } } inline void Macro_bufferRemove( uint8_t byte ) { uint8_t key = DefaultMap_Lookup[byte]; // Check for the released key, and shift the other keys lower on the buffer for ( uint8_t c = 0; c < KeyIndex_BufferUsed; c++ ) { // Key to release found if ( KeyIndex_Buffer[c] == key ) { // Shift keys from c position for ( uint8_t k = c; k < KeyIndex_BufferUsed - 1; k++ ) KeyIndex_Buffer[k] = KeyIndex_Buffer[k + 1]; // Decrement Buffer KeyIndex_BufferUsed--; return; } } // Error case (no key to release) erro_msg("Could not find key to release: "); printHex( key ); } */ inline void Macro_finishWithUSBBuffer( uint8_t sentKeys ) { } inline void Macro_process() { // Only do one round of macro processing between Output Module timer sends if ( USBKeys_Sent != 0 ) return; // If the pause flag is set, only process if the step counter is non-zero if ( macroPauseMode && macroStepCounter == 0 ) { return; } // Proceed, decrementing the step counter else { macroStepCounter--; } // Loop through macro trigger buffer for ( uint8_t index = 0; index < macroTriggerListBufferSize; index += 2 ) { // Get scanCode, first item of macroTriggerListBuffer pairs uint8_t scanCode = macroTriggerListBuffer[ index ]; // Lookup trigger list for this key unsigned int *triggerList = Macro_layerLookup( scanCode ); // The first element is the length of the trigger list unsigned int triggerListSize = triggerList[0]; // Loop through the trigger list for ( unsigned int trigger = 0; trigger < triggerListSize; trigger++ ) { // Lookup TriggerMacro TriggerMacro *triggerMacro = (TriggerMacro*)triggerList[ trigger + 1 ]; // Get triggered state of scan code, second item of macroTriggerListBuffer pairs uint8_t state = macroTriggerListBuffer[ index + 1 ]; // Evaluate Macro Macro_evalTriggerMacro( triggerMacro ); } } /* TODO // Loop through input buffer for ( uint8_t index = 0; index < KeyIndex_BufferUsed && !macroDebugMode; index++ ) { //print(" KEYS: "); //printInt8( KeyIndex_BufferUsed ); // Get the keycode from the buffer uint8_t key = KeyIndex_Buffer[index]; // Set the modifier bit if this key is a modifier if ( (key & KEY_LCTRL) == KEY_LCTRL ) // AND with 0xE0 { USBKeys_Modifiers |= 1 << (key ^ KEY_LCTRL); // Left shift 1 by key XOR 0xE0 // Modifier processed, move on to the next key continue; } // Too many keys if ( USBKeys_Sent >= USBKeys_MaxSize ) { warn_msg("USB Key limit reached"); errorLED( 1 ); break; } // Allow ignoring keys with 0's if ( key != 0 ) { USBKeys_Array[USBKeys_Sent++] = key; } else { // Key was not mapped erro_msg( "Key not mapped... - " ); printHex( key ); errorLED( 1 ); } } */ // Signal buffer that we've used it Scan_finishedWithBuffer( KeyIndex_BufferUsed ); // If Macro debug mode is set, clear the USB Buffer if ( macroDebugMode ) { USBKeys_Modifiers = 0; USBKeys_Sent = 0; } } inline void Macro_setup() { // Register Macro CLI dictionary CLI_registerDictionary( macroCLIDict, macroCLIDictName ); // Disable Macro debug mode macroDebugMode = 0; // Disable Macro pause flag macroPauseMode = 0; // Set Macro step counter to zero macroStepCounter = 0; // Make sure macro trigger buffer is empty macroTriggerListBufferSize = 0; } // ----- CLI Command Functions ----- void cliFunc_capList( char* args ) { print( NL ); info_msg("Capabilities List"); // Iterate through all of the capabilities and display them for ( unsigned int cap = 0; cap < CapabilitiesNum; cap++ ) { print( NL "\t" ); printHex( cap ); print(" - "); // Display/Lookup Capability Name (utilize debug mode of capability) void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ cap ].func); capability( 0xFF, 0xFF, 0 ); } } void cliFunc_capSelect( char* args ) { // Parse code from argument char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Total number of args to scan (must do a lookup if a keyboard capability is selected) unsigned int totalArgs = 2; // Always at least two args unsigned int cap = 0; // Arguments used for keyboard capability function unsigned int argSetCount = 0; uint8_t *argSet = (uint8_t*)args; // Process all args for ( unsigned int c = 0; argSetCount < totalArgs; c++ ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found // Extra arguments are ignored if ( *arg1Ptr == '\0' ) break; // For the first argument, choose the capability if ( c == 0 ) switch ( arg1Ptr[0] ) { // Keyboard Capability case 'K': // Determine capability index cap = decToInt( &arg1Ptr[1] ); // Lookup the number of args totalArgs += CapabilitiesList[ cap ].argCount; continue; } // Because allocating memory isn't doable, and the argument count is arbitrary // The argument pointer is repurposed as the argument list (much smaller anyways) argSet[ argSetCount++ ] = (uint8_t)decToInt( arg1Ptr ); // Once all the arguments are prepared, call the keyboard capability function if ( argSetCount == totalArgs ) { // Indicate that the capability was called print( NL ); info_msg("K"); printInt8( cap ); print(" - "); printHex( argSet[0] ); print(" - "); printHex( argSet[1] ); print(" - "); printHex( argSet[2] ); print( "..." NL ); void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ cap ].func); capability( argSet[0], argSet[1], &argSet[2] ); } } } void cliFunc_keyPress( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Ignore non-Scancode numbers switch ( arg1Ptr[0] ) { // Scancode case 'S': Macro_keyState( (uint8_t)decToInt( &arg1Ptr[1] ), 0x01 ); // Press scancode break; } } } void cliFunc_keyRelease( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Ignore non-Scancode numbers switch ( arg1Ptr[0] ) { // Scancode case 'S': Macro_keyState( (uint8_t)decToInt( &arg1Ptr[1] ), 0x03 ); // Release scancode break; } } } void cliFunc_layerList( char* args ) { print( NL ); info_msg("Layer List"); // Iterate through all of the layers and display them for ( unsigned int layer = 0; layer < LayerNum; layer++ ) { print( NL "\t" ); printHex( layer ); print(" - "); // Display layer name dPrint( LayerIndex[ layer ].name ); // Default map if ( layer == 0 ) print(" \033[1m(default)\033[0m"); // Layer State print( NL "\t\t Layer State: " ); printHex( LayerIndex[ layer ].state ); // Max Index print(" Max Index: "); printHex( LayerIndex[ layer ].max ); } } void cliFunc_layerState( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; uint8_t arg1 = 0; uint8_t arg2 = 0; // Process first two args for ( uint8_t c = 0; c < 2; c++ ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; switch ( c ) { // First argument (e.g. L1) case 0: if ( arg1Ptr[0] != 'L' ) return; arg1 = (uint8_t)decToInt( &arg1Ptr[1] ); break; // Second argument (e.g. 4) case 1: arg2 = (uint8_t)decToInt( arg1Ptr ); // Display operation (to indicate that it worked) print( NL ); info_msg("Setting Layer L"); printInt8( arg1 ); print(" to - "); printHex( arg2 ); // Set the layer state LayerIndex[ arg1 ].state = arg2; break; } } } void cliFunc_macroDebug( char* args ) { // Toggle macro debug mode macroDebugMode = macroDebugMode ? 0 : 1; print( NL ); info_msg("Macro Debug Mode: "); printInt8( macroDebugMode ); } void cliFunc_macroList( char* args ) { // Show available trigger macro indices print( NL ); info_msg("Trigger Macros Range: T0 -> T"); printInt16( (uint16_t)TriggerMacroNum - 1 ); // Hopefully large enough :P (can't assume 32-bit) // Show available result macro indices print( NL ); info_msg("Result Macros Range: R0 -> R"); printInt16( (uint16_t)ResultMacroNum - 1 ); // Hopefully large enough :P (can't assume 32-bit) // Show Trigger to Result Macro Links print( NL ); info_msg("Trigger : Result Macro Pairs"); for ( unsigned int macro = 0; macro < TriggerMacroNum; macro++ ) { print( NL ); print("\tT"); printInt16( (uint16_t)macro ); // Hopefully large enough :P (can't assume 32-bit) print(" : R"); printInt16( (uint16_t)TriggerMacroList[ macro ].result ); // Hopefully large enough :P (can't assume 32-bit) } } void cliFunc_macroProc( char* args ) { // Toggle macro pause mode macroPauseMode = macroPauseMode ? 0 : 1; print( NL ); info_msg("Macro Processing Mode: "); printInt8( macroPauseMode ); } void macroDebugShowTrigger( unsigned int index ) { // Only proceed if the macro exists if ( index >= TriggerMacroNum ) return; // Trigger Macro Show TriggerMacro *macro = &TriggerMacroList[ index ]; print( NL ); info_msg("Trigger Macro Index: "); printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit) print( NL ); // Read the comboLength for combo in the sequence (sequence of combos) unsigned int pos = 0; uint8_t comboLength = macro->guide[ pos ]; // Iterate through and interpret the guide while ( comboLength != 0 ) { // Initial position of the combo unsigned int comboPos = ++pos; // Iterate through the combo while ( pos < comboLength * TriggerGuideSize + comboPos ) { // Assign TriggerGuide element (key type, state and scancode) TriggerGuide *guide = (TriggerGuide*)(¯o->guide[ pos ]); // Display guide information about trigger key printHex( guide->scancode ); print("|"); printHex( guide->type ); print("|"); printHex( guide->state ); // Increment position pos += TriggerGuideSize; // Only show combo separator if there are combos left in the sequence element if ( pos < comboLength * TriggerGuideSize + comboPos ) print("+"); } // Read the next comboLength comboLength = macro->guide[ pos ]; // Only show sequence separator if there is another combo to process if ( comboLength != 0 ) print(";"); } // Display current position print( NL "Position: " ); printInt16( (uint16_t)macro->pos ); // Hopefully large enough :P (can't assume 32-bit) // Display result macro index print( NL "Result Macro Index: " ); printInt16( (uint16_t)macro->result ); // Hopefully large enough :P (can't assume 32-bit) } void macroDebugShowResult( unsigned int index ) { // Only proceed if the macro exists if ( index >= ResultMacroNum ) return; // Trigger Macro Show ResultMacro *macro = &ResultMacroList[ index ]; print( NL ); info_msg("Result Macro Index: "); printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit) print( NL ); // Read the comboLength for combo in the sequence (sequence of combos) unsigned int pos = 0; uint8_t comboLength = macro->guide[ pos++ ]; // Iterate through and interpret the guide while ( comboLength != 0 ) { // Function Counter, used to keep track of the combos processed unsigned int funcCount = 0; // Iterate through the combo while ( funcCount < comboLength ) { // Assign TriggerGuide element (key type, state and scancode) ResultGuide *guide = (ResultGuide*)(¯o->guide[ pos ]); // Display Function Index printHex( guide->index ); print("|"); // Display Function Ptr Address printHex( (unsigned int)CapabilitiesList[ guide->index ].func ); print("|"); // Display/Lookup Capability Name (utilize debug mode of capability) void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ guide->index ].func); capability( 0xFF, 0xFF, 0 ); // Display Argument(s) print("("); for ( unsigned int arg = 0; arg < CapabilitiesList[ guide->index ].argCount; arg++ ) { // Arguments are only 8 bit values printHex( (&guide->args)[ arg ] ); // Only show arg separator if there are args left if ( arg + 1 < CapabilitiesList[ guide->index ].argCount ) print(","); } print(")"); // Increment position pos += ResultGuideSize( guide ); // Increment function count funcCount++; // Only show combo separator if there are combos left in the sequence element if ( funcCount < comboLength ) print("+"); } // Read the next comboLength comboLength = macro->guide[ pos++ ]; // Only show sequence separator if there is another combo to process if ( comboLength != 0 ) print(";"); } // Display current position print( NL "Position: " ); printInt16( (uint16_t)macro->pos ); // Hopefully large enough :P (can't assume 32-bit) // Display final trigger state/type print( NL "Final Trigger State (State/Type): " ); printHex( macro->state ); print("/"); printHex( macro->stateType ); } void cliFunc_macroShow( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Ignore invalid codes switch ( arg1Ptr[0] ) { // Indexed Trigger Macro case 'T': macroDebugShowTrigger( decToInt( &arg1Ptr[1] ) ); break; // Indexed Result Macro case 'R': macroDebugShowResult( decToInt( &arg1Ptr[1] ) ); break; } } } void cliFunc_macroStep( char* args ) { // Parse number from argument // NOTE: Only first argument is used char* arg1Ptr; char* arg2Ptr; CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr ); // Set the macro step counter, negative int's are cast to uint macroStepCounter = (unsigned int)decToInt( arg1Ptr ); }