/* Copyright (C) 2011-2013 by Joseph Makuch * Additions by Jacob Alexander (2013-2014) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3.0 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see . */ // ----- Includes ----- // Compiler Includes #include // Project Includes #include #include // Local Includes #include "scan_loop.h" // ----- Defines ----- // TODO dfj defines...needs commenting and maybe some cleaning... #define MAX_PRESS_DELTA_MV 450 // As measured from the Teensy ADC pin #define THRESHOLD_MV (MAX_PRESS_DELTA_MV >> 1) //(2560 / (0x3ff/2)) ~= 5 #define MV_PER_ADC 5 #define THRESHOLD (THRESHOLD_MV / MV_PER_ADC) #define STROBE_SETTLE 1 #define TEST_KEY_STROBE (0x05) #define TEST_KEY_MASK (1 << 0) #define ADHSM 7 #define RIGHT_JUSTIFY 0 #define LEFT_JUSTIFY (0xff) // set left or right justification here: #define JUSTIFY_ADC RIGHT_JUSTIFY #define ADLAR_MASK (1 << ADLAR) #ifdef JUSTIFY_ADC #define ADLAR_BITS ((ADLAR_MASK) & (JUSTIFY_ADC)) #else // defaults to right justification. #define ADLAR_BITS 0 #endif // full muxmask #define FULL_MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2) | (1 << MUX3) | (1 << MUX4)) // F0-f7 pins only muxmask. #define MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2)) // Strobe Masks #define D_MASK (0xff) #define E_MASK (0x03) #define C_MASK (0xff) // set ADC clock prescale #define PRESCALE_MASK ((1 << ADPS0) | (1 << ADPS1) | (1 << ADPS2)) #define PRESCALE_SHIFT (ADPS0) #define PRESCALE 3 // Max number of strobes supported by the hardware // Strobe lines are detected at startup, extra strobes cause anomalies like phantom keypresses #define MAX_STROBES 18 // Number of consecutive samples required to pass debounce #define DEBOUNCE_THRESHOLD 5 #define MUXES_COUNT 8 #define MUXES_COUNT_XSHIFT 3 #define WARMUP_LOOPS ( 1024 ) #define WARMUP_STOP (WARMUP_LOOPS - 1) #define SAMPLE_CONTROL 3 #define KEY_COUNT ((MAX_STROBES) * (MUXES_COUNT)) #define RECOVERY_CONTROL 1 #define RECOVERY_SOURCE 0 #define RECOVERY_SINK 2 #define ON 1 #define OFF 0 // mix in 1/4 of the current average to the running average. -> (@mux_mix = 2) #define MUX_MIX 2 #define IDLE_COUNT_MASK 0xff #define IDLE_COUNT_SHIFT 8 // av = (av << shift) - av + sample; av >>= shift // e.g. 1 -> (av + sample) / 2 simple average of new and old // 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new. // 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new. #define KEYS_AVERAGES_MIX_SHIFT 3 // ----- Macros ----- // Select mux #define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK)))) // ----- Variables ----- // Buffer used to inform the macro processing module which keys have been detected as pressed volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER]; volatile uint8_t KeyIndex_BufferUsed; // TODO dfj variables...needs cleaning up and commenting // Variables used to calculate the starting sense value (averaging) uint32_t full_avg = 0; uint32_t high_avg = 0; uint32_t low_avg = 0; uint8_t high_count = 0; uint8_t low_count = 0; uint8_t ze_strober = 0; uint16_t samples[MUXES_COUNT]; uint8_t cur_keymap[MAX_STROBES]; uint8_t keymap_change; uint16_t threshold = THRESHOLD; uint8_t column = 0; uint16_t keys_averages_acc[KEY_COUNT]; uint16_t keys_averages [KEY_COUNT]; uint8_t keys_debounce [KEY_COUNT]; // Contains debounce statistics uint8_t keys_problem [KEY_COUNT]; // Marks keys that should be ignored (determined by averaging at startup) uint8_t full_samples[KEY_COUNT]; // TODO: change this to 'booting', then count down. uint16_t boot_count = 0; uint16_t idle_count = 0; uint8_t idle = 1; uint8_t error = 0; uint16_t error_data = 0; uint8_t total_strobes = MAX_STROBES; uint8_t strobe_map[MAX_STROBES]; uint8_t dump_count = 0; // ----- Function Declarations ----- void dump( void ); void recovery( uint8_t on ); int sampleColumn( uint8_t column ); void capsense_scan( void ); void setup_ADC( void ); void strobe_w( uint8_t strobe_num ); uint8_t testColumn( uint8_t strobe ); // ----- Functions ----- // Initial setup for cap sense controller inline void Scan_setup() { // TODO dfj code...needs cleanup + commenting... setup_ADC(); DDRC = C_MASK; PORTC = 0; DDRD = D_MASK; PORTD = 0; DDRE = E_MASK; PORTE = 0 ; // Hardcoded strobes for debugging // Strobes start at 0 and go to 17 (18), not all Model Fs use all of the available strobes // The single row ribbon connector Model Fs only have a max of 16 strobes #define KISHSAVER_STROBE //#define KISHSAVER_OLD_STROBE //#define TERMINAL_6110668_OLD_STROBE //#define UNSAVER_OLD_STROBE #ifdef KISHSAVER_OLD_STROBE total_strobes = 9; strobe_map[0] = 2; // Kishsaver doesn't use strobe 0 and 1 strobe_map[1] = 3; strobe_map[2] = 4; strobe_map[3] = 5; strobe_map[4] = 6; strobe_map[5] = 7; strobe_map[6] = 8; strobe_map[7] = 9; strobe_map[8] = 15; // Test point strobe (3 test points, sense 1, 4, 5) #elif defined(KISHSAVER_STROBE) total_strobes = 9; strobe_map[0] = 15; // Kishsaver doesn't use strobe 0 and 1 strobe_map[1] = 14; strobe_map[2] = 13; strobe_map[3] = 12; strobe_map[4] = 11; strobe_map[5] = 10; strobe_map[6] = 9; strobe_map[7] = 8; strobe_map[8] = 2; // Test point strobe (3 test points, sense 1, 4, 5) #elif defined(TERMINAL_6110668_OLD_STROBE) total_strobes = 16; strobe_map[0] = 0; strobe_map[1] = 1; strobe_map[2] = 2; strobe_map[3] = 3; strobe_map[4] = 4; strobe_map[5] = 5; strobe_map[6] = 6; strobe_map[7] = 7; strobe_map[8] = 8; strobe_map[9] = 9; strobe_map[10] = 10; strobe_map[11] = 11; strobe_map[12] = 12; strobe_map[13] = 13; strobe_map[14] = 14; strobe_map[15] = 15; #elif defined(UNSAVER_OLD_STROBE) total_strobes = 14; strobe_map[0] = 0; strobe_map[1] = 1; strobe_map[2] = 2; strobe_map[3] = 3; strobe_map[4] = 4; strobe_map[5] = 5; strobe_map[6] = 6; strobe_map[7] = 7; strobe_map[8] = 8; strobe_map[9] = 9; strobe_map[10] = 10; strobe_map[11] = 11; strobe_map[12] = 12; strobe_map[13] = 13; #else // Strobe detection // TODO #endif // TODO all this code should probably be in Scan_resetKeyboard for ( int i = 0; i < total_strobes; ++i) { cur_keymap[i] = 0; } // Reset debounce table for ( int i = 0; i < KEY_COUNT; ++i ) { keys_debounce[i] = 0; } // Warm things up a bit before we start collecting data, taking real samples. for ( uint8_t i = 0; i < total_strobes; ++i ) { sampleColumn( strobe_map[i] ); } // Reset the keyboard before scanning, we might be in a wierd state // Also sets the KeyIndex_BufferUsed to 0 scan_resetKeyboard(); } // Main Detection Loop // This is where the important stuff happens inline uint8_t Scan_loop() { capsense_scan(); // Error case, should not occur in normal operation if ( error ) { erro_msg("Problem detected... "); // Keymap scan debug for ( uint8_t i = 0; i < total_strobes; ++i ) { printHex(cur_keymap[strobe_map[i]]); print(" "); } print(" : "); printHex(error); error = 0; print(" : "); printHex(error_data); error_data = 0; // Display keymaps and other debug information if warmup completede if ( boot_count >= WARMUP_LOOPS ) { dump(); } } // Return non-zero if macro and USB processing should be delayed // Macro processing will always run if returning 0 // USB processing only happens once the USB send timer expires, if it has not, Scan_loop will be called // after the macro processing has been completed return 0; } // Signal KeyIndex_Buffer that it has been properly read // NOTE: Only really required for implementing "tricks" in converters for odd protocols void Scan_finishedWithBuffer( uint8_t sentKeys ) { // Convenient place to clear the KeyIndex_Buffer KeyIndex_BufferUsed = 0; return; } // Signal KeyIndex_Buffer that it has been properly read and sent out by the USB module // NOTE: Only really required for implementing "tricks" in converters for odd protocols void Scan_finishedWithUSBBuffer( uint8_t sentKeys ) { return; } inline void capsense_scan() { // Accumulated average used for the next scan uint32_t cur_full_avg = 0; uint32_t cur_high_avg = 0; // Reset average counters low_avg = 0; low_count = 0; high_count = 0; // Scan each of the mapped strobes in the matrix for ( uint8_t strober = 0; strober < total_strobes; ++strober ) { uint8_t map_strobe = strobe_map[strober]; uint8_t tries = 1; while ( tries++ && sampleColumn( map_strobe ) ) { tries &= 0x7; } // don't waste this one just because the last one was poop. // Only process sense data if warmup is finished if ( boot_count >= WARMUP_LOOPS ) { column = testColumn( map_strobe ); idle |= column; // if column has any pressed keys, then we are not idle. // TODO Is this needed anymore? Really only helps debug -HaaTa if( column != cur_keymap[map_strobe] && ( boot_count >= WARMUP_LOOPS ) ) { cur_keymap[map_strobe] = column; keymap_change = 1; } idle |= keymap_change; // if any keys have changed inc. released, then we are not idle. } if ( error == 0x50 ) { error_data |= (((uint16_t)map_strobe) << 12); } uint8_t strobe_line = map_strobe << MUXES_COUNT_XSHIFT; for ( int i = 0; i < MUXES_COUNT; ++i ) { // discard sketchy low bit, and meaningless high bits. uint8_t sample = samples[i] >> 1; full_samples[strobe_line + i] = sample; keys_averages_acc[strobe_line + i] += sample; } // Accumulate 3 total averages (used for determining starting average during warmup) // full_avg - Average of all sampled lines on the previous scan set // cur_full_avg - Average of all sampled lines for this scan set // high_avg - Average of all sampled lines above full_avg on the previous scan set // cur_high_avg - Average of all sampled lines above full_avg // low_avg - Average of all sampled lines below or equal to full_avg if ( boot_count < WARMUP_LOOPS ) { for ( uint8_t i = 0; i < MUXES_COUNT; ++i ) { uint8_t sample = samples[i] >> 1; // Sample is high, add it to high avg if ( sample > full_avg ) { high_count++; cur_high_avg += sample; } // Sample is low, add it to low avg else { low_count++; low_avg += sample; } // If sample is higher than previous high_avg, then mark as "problem key" keys_problem[strobe_line + i] = sample > high_avg ? sample : 0; // Prepare for next average cur_full_avg += sample; } } } // for strober // Update total sense average (only during warm-up) if ( boot_count < WARMUP_LOOPS ) { full_avg = cur_full_avg / (total_strobes * MUXES_COUNT); high_avg = cur_high_avg / high_count; low_avg /= low_count; // Update the base average value using the low_avg (best chance of not ignoring a keypress) for ( int i = 0; i < KEY_COUNT; ++i ) { keys_averages[i] = low_avg; keys_averages_acc[i] = low_avg; } } #ifdef VERIFY_TEST_PAD // verify test key is not down. if ( ( cur_keymap[TEST_KEY_STROBE] & TEST_KEY_MASK ) ) { error = 0x05; error_data = cur_keymap[TEST_KEY_STROBE] << 8; error_data += full_samples[TEST_KEY_STROBE * 8]; } #endif /** aggregate if booting, or if idle; * else, if not booting, check for dirty USB. * */ idle_count++; idle_count &= IDLE_COUNT_MASK; // Warm up voltage references if ( boot_count < WARMUP_LOOPS ) { boot_count++; switch ( boot_count ) { // First loop case 1: // Show msg at first iteration only info_msg("Warming up the voltage references"); break; // Middle iterations case 300: case 600: case 900: case 1200: print("."); break; // Last loop case WARMUP_STOP: print("\n"); info_msg("Warmup finished using "); printInt16( WARMUP_LOOPS ); print(" iterations\n"); // Display the final calculated averages of all the sensed strobes info_msg("Full average ("); printInt8( total_strobes * MUXES_COUNT ); print("): "); printHex( full_avg ); print(" High average ("); printInt8( high_count ); print("): "); printHex( high_avg ); print(" Low average ("); printInt8( low_count ); print("): "); printHex( low_avg ); print("\n"); // Display problem keys, and the sense value at the time for ( uint8_t key = 0; key < KEY_COUNT; key++ ) { if ( keys_problem[key] ) { warn_msg("Problem key detected: "); printHex( key ); print(" ("); printHex( keys_problem[key] ); print(")\n"); } } info_print("If problem keys were detected, and were being held down, they will be reset as soon as let go"); break; } } else { // Reset accumulators and idle flag/counter if ( keymap_change ) { for ( uint8_t c = 0; c < KEY_COUNT; ++c ) { keys_averages_acc[c] = 0; } idle_count = 0; idle = 0; keymap_change = 0; } if ( !idle_count ) { if( idle ) { // aggregate for ( uint8_t i = 0; i < KEY_COUNT; ++i ) { uint16_t acc = keys_averages_acc[i] >> IDLE_COUNT_SHIFT; uint32_t av = keys_averages[i]; av = (av << KEYS_AVERAGES_MIX_SHIFT) - av + acc; av >>= KEYS_AVERAGES_MIX_SHIFT; keys_averages[i] = av; keys_averages_acc[i] = 0; } } if ( boot_count >= WARMUP_LOOPS ) { dump(); } } } } void setup_ADC() { // disable adc digital pins. DIDR1 |= (1 << AIN0D) | (1<> 1) < full_avg ) { info_msg("Re-enabling problem key: "); printHex( key ); print("\n"); keys_problem[key] = 0; } // Otherwise, don't waste any more cycles processing the problem key else { continue; } } // Keypress detected // db_sample (uint8_t), discard meaningless high bit, and garbage low bit if ( (db_sample = samples[mux] >> 1) > (db_threshold = threshold) + (db_delta = delta) ) { column |= bit; // Only register keypresses once the warmup is complete, or not enough debounce info if ( keys_debounce[key] <= DEBOUNCE_THRESHOLD ) { // Add to the Macro processing buffer if debounce criteria met // Automatically handles converting to a USB code and sending off to the PC if ( keys_debounce[key] == DEBOUNCE_THRESHOLD ) { //#define KEYSCAN_DEBOUNCE_DEBUG #ifdef KEYSCAN_DEBOUNCE_DEBUG // Debug message print("0x"); printHex_op( key, 2 ); print(" "); #endif // Only add the key to the buffer once // NOTE: Buffer can easily handle multiple adds, just more efficient // and nicer debug messages :P //Macro_bufferAdd( key ); } keys_debounce[key]++; #define KEYSCAN_THRESHOLD_DEBUG #ifdef KEYSCAN_THRESHOLD_DEBUG // Debug message // [:] : : : dbug_msg("0x"); printHex_op( key, 2 ); print(" ["); printInt8( strobe ); print(":"); printInt8( mux ); print("] : "); printHex( db_sample ); // Sense print(" : "); printHex( db_threshold ); print("+"); printHex( db_delta ); print("="); printHex( db_threshold + db_delta ); // Sense compare print(" : "); printHex( db_sample - ( db_threshold + db_delta ) ); // Margin print("\n"); #endif } } // Clear debounce entry if no keypress detected else { // If the key was previously pressed, remove from the buffer for ( uint8_t c = 0; c < KeyIndex_BufferUsed; c++ ) { // Key to release found if ( KeyIndex_Buffer[c] == key ) { // Shift keys from c position for ( uint8_t k = c; k < KeyIndex_BufferUsed - 1; k++ ) KeyIndex_Buffer[k] = KeyIndex_Buffer[k + 1]; // Decrement Buffer KeyIndex_BufferUsed--; break; } } // Clear debounce entry keys_debounce[key] = 0; } bit <<= 1; } return column; } void dump(void) { #ifdef DEBUG_FULL_SAMPLES_AVERAGES // we don't want to debug-out during the measurements. if ( !dump_count ) { // Averages currently set per key for ( int i = 0; i < KEY_COUNT; ++i ) { if ( !(i & 0x0f) ) { print("\n"); } else if ( !(i & 0x07) ) { print(" "); } print(" "); printHex( keys_averages[i] ); } print("\n"); // Previously read full ADC scans? for ( int i = 0; i< KEY_COUNT; ++i) { if ( !(i & 0x0f) ) { print("\n"); } else if ( !(i & 0x07) ) { print(" "); } print(" "); printHex(full_samples[i]); } } #endif #ifdef DEBUG_STROBE_SAMPLES_AVERAGES // Per strobe information uint8_t cur_strober = ze_strober; print("\n"); printHex(cur_strober); // Previously read ADC scans on current strobe print(" :"); for ( uint8_t i = 0; i < MUXES_COUNT; ++i ) { print(" "); printHex(full_samples[(cur_strober << MUXES_COUNT_XSHIFT) + i]); } // Averages current set on current strobe print(" :"); for ( uint8_t i = 0; i < MUXES_COUNT; ++i ) { print(" "); printHex(keys_averages[(cur_strober << MUXES_COUNT_XSHIFT) + i]); } #endif #ifdef DEBUG_USB_KEYMAP print("\n "); // Current keymap values for ( uint8_t i = 0; i < total_strobes; ++i ) { printHex(cur_keymap[i]); print(" "); } #endif ze_strober++; ze_strober &= 0xf; dump_count++; dump_count &= 0x0f; }