/* Copyright (C) 2014-2016 by Jacob Alexander * * This file is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this file. If not, see . */ // ----- Includes ----- // Compiler Includes #include // Project Includes #include #include #include #include // Keymaps #include "usb_hid.h" #include // Generated using kll at compile time, in build directory // Connect Includes #if defined(ConnectEnabled_define) #include #endif // Local Includes #include "trigger.h" #include "result.h" #include "macro.h" // ----- Function Declarations ----- void cliFunc_capList ( char* args ); void cliFunc_capSelect ( char* args ); void cliFunc_keyHold ( char* args ); void cliFunc_keyPress ( char* args ); void cliFunc_keyRelease( char* args ); void cliFunc_layerDebug( char* args ); void cliFunc_layerList ( char* args ); void cliFunc_layerState( char* args ); void cliFunc_macroDebug( char* args ); void cliFunc_macroList ( char* args ); void cliFunc_macroProc ( char* args ); void cliFunc_macroShow ( char* args ); void cliFunc_macroStep ( char* args ); // ----- Variables ----- // Macro Module command dictionary CLIDict_Entry( capList, "Prints an indexed list of all non USB keycode capabilities." ); CLIDict_Entry( capSelect, "Triggers the specified capabilities. First two args are state and stateType." NL "\t\t\033[35mK11\033[0m Keyboard Capability 0x0B" ); CLIDict_Entry( keyHold, "Send key-hold events to the macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A" ); CLIDict_Entry( keyPress, "Send key-press events to the macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A" ); CLIDict_Entry( keyRelease, "Send key-release event to macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A" ); CLIDict_Entry( layerDebug, "Layer debug mode. Shows layer stack and any changes." ); CLIDict_Entry( layerList, "List available layers." ); CLIDict_Entry( layerState, "Modify specified indexed layer state ." NL "\t\t\033[35mL2\033[0m Indexed Layer 0x02" NL "\t\t0 Off, 1 Shift, 2 Latch, 4 Lock States" ); CLIDict_Entry( macroDebug, "Disables/Enables sending USB keycodes to the Output Module and prints U/K codes." ); CLIDict_Entry( macroList, "List the defined trigger and result macros." ); CLIDict_Entry( macroProc, "Pause/Resume macro processing." ); CLIDict_Entry( macroShow, "Show the macro corresponding to the given index." NL "\t\t\033[35mT16\033[0m Indexed Trigger Macro 0x10, \033[35mR12\033[0m Indexed Result Macro 0x0C" ); CLIDict_Entry( macroStep, "Do N macro processing steps. Defaults to 1." ); CLIDict_Def( macroCLIDict, "Macro Module Commands" ) = { CLIDict_Item( capList ), CLIDict_Item( capSelect ), CLIDict_Item( keyHold ), CLIDict_Item( keyPress ), CLIDict_Item( keyRelease ), CLIDict_Item( layerDebug ), CLIDict_Item( layerList ), CLIDict_Item( layerState ), CLIDict_Item( macroDebug ), CLIDict_Item( macroList ), CLIDict_Item( macroProc ), CLIDict_Item( macroShow ), CLIDict_Item( macroStep ), { 0, 0, 0 } // Null entry for dictionary end }; // Layer debug flag - If set, displays any changes to layers and the full layer stack on change uint8_t layerDebugMode = 0; // Macro debug flag - If set, clears the USB Buffers after signalling processing completion uint8_t macroDebugMode = 0; // Macro pause flag - If set, the macro module pauses processing, unless unset, or the step counter is non-zero uint8_t macroPauseMode = 0; // Macro step counter - If non-zero, the step counter counts down every time the macro module does one processing loop uint16_t macroStepCounter = 0; // Key Trigger List Buffer and Layer Cache // The layer cache is set on press only, hold and release events refer to the value set on press TriggerGuide macroTriggerListBuffer[ MaxScanCode ]; var_uint_t macroTriggerListBufferSize = 0; var_uint_t macroTriggerListLayerCache[ MaxScanCode ]; // Layer Index Stack // * When modifying layer state and the state is non-0x0, the stack must be adjusted index_uint_t macroLayerIndexStack[ LayerNum + 1 ] = { 0 }; index_uint_t macroLayerIndexStackSize = 0; // TODO REMOVE when dependency no longer exists extern index_uint_t macroResultMacroPendingList[]; extern index_uint_t macroResultMacroPendingListSize; extern index_uint_t macroTriggerMacroPendingList[]; extern index_uint_t macroTriggerMacroPendingListSize; // Interconnect ScanCode Cache #if defined(ConnectEnabled_define) || defined(PressReleaseCache_define) // TODO This can be shrunk by the size of the max node 0 ScanCode TriggerGuide macroInterconnectCache[ MaxScanCode ]; uint8_t macroInterconnectCacheSize = 0; #endif // ----- Capabilities ----- // Sets the given layer with the specified layerState void Macro_layerState( uint8_t state, uint8_t stateType, uint16_t layer, uint8_t layerState ) { // Ignore if layer does not exist or trying to manipulate layer 0/Default layer if ( layer >= LayerNum || layer == 0 ) return; // Is layer in the LayerIndexStack? uint8_t inLayerIndexStack = 0; uint16_t stackItem = 0; while ( stackItem < macroLayerIndexStackSize ) { // Flag if layer is already in the LayerIndexStack if ( macroLayerIndexStack[ stackItem ] == layer ) { inLayerIndexStack = 1; break; } // Increment to next item stackItem++; } // Toggle Layer State Byte if ( LayerState[ layer ] & layerState ) { // Unset LayerState[ layer ] &= ~layerState; } else { // Set LayerState[ layer ] |= layerState; } // If the layer was not in the LayerIndexStack add it if ( !inLayerIndexStack ) { macroLayerIndexStack[ macroLayerIndexStackSize++ ] = layer; } // If the layer is in the LayerIndexStack and the state is 0x00, remove if ( LayerState[ layer ] == 0x00 && inLayerIndexStack ) { // Remove the layer from the LayerIndexStack // Using the already positioned stackItem variable from the loop above while ( stackItem < macroLayerIndexStackSize ) { macroLayerIndexStack[ stackItem ] = macroLayerIndexStack[ stackItem + 1 ]; stackItem++; } // Reduce LayerIndexStack size macroLayerIndexStackSize--; } // Layer Debug Mode if ( layerDebugMode ) { dbug_msg("Layer "); // Iterate over each of the layers displaying the state as a hex value for ( index_uint_t index = 0; index < LayerNum; index++ ) { printHex_op( LayerState[ index ], 0 ); } // Always show the default layer (it's always 0) print(" 0"); // Iterate over the layer stack starting from the bottom of the stack for ( index_uint_t index = macroLayerIndexStackSize; index > 0; index-- ) { print(":"); printHex_op( macroLayerIndexStack[ index - 1 ], 0 ); } print( NL ); } } // Modifies the specified Layer control byte // Argument #1: Layer Index -> uint16_t // Argument #2: Layer State -> uint8_t void Macro_layerState_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Macro_layerState(layerIndex,layerState)"); return; } // Only use capability on press or release // TODO Analog // XXX This may cause issues, might be better to implement state table here to decide -HaaTa if ( stateType == 0x00 && state == 0x02 ) // Hold condition return; // Get layer index from arguments // Cast pointer to uint8_t to uint16_t then access that memory location uint16_t layer = *(uint16_t*)(&args[0]); // Get layer toggle byte uint8_t layerState = args[ sizeof(uint16_t) ]; Macro_layerState( state, stateType, layer, layerState ); } // Latches given layer // Argument #1: Layer Index -> uint16_t void Macro_layerLatch_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Macro_layerLatch(layerIndex)"); return; } // Only use capability on press // TODO Analog if ( stateType == 0x00 && state != 0x03 ) // Only on release return; // Get layer index from arguments // Cast pointer to uint8_t to uint16_t then access that memory location uint16_t layer = *(uint16_t*)(&args[0]); Macro_layerState( state, stateType, layer, 0x02 ); } // Locks given layer // Argument #1: Layer Index -> uint16_t void Macro_layerLock_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Macro_layerLock(layerIndex)"); return; } // Only use capability on press // TODO Analog // XXX Could also be on release, but that's sorta dumb -HaaTa if ( stateType == 0x00 && state != 0x01 ) // All normal key conditions except press return; // Get layer index from arguments // Cast pointer to uint8_t to uint16_t then access that memory location uint16_t layer = *(uint16_t*)(&args[0]); Macro_layerState( state, stateType, layer, 0x04 ); } // Shifts given layer // Argument #1: Layer Index -> uint16_t void Macro_layerShift_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Macro_layerShift(layerIndex)"); return; } // Only use capability on press or release // TODO Analog if ( stateType == 0x00 && ( state == 0x00 || state == 0x02 ) ) // Only pass press or release conditions return; // Get layer index from arguments // Cast pointer to uint8_t to uint16_t then access that memory location uint16_t layer = *(uint16_t*)(&args[0]); // Only set the layer if it is disabled if ( LayerState[ layer ] != 0x00 && state == 0x01 ) return; // Only unset the layer if it is enabled if ( LayerState[ layer ] == 0x00 && state == 0x03 ) return; Macro_layerState( state, stateType, layer, 0x01 ); } // Rotate layer to next/previous // Uses state variable to keep track of the current layer position // Layers are still evaluated using the layer stack uint16_t Macro_rotationLayer; void Macro_layerRotate_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Macro_layerRotate(previous)"); return; } // Only use capability on press // TODO Analog // XXX Could also be on release, but that's sorta dumb -HaaTa if ( stateType == 0x00 && state != 0x01 ) // All normal key conditions except press return; // Unset previous rotation layer if not 0 if ( Macro_rotationLayer != 0 ) { Macro_layerState( state, stateType, Macro_rotationLayer, 0x04 ); } // Get direction of rotation, 0, next, non-zero previous uint8_t direction = *args; // Next if ( !direction ) { Macro_rotationLayer++; // Invalid layer if ( Macro_rotationLayer >= LayerNum ) Macro_rotationLayer = 0; } // Previous else { Macro_rotationLayer--; // Layer wrap if ( Macro_rotationLayer >= LayerNum ) Macro_rotationLayer = LayerNum - 1; } // Toggle the computed layer rotation Macro_layerState( state, stateType, Macro_rotationLayer, 0x04 ); } // ----- Functions ----- // Looks up the trigger list for the given scan code (from the active layer) // NOTE: Calling function must handle the NULL pointer case nat_ptr_t *Macro_layerLookup( TriggerGuide *guide, uint8_t latch_expire ) { uint8_t scanCode = guide->scanCode; // TODO Analog // If a normal key, and not pressed, do a layer cache lookup if ( guide->type == 0x00 && guide->state != 0x01 ) { // Cached layer var_uint_t cachedLayer = macroTriggerListLayerCache[ scanCode ]; // Lookup map, then layer nat_ptr_t **map = (nat_ptr_t**)LayerIndex[ cachedLayer ].triggerMap; const Layer *layer = &LayerIndex[ cachedLayer ]; // Cache trigger list before attempting to expire latch nat_ptr_t *trigger_list = map[ scanCode - layer->first ]; // Check if latch has been pressed for this layer uint8_t latch = LayerState[ cachedLayer ] & 0x02; if ( latch && latch_expire ) { Macro_layerState( 0, 0, cachedLayer, 0x02 ); #if defined(ConnectEnabled_define) && defined(LCDEnabled_define) // Evaluate the layerStack capability if available (LCD + Interconnect) extern void LCD_layerStack_capability( uint8_t state, uint8_t stateType, uint8_t *args ); LCD_layerStack_capability( 0, 0, 0 ); #endif } return trigger_list; } // If no trigger macro is defined at the given layer, fallthrough to the next layer for ( uint16_t layerIndex = macroLayerIndexStackSize; layerIndex != 0xFFFF; layerIndex-- ) { // Lookup Layer const Layer *layer = &LayerIndex[ macroLayerIndexStack[ layerIndex ] ]; // Check if latch has been pressed for this layer // XXX Regardless of whether a key is found, the latch is removed on first lookup uint8_t latch = LayerState[ macroLayerIndexStack[ layerIndex ] ] & 0x02; if ( latch && latch_expire ) { Macro_layerState( 0, 0, macroLayerIndexStack[ layerIndex ], 0x02 ); } // Only use layer, if state is valid // XOR each of the state bits // If only two are enabled, do not use this state if ( (LayerState[ macroLayerIndexStack[ layerIndex ] ] & 0x01) ^ (latch>>1) ^ ((LayerState[ macroLayerIndexStack[ layerIndex ] ] & 0x04)>>2) ) { // Lookup layer nat_ptr_t **map = (nat_ptr_t**)layer->triggerMap; // Determine if layer has key defined // Make sure scanCode is between layer first and last scancodes if ( map != 0 && scanCode <= layer->last && scanCode >= layer->first && *map[ scanCode - layer->first ] != 0 ) { // Set the layer cache macroTriggerListLayerCache[ scanCode ] = macroLayerIndexStack[ layerIndex ]; return map[ scanCode - layer->first ]; } } } // Do lookup on default layer nat_ptr_t **map = (nat_ptr_t**)LayerIndex[0].triggerMap; // Lookup default layer const Layer *layer = &LayerIndex[0]; // Make sure scanCode is between layer first and last scancodes if ( map != 0 && scanCode <= layer->last && scanCode >= layer->first && *map[ scanCode - layer->first ] != 0 ) { // Set the layer cache to default map macroTriggerListLayerCache[ scanCode ] = 0; return map[ scanCode - layer->first ]; } // Otherwise no defined Trigger Macro erro_msg("Scan Code has no defined Trigger Macro: "); printHex( scanCode ); print( NL ); return 0; } // Add an interconnect ScanCode // These are handled differently (less information is sent, hold/off states must be assumed) #if defined(ConnectEnabled_define) || defined(PressReleaseCache_define) void Macro_pressReleaseAdd( void *trigger_ptr ) { TriggerGuide *trigger = (TriggerGuide*)trigger_ptr; // Error checking uint8_t error = 0; switch ( trigger->type ) { case 0x00: // Normal key switch ( trigger->state ) { case 0x00: case 0x01: case 0x02: case 0x03: break; default: erro_msg("Invalid key state - "); error = 1; break; } break; // Invalid TriggerGuide type default: erro_msg("Invalid type - "); error = 1; break; } // Check if ScanCode is out of range if ( trigger->scanCode > MaxScanCode ) { warn_msg("ScanCode is out of range/not defined - "); error = 1; } // Display TriggerGuide if ( error ) { printHex( trigger->type ); print(" "); printHex( trigger->state ); print(" "); printHex( trigger->scanCode ); print( NL ); return; } // Add trigger to the Interconnect Cache // During each processing loop, a scancode may be re-added depending on it's state for ( var_uint_t c = 0; c < macroInterconnectCacheSize; c++ ) { // Check if the same ScanCode if ( macroInterconnectCache[ c ].scanCode == trigger->scanCode ) { // Update the state macroInterconnectCache[ c ].state = trigger->state; return; } } // If not in the list, add it macroInterconnectCache[ macroInterconnectCacheSize++ ] = *trigger; } #endif // Update the scancode key state // States: // * 0x00 - Off // * 0x01 - Pressed // * 0x02 - Held // * 0x03 - Released // * 0x04 - Unpressed (this is currently ignored) inline void Macro_keyState( uint8_t scanCode, uint8_t state ) { #if defined(ConnectEnabled_define) // Only compile in if a Connect node module is available if ( !Connect_master ) { // ScanCodes are only added if there was a state change (on/off) switch ( state ) { case 0x00: // Off case 0x02: // Held return; } } #endif // Only add to macro trigger list if one of three states switch ( state ) { case 0x01: // Pressed case 0x02: // Held case 0x03: // Released // Check if ScanCode is out of range if ( scanCode > MaxScanCode ) { warn_msg("ScanCode is out of range/not defined: "); printHex( scanCode ); print( NL ); return; } macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = scanCode; macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state; macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x00; // Normal key macroTriggerListBufferSize++; break; } } // Update the scancode analog state // States: // * 0x00 - Off // * 0x01 - Released // * 0x02-0xFF - Analog value (low to high) inline void Macro_analogState( uint8_t scanCode, uint8_t state ) { // Only add to macro trigger list if non-off // TODO Handle change for interconnect if ( state != 0x00 ) { // Check if ScanCode is out of range if ( scanCode > MaxScanCode ) { warn_msg("ScanCode is out of range/not defined: "); printHex( scanCode ); print( NL ); return; } macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = scanCode; macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state; macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x02; // Analog key macroTriggerListBufferSize++; } } // Update led state // States: // * 0x00 - Off // * 0x01 - On inline void Macro_ledState( uint8_t ledCode, uint8_t state ) { // Only add to macro trigger list if non-off // TODO Handle change for interconnect if ( state != 0x00 ) { // Check if LedCode is out of range // TODO macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = ledCode; macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state; macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x01; // LED key macroTriggerListBufferSize++; } } // Append result macro to pending list, checking for duplicates // Do nothing if duplicate void Macro_appendResultMacroToPendingList( const TriggerMacro *triggerMacro ) { // Lookup result macro index var_uint_t resultMacroIndex = triggerMacro->result; // Iterate through result macro pending list, making sure this macro hasn't been added yet for ( var_uint_t macro = 0; macro < macroResultMacroPendingListSize; macro++ ) { // If duplicate found, do nothing if ( macroResultMacroPendingList[ macro ] == resultMacroIndex ) return; } // No duplicates found, add to pending list macroResultMacroPendingList[ macroResultMacroPendingListSize++ ] = resultMacroIndex; // Lookup scanCode of the last key in the last combo var_uint_t pos = 0; for ( uint8_t comboLength = triggerMacro->guide[0]; comboLength > 0; ) { pos += TriggerGuideSize * comboLength + 1; comboLength = triggerMacro->guide[ pos ]; } uint8_t scanCode = ((TriggerGuide*)&triggerMacro->guide[ pos - TriggerGuideSize ])->scanCode; // Lookup scanCode in buffer list for the current state and stateType for ( var_uint_t keyIndex = 0; keyIndex < macroTriggerListBufferSize; keyIndex++ ) { if ( macroTriggerListBuffer[ keyIndex ].scanCode == scanCode ) { ResultMacroRecordList[ resultMacroIndex ].state = macroTriggerListBuffer[ keyIndex ].state; ResultMacroRecordList[ resultMacroIndex ].stateType = macroTriggerListBuffer[ keyIndex ].type; } } // Reset the macro position ResultMacroRecordList[ resultMacroIndex ].pos = 0; } // Macro Procesing Loop // Called once per USB buffer send inline void Macro_process() { #if defined(ConnectEnabled_define) // Only compile in if a Connect node module is available // If this is a interconnect slave node, send all scancodes to master node if ( !Connect_master ) { if ( macroTriggerListBufferSize > 0 ) { Connect_send_ScanCode( Connect_id, macroTriggerListBuffer, macroTriggerListBufferSize ); macroTriggerListBufferSize = 0; } return; } #endif // Only do one round of macro processing between Output Module timer sends if ( USBKeys_Sent != 0 ) return; #if defined(ConnectEnabled_define) || defined(PressReleaseCache_define) #if defined(ConnectEnabled_define) // Check if there are any ScanCodes in the interconnect cache to process if ( Connect_master && macroInterconnectCacheSize > 0 ) #endif { // Iterate over all the cache ScanCodes uint8_t currentInterconnectCacheSize = macroInterconnectCacheSize; macroInterconnectCacheSize = 0; for ( uint8_t c = 0; c < currentInterconnectCacheSize; c++ ) { // Add to the trigger list macroTriggerListBuffer[ macroTriggerListBufferSize++ ] = macroInterconnectCache[ c ]; // TODO Handle other TriggerGuide types (e.g. analog) switch ( macroInterconnectCache[ c ].type ) { // Normal (Press/Hold/Release) case 0x00: // Decide what to do based on the current state switch ( macroInterconnectCache[ c ].state ) { // Re-add to interconnect cache in hold state case 0x01: // Press //case 0x02: // Hold // XXX Why does this not work? -HaaTa macroInterconnectCache[ c ].state = 0x02; macroInterconnectCache[ macroInterconnectCacheSize++ ] = macroInterconnectCache[ c ]; break; case 0x03: // Remove break; // Otherwise, do not re-add } } } } #endif // If the pause flag is set, only process if the step counter is non-zero if ( macroPauseMode ) { if ( macroStepCounter == 0 ) return; // Proceed, decrementing the step counter macroStepCounter--; dbug_print("Macro Step"); } // Process Trigger Macros Trigger_process(); // Process result macros Result_process(); // Signal buffer that we've used it Scan_finishedWithMacro( macroTriggerListBufferSize ); // Reset TriggerList buffer macroTriggerListBufferSize = 0; // If Macro debug mode is set, clear the USB Buffer if ( macroDebugMode ) { USBKeys_Modifiers = 0; USBKeys_Sent = 0; } } inline void Macro_setup() { // Register Macro CLI dictionary CLI_registerDictionary( macroCLIDict, macroCLIDictName ); // Disable Macro debug mode macroDebugMode = 0; // Disable Macro pause flag macroPauseMode = 0; // Set Macro step counter to zero macroStepCounter = 0; // Make sure macro trigger buffer is empty macroTriggerListBufferSize = 0; // Set the current rotated layer to 0 Macro_rotationLayer = 0; // Setup Triggers Trigger_setup(); // Setup Results Result_setup(); } // ----- CLI Command Functions ----- void cliFunc_capList( char* args ) { print( NL ); info_msg("Capabilities List "); printHex( CapabilitiesNum ); // Iterate through all of the capabilities and display them for ( var_uint_t cap = 0; cap < CapabilitiesNum; cap++ ) { print( NL "\t" ); printHex( cap ); print(" - "); // Display/Lookup Capability Name (utilize debug mode of capability) void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ cap ].func); capability( 0xFF, 0xFF, 0 ); } } void cliFunc_capSelect( char* args ) { // Parse code from argument char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Total number of args to scan (must do a lookup if a keyboard capability is selected) var_uint_t totalArgs = 2; // Always at least two args var_uint_t cap = 0; // Arguments used for keyboard capability function var_uint_t argSetCount = 0; uint8_t *argSet = (uint8_t*)args; // Process all args for ( var_uint_t c = 0; argSetCount < totalArgs; c++ ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found // Extra arguments are ignored if ( *arg1Ptr == '\0' ) break; // For the first argument, choose the capability if ( c == 0 ) switch ( arg1Ptr[0] ) { // Keyboard Capability case 'K': // Determine capability index cap = numToInt( &arg1Ptr[1] ); // Lookup the number of args totalArgs += CapabilitiesList[ cap ].argCount; continue; } // Because allocating memory isn't doable, and the argument count is arbitrary // The argument pointer is repurposed as the argument list (much smaller anyways) argSet[ argSetCount++ ] = (uint8_t)numToInt( arg1Ptr ); // Once all the arguments are prepared, call the keyboard capability function if ( argSetCount == totalArgs ) { // Indicate that the capability was called print( NL ); info_msg("K"); printInt8( cap ); print(" - "); printHex( argSet[0] ); print(" - "); printHex( argSet[1] ); print(" - "); printHex( argSet[2] ); print( "..." NL ); // Make sure this isn't the reload capability // If it is, and the remote reflash define is not set, ignore if ( flashModeEnabled_define == 0 ) for ( uint32_t cap = 0; cap < CapabilitiesNum; cap++ ) { if ( CapabilitiesList[ cap ].func == (const void*)Output_flashMode_capability ) { print( NL ); warn_print("flashModeEnabled not set, cancelling firmware reload..."); info_msg("Set flashModeEnabled to 1 in your kll configuration."); return; } } void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ cap ].func); capability( argSet[0], argSet[1], &argSet[2] ); } } } void cliFunc_keyHold( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Ignore non-Scancode numbers switch ( arg1Ptr[0] ) { // Scancode case 'S': Macro_keyState( (uint8_t)numToInt( &arg1Ptr[1] ), 0x02 ); // Hold scancode break; } } } void cliFunc_keyPress( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Ignore non-Scancode numbers switch ( arg1Ptr[0] ) { // Scancode case 'S': Macro_keyState( (uint8_t)numToInt( &arg1Ptr[1] ), 0x01 ); // Press scancode break; } } } void cliFunc_keyRelease( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Ignore non-Scancode numbers switch ( arg1Ptr[0] ) { // Scancode case 'S': Macro_keyState( (uint8_t)numToInt( &arg1Ptr[1] ), 0x03 ); // Release scancode break; } } } void cliFunc_layerDebug( char *args ) { // Toggle layer debug mode layerDebugMode = layerDebugMode ? 0 : 1; print( NL ); info_msg("Layer Debug Mode: "); printInt8( layerDebugMode ); } void cliFunc_layerList( char* args ) { print( NL ); info_msg("Layer List"); // Iterate through all of the layers and display them for ( uint16_t layer = 0; layer < LayerNum; layer++ ) { print( NL "\t" ); printHex( layer ); print(" - "); // Display layer name dPrint( (char*)LayerIndex[ layer ].name ); // Default map if ( layer == 0 ) print(" \033[1m(default)\033[0m"); // Layer State print( NL "\t\t Layer State: " ); printHex( LayerState[ layer ] ); // First -> Last Indices print(" First -> Last Indices: "); printHex( LayerIndex[ layer ].first ); print(" -> "); printHex( LayerIndex[ layer ].last ); } } void cliFunc_layerState( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; uint8_t arg1 = 0; uint8_t arg2 = 0; // Process first two args for ( uint8_t c = 0; c < 2; c++ ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; switch ( c ) { // First argument (e.g. L1) case 0: if ( arg1Ptr[0] != 'L' ) return; arg1 = (uint8_t)numToInt( &arg1Ptr[1] ); break; // Second argument (e.g. 4) case 1: arg2 = (uint8_t)numToInt( arg1Ptr ); // Display operation (to indicate that it worked) print( NL ); info_msg("Setting Layer L"); printInt8( arg1 ); print(" to - "); printHex( arg2 ); // Set the layer state LayerState[ arg1 ] = arg2; break; } } } void cliFunc_macroDebug( char* args ) { // Toggle macro debug mode macroDebugMode = macroDebugMode ? 0 : 1; print( NL ); info_msg("Macro Debug Mode: "); printInt8( macroDebugMode ); } void cliFunc_macroList( char* args ) { // Show pending key events print( NL ); info_msg("Pending Key Events: "); printInt16( (uint16_t)macroTriggerListBufferSize ); print(" : "); for ( var_uint_t key = 0; key < macroTriggerListBufferSize; key++ ) { printHex( macroTriggerListBuffer[ key ].scanCode ); print(" "); } // Show pending trigger macros print( NL ); info_msg("Pending Trigger Macros: "); printInt16( (uint16_t)macroTriggerMacroPendingListSize ); print(" : "); for ( var_uint_t macro = 0; macro < macroTriggerMacroPendingListSize; macro++ ) { printHex( macroTriggerMacroPendingList[ macro ] ); print(" "); } // Show pending result macros print( NL ); info_msg("Pending Result Macros: "); printInt16( (uint16_t)macroResultMacroPendingListSize ); print(" : "); for ( var_uint_t macro = 0; macro < macroResultMacroPendingListSize; macro++ ) { printHex( macroResultMacroPendingList[ macro ] ); print(" "); } // Show available trigger macro indices print( NL ); info_msg("Trigger Macros Range: T0 -> T"); printInt16( (uint16_t)TriggerMacroNum - 1 ); // Hopefully large enough :P (can't assume 32-bit) // Show available result macro indices print( NL ); info_msg("Result Macros Range: R0 -> R"); printInt16( (uint16_t)ResultMacroNum - 1 ); // Hopefully large enough :P (can't assume 32-bit) // Show Trigger to Result Macro Links print( NL ); info_msg("Trigger : Result Macro Pairs"); for ( var_uint_t macro = 0; macro < TriggerMacroNum; macro++ ) { print( NL ); print("\tT"); printInt16( (uint16_t)macro ); // Hopefully large enough :P (can't assume 32-bit) print(" : R"); printInt16( (uint16_t)TriggerMacroList[ macro ].result ); // Hopefully large enough :P (can't assume 32-bit) } } void cliFunc_macroProc( char* args ) { // Toggle macro pause mode macroPauseMode = macroPauseMode ? 0 : 1; print( NL ); info_msg("Macro Processing Mode: "); printInt8( macroPauseMode ); } void macroDebugShowTrigger( var_uint_t index ) { // Only proceed if the macro exists if ( index >= TriggerMacroNum ) return; // Trigger Macro Show const TriggerMacro *macro = &TriggerMacroList[ index ]; TriggerMacroRecord *record = &TriggerMacroRecordList[ index ]; print( NL ); info_msg("Trigger Macro Index: "); printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit) print( NL ); // Read the comboLength for combo in the sequence (sequence of combos) var_uint_t pos = 0; uint8_t comboLength = macro->guide[ pos ]; // Iterate through and interpret the guide while ( comboLength != 0 ) { // Initial position of the combo var_uint_t comboPos = ++pos; // Iterate through the combo while ( pos < comboLength * TriggerGuideSize + comboPos ) { // Assign TriggerGuide element (key type, state and scancode) TriggerGuide *guide = (TriggerGuide*)(¯o->guide[ pos ]); // Display guide information about trigger key printHex( guide->scanCode ); print("|"); printHex( guide->type ); print("|"); printHex( guide->state ); // Increment position pos += TriggerGuideSize; // Only show combo separator if there are combos left in the sequence element if ( pos < comboLength * TriggerGuideSize + comboPos ) print("+"); } // Read the next comboLength comboLength = macro->guide[ pos ]; // Only show sequence separator if there is another combo to process if ( comboLength != 0 ) print(";"); } // Display current position print( NL "Position: " ); printInt16( (uint16_t)record->pos ); // Hopefully large enough :P (can't assume 32-bit) // Display result macro index print( NL "Result Macro Index: " ); printInt16( (uint16_t)macro->result ); // Hopefully large enough :P (can't assume 32-bit) // Display trigger macro state print( NL "Trigger Macro State: " ); switch ( record->state ) { case TriggerMacro_Press: print("Press"); break; case TriggerMacro_Release: print("Release"); break; case TriggerMacro_Waiting: print("Waiting"); break; } } void macroDebugShowResult( var_uint_t index ) { // Only proceed if the macro exists if ( index >= ResultMacroNum ) return; // Trigger Macro Show const ResultMacro *macro = &ResultMacroList[ index ]; ResultMacroRecord *record = &ResultMacroRecordList[ index ]; print( NL ); info_msg("Result Macro Index: "); printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit) print( NL ); // Read the comboLength for combo in the sequence (sequence of combos) var_uint_t pos = 0; uint8_t comboLength = macro->guide[ pos++ ]; // Iterate through and interpret the guide while ( comboLength != 0 ) { // Function Counter, used to keep track of the combos processed var_uint_t funcCount = 0; // Iterate through the combo while ( funcCount < comboLength ) { // Assign TriggerGuide element (key type, state and scancode) ResultGuide *guide = (ResultGuide*)(¯o->guide[ pos ]); // Display Function Index printHex( guide->index ); print("|"); // Display Function Ptr Address printHex( (nat_ptr_t)CapabilitiesList[ guide->index ].func ); print("|"); // Display/Lookup Capability Name (utilize debug mode of capability) void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ guide->index ].func); capability( 0xFF, 0xFF, 0 ); // Display Argument(s) print("("); for ( var_uint_t arg = 0; arg < CapabilitiesList[ guide->index ].argCount; arg++ ) { // Arguments are only 8 bit values printHex( (&guide->args)[ arg ] ); // Only show arg separator if there are args left if ( arg + 1 < CapabilitiesList[ guide->index ].argCount ) print(","); } print(")"); // Increment position pos += ResultGuideSize( guide ); // Increment function count funcCount++; // Only show combo separator if there are combos left in the sequence element if ( funcCount < comboLength ) print("+"); } // Read the next comboLength comboLength = macro->guide[ pos++ ]; // Only show sequence separator if there is another combo to process if ( comboLength != 0 ) print(";"); } // Display current position print( NL "Position: " ); printInt16( (uint16_t)record->pos ); // Hopefully large enough :P (can't assume 32-bit) // Display final trigger state/type print( NL "Final Trigger State (State/Type): " ); printHex( record->state ); print("/"); printHex( record->stateType ); } void cliFunc_macroShow( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Ignore invalid codes switch ( arg1Ptr[0] ) { // Indexed Trigger Macro case 'T': macroDebugShowTrigger( numToInt( &arg1Ptr[1] ) ); break; // Indexed Result Macro case 'R': macroDebugShowResult( numToInt( &arg1Ptr[1] ) ); break; } } } void cliFunc_macroStep( char* args ) { // Parse number from argument // NOTE: Only first argument is used char* arg1Ptr; char* arg2Ptr; CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr ); // Default to 1, if no argument given var_uint_t count = (var_uint_t)numToInt( arg1Ptr ); if ( count == 0 ) count = 1; // Set the macro step counter, negative int's are cast to uint macroStepCounter = count; }