/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2013 PJRC.COM, LLC. * Modifications by Jacob Alexander (2013-2015) * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ // ----- Includes ----- // Project Includes #include #include // Local Includes #include "usb_dev.h" #include "usb_mem.h" // ----- Defines ----- // DEBUG Mode // XXX - Only use when using usbMuxUart Module // Delay causes issues initializing more than 1 hid device (i.e. NKRO keyboard) //#define UART_DEBUG 1 // Debug Unknown USB requests, usually what you want to debug USB issues //#define UART_DEBUG_UNKNOWN 1 #define TX_STATE_BOTH_FREE_EVEN_FIRST 0 #define TX_STATE_BOTH_FREE_ODD_FIRST 1 #define TX_STATE_EVEN_FREE 2 #define TX_STATE_ODD_FREE 3 #define TX_STATE_NONE_FREE_EVEN_FIRST 4 #define TX_STATE_NONE_FREE_ODD_FIRST 5 #define BDT_OWN 0x80 #define BDT_DATA1 0x40 #define BDT_DATA0 0x00 #define BDT_DTS 0x08 #define BDT_STALL 0x04 #define TX 1 #define RX 0 #define ODD 1 #define EVEN 0 #define DATA0 0 #define DATA1 1 #define GET_STATUS 0 #define CLEAR_FEATURE 1 #define SET_FEATURE 3 #define SET_ADDRESS 5 #define GET_DESCRIPTOR 6 #define SET_DESCRIPTOR 7 #define GET_CONFIGURATION 8 #define SET_CONFIGURATION 9 #define GET_INTERFACE 10 #define SET_INTERFACE 11 #define SYNCH_FRAME 12 #define TX_STATE_BOTH_FREE_EVEN_FIRST 0 #define TX_STATE_BOTH_FREE_ODD_FIRST 1 #define TX_STATE_EVEN_FREE 2 #define TX_STATE_ODD_FREE 3 #define TX_STATE_NONE_FREE 4 // ----- Macros ----- #define BDT_PID(n) (((n) >> 2) & 15) #define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \ | ((data) ? BDT_DATA1 : BDT_DATA0) \ | ((count) << 16)) #define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd)) #define stat2bufferdescriptor(stat) (table + ((stat) >> 2)) // ----- Structs ----- // buffer descriptor table typedef struct { uint32_t desc; void * addr; } bdt_t; static union { struct { union { struct { uint8_t bmRequestType; uint8_t bRequest; }; uint16_t wRequestAndType; }; uint16_t wValue; uint16_t wIndex; uint16_t wLength; }; struct { uint32_t word1; uint32_t word2; }; } setup; // ----- Variables ----- __attribute__ ((section(".usbdescriptortable"), used)) static bdt_t table[ (NUM_ENDPOINTS + 1) * 4 ]; static usb_packet_t *rx_first [ NUM_ENDPOINTS ]; static usb_packet_t *rx_last [ NUM_ENDPOINTS ]; static usb_packet_t *tx_first [ NUM_ENDPOINTS ]; static usb_packet_t *tx_last [ NUM_ENDPOINTS ]; uint16_t usb_rx_byte_count_data[ NUM_ENDPOINTS ]; static uint8_t tx_state[NUM_ENDPOINTS]; // SETUP always uses a DATA0 PID for the data field of the SETUP transaction. // transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1) // Status stage uses a DATA1 PID. static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4))); static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4))); static const uint8_t *ep0_tx_ptr = NULL; static uint16_t ep0_tx_len; static uint8_t ep0_tx_bdt_bank = 0; static uint8_t ep0_tx_data_toggle = 0; uint8_t usb_rx_memory_needed = 0; volatile uint8_t usb_configuration = 0; volatile uint8_t usb_reboot_timer = 0; static uint8_t reply_buffer[8]; // ----- Functions ----- static void endpoint0_stall() { USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK; } static void endpoint0_transmit( const void *data, uint32_t len ) { table[index(0, TX, ep0_tx_bdt_bank)].addr = (void *)data; table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle); ep0_tx_data_toggle ^= 1; ep0_tx_bdt_bank ^= 1; } static void usb_setup() { const uint8_t *data = NULL; uint32_t datalen = 0; const usb_descriptor_list_t *list; uint32_t size; volatile uint8_t *reg; uint8_t epconf; const uint8_t *cfg; int i; switch ( setup.wRequestAndType ) { case 0x0500: // SET_ADDRESS break; case 0x0900: // SET_CONFIGURATION #ifdef UART_DEBUG print("CONFIGURE - "); #endif usb_configuration = setup.wValue; Output_Available = usb_configuration; reg = &USB0_ENDPT1; cfg = usb_endpoint_config_table; // clear all BDT entries, free any allocated memory... for ( i = 4; i < ( NUM_ENDPOINTS + 1) * 4; i++ ) { if ( table[i].desc & BDT_OWN ) { usb_free( (usb_packet_t *)((uint8_t *)(table[ i ].addr) - 8) ); } } // free all queued packets for ( i = 0; i < NUM_ENDPOINTS; i++ ) { usb_packet_t *p, *n; p = rx_first[i]; while ( p ) { n = p->next; usb_free(p); p = n; } rx_first[ i ] = NULL; rx_last[ i ] = NULL; p = tx_first[i]; while (p) { n = p->next; usb_free(p); p = n; } tx_first[ i ] = NULL; tx_last[ i ] = NULL; usb_rx_byte_count_data[i] = 0; switch ( tx_state[ i ] ) { case TX_STATE_EVEN_FREE: case TX_STATE_NONE_FREE_EVEN_FIRST: tx_state[ i ] = TX_STATE_BOTH_FREE_EVEN_FIRST; break; case TX_STATE_ODD_FREE: case TX_STATE_NONE_FREE_ODD_FIRST: tx_state[ i ] = TX_STATE_BOTH_FREE_ODD_FIRST; break; default: break; } } usb_rx_memory_needed = 0; for ( i = 1; i <= NUM_ENDPOINTS; i++ ) { epconf = *cfg++; *reg = epconf; reg += 4; if ( epconf & USB_ENDPT_EPRXEN ) { usb_packet_t *p; p = usb_malloc(); if ( p ) { table[ index( i, RX, EVEN ) ].addr = p->buf; table[ index( i, RX, EVEN ) ].desc = BDT_DESC( 64, 0 ); } else { table[ index( i, RX, EVEN ) ].desc = 0; usb_rx_memory_needed++; } p = usb_malloc(); if ( p ) { table[ index( i, RX, ODD ) ].addr = p->buf; table[ index( i, RX, ODD ) ].desc = BDT_DESC( 64, 1 ); } else { table[ index( i, RX, ODD ) ].desc = 0; usb_rx_memory_needed++; } } table[ index( i, TX, EVEN ) ].desc = 0; table[ index( i, TX, ODD ) ].desc = 0; } break; case 0x0880: // GET_CONFIGURATION reply_buffer[0] = usb_configuration; datalen = 1; data = reply_buffer; break; case 0x0080: // GET_STATUS (device) reply_buffer[0] = 0; reply_buffer[1] = 0; datalen = 2; data = reply_buffer; break; case 0x0082: // GET_STATUS (endpoint) if ( setup.wIndex > NUM_ENDPOINTS ) { // TODO: do we need to handle IN vs OUT here? endpoint0_stall(); return; } reply_buffer[0] = 0; reply_buffer[1] = 0; if ( *(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02 ) reply_buffer[0] = 1; data = reply_buffer; datalen = 2; break; case 0x0100: // CLEAR_FEATURE (device) case 0x0101: // CLEAR_FEATURE (interface) // TODO: Currently ignoring, perhaps useful? -HaaTa endpoint0_stall(); return; case 0x0102: // CLEAR_FEATURE (interface) i = setup.wIndex & 0x7F; if ( i > NUM_ENDPOINTS || setup.wValue != 0 ) { endpoint0_stall(); return; } //(*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) &= ~0x02; // TODO: do we need to clear the data toggle here? //break; // FIXME: Clearing causes keyboard to freeze, likely an invalid clear // XXX: Ignoring seems to work, though this may not be the ideal behaviour -HaaTa endpoint0_stall(); return; case 0x0300: // SET_FEATURE (device) case 0x0301: // SET_FEATURE (interface) // TODO: Currently ignoring, perhaps useful? -HaaTa endpoint0_stall(); return; case 0x0302: // SET_FEATURE (endpoint) i = setup.wIndex & 0x7F; if ( i > NUM_ENDPOINTS || setup.wValue != 0 ) { // TODO: do we need to handle IN vs OUT here? endpoint0_stall(); return; } (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) |= 0x02; // TODO: do we need to clear the data toggle here? break; case 0x0680: // GET_DESCRIPTOR case 0x0681: #ifdef UART_DEBUG print("desc:"); printHex( setup.wValue ); print( NL ); #endif for ( list = usb_descriptor_list; 1; list++ ) { if ( list->addr == NULL ) break; if ( setup.wValue == list->wValue && setup.wIndex == list->wIndex ) { data = list->addr; if ( (setup.wValue >> 8) == 3 ) { // for string descriptors, use the descriptor's // length field, allowing runtime configured // length. datalen = *(list->addr); } else { datalen = list->length; } #if UART_DEBUG print("Desc found, "); printHex32( (uint32_t)data ); print(","); printHex( datalen ); print(","); printHex_op( data[0], 2 ); printHex_op( data[1], 2 ); printHex_op( data[2], 2 ); printHex_op( data[3], 2 ); printHex_op( data[4], 2 ); printHex_op( data[5], 2 ); print( NL ); #endif goto send; } } #ifdef UART_DEBUG print( "desc: not found" NL ); #endif endpoint0_stall(); return; case 0x2221: // CDC_SET_CONTROL_LINE_STATE usb_cdc_line_rtsdtr = setup.wValue; //serial_print("set control line state\n"); endpoint0_stall(); return; case 0x21A1: // CDC_GET_LINE_CODING data = (uint8_t*)usb_cdc_line_coding; datalen = sizeof( usb_cdc_line_coding ); goto send; case 0x2021: // CDC_SET_LINE_CODING // XXX Needed? //serial_print("set coding, waiting...\n"); endpoint0_stall(); return; // Cannot stall here (causes issues) case 0x0921: // HID SET_REPORT #ifdef UART_DEBUG print("SET_REPORT - "); printHex( setup.wValue ); print(" - "); printHex( setup.wValue & 0xFF ); print( NL ); #endif USBKeys_LEDs = setup.wValue & 0xFF; endpoint0_stall(); return; case 0x01A1: // HID GET_REPORT #ifdef UART_DEBUG print("GET_REPORT - "); printHex( USBKeys_LEDs ); print(NL); #endif data = (uint8_t*)&USBKeys_LEDs; datalen = 1; goto send; case 0x0A21: // HID SET_IDLE #ifdef UART_DEBUG print("SET_IDLE - "); printHex( setup.wValue ); print(NL); #endif USBKeys_Idle_Config = (setup.wValue >> 8); USBKeys_Idle_Count = 0; endpoint0_stall(); return; case 0x0B21: // HID SET_PROTOCOL #ifdef UART_DEBUG print("SET_PROTOCOL - "); printHex( setup.wValue ); print(" - "); printHex( setup.wValue & 0xFF ); print(NL); #endif USBKeys_Protocol = setup.wValue & 0xFF; // 0 - Boot Mode, 1 - NKRO Mode endpoint0_stall(); return; // case 0xC940: default: #ifdef UART_DEBUG_UNKNOWN print("UNKNOWN"); #endif endpoint0_stall(); return; } send: #ifdef UART_DEBUG print("setup send "); printHex32((uint32_t)data); print(","); printHex(datalen); print(NL); #endif if ( datalen > setup.wLength ) datalen = setup.wLength; size = datalen; if ( size > EP0_SIZE ) size = EP0_SIZE; endpoint0_transmit(data, size); data += size; datalen -= size; // See if transmit has finished if ( datalen == 0 && size < EP0_SIZE ) return; size = datalen; if ( size > EP0_SIZE ) size = EP0_SIZE; endpoint0_transmit(data, size); data += size; datalen -= size; // See if transmit has finished if ( datalen == 0 && size < EP0_SIZE ) return; // Save rest of transfer for later? XXX ep0_tx_ptr = data; ep0_tx_len = datalen; } //A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint //experiences any configuration event (configuration events are explained in //Sections 9.1.1.5 and 9.4.5). //Configuring a device or changing an alternate setting causes all of the status //and configuration values associated with endpoints in the affected interfaces //to be set to their default values. This includes setting the data toggle of //any endpoint using data toggles to the value DATA0. //For endpoints using data toggle, regardless of whether an endpoint has the //Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the //data toggle being reinitialized to DATA0. static void usb_control( uint32_t stat ) { #ifdef UART_DEBUG print("CONTROL - "); #endif bdt_t *b; uint32_t pid, size; uint8_t *buf; const uint8_t *data; b = stat2bufferdescriptor( stat ); pid = BDT_PID( b->desc ); buf = b->addr; #ifdef UART_DEBUG print("pid:"); printHex(pid); print(", count:"); printHex32(b->desc); print(" - "); #endif switch (pid) { case 0x0D: // Setup received from host //serial_print("PID=Setup\n"); //if (count != 8) ; // panic? // grab the 8 byte setup info setup.word1 = *(uint32_t *)(buf); setup.word2 = *(uint32_t *)(buf + 4); // give the buffer back b->desc = BDT_DESC( EP0_SIZE, DATA1 ); //table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 1); //table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 1); // clear any leftover pending IN transactions ep0_tx_ptr = NULL; if ( ep0_tx_data_toggle ) { } //if (table[index(0, TX, EVEN)].desc & 0x80) { //serial_print("leftover tx even\n"); //} //if (table[index(0, TX, ODD)].desc & 0x80) { //serial_print("leftover tx odd\n"); //} table[index(0, TX, EVEN)].desc = 0; table[index(0, TX, ODD)].desc = 0; // first IN after Setup is always DATA1 ep0_tx_data_toggle = 1; #ifdef UART_DEBUG_UNKNOWN print("bmRequestType:"); printHex(setup.bmRequestType); print(", bRequest:"); printHex(setup.bRequest); print(", wValue:"); printHex(setup.wValue); print(", wIndex:"); printHex(setup.wIndex); print(", len:"); printHex(setup.wLength); print(NL); #endif // actually "do" the setup request usb_setup(); // unfreeze the USB, now that we're ready USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit break; case 0x01: // OUT transaction received from host case 0x02: #ifdef UART_DEBUG print("PID=OUT"NL); #endif // CDC Interface if ( setup.wRequestAndType == 0x2021 /*CDC_SET_LINE_CODING*/ ) { int i; uint8_t *dst = (uint8_t *)usb_cdc_line_coding; //serial_print("set line coding "); for ( i = 0; i < 7; i++ ) { //serial_phex(*buf); *dst++ = *buf++; } //serial_phex32(usb_cdc_line_coding[0]); //serial_print("\n"); if ( usb_cdc_line_coding[0] == 134 ) usb_reboot_timer = 15; endpoint0_transmit( NULL, 0 ); } // Keyboard Interface if ( setup.word1 == 0x02000921 && setup.word2 == ( (1<<16) | KEYBOARD_INTERFACE ) ) { USBKeys_LEDs = buf[0]; endpoint0_transmit( NULL, 0 ); } // NKRO Keyboard Interface if ( setup.word1 == 0x02000921 && setup.word2 == ( (1<<16) | NKRO_KEYBOARD_INTERFACE ) ) { USBKeys_LEDs = buf[0]; endpoint0_transmit( NULL, 0 ); } // give the buffer back b->desc = BDT_DESC( EP0_SIZE, DATA1 ); break; case 0x09: // IN transaction completed to host #ifdef UART_DEBUG print("PID=IN:"); printHex(stat); print(NL); #endif // send remaining data, if any... data = ep0_tx_ptr; if ( data ) { size = ep0_tx_len; if (size > EP0_SIZE) size = EP0_SIZE; endpoint0_transmit(data, size); data += size; ep0_tx_len -= size; ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL; } if ( setup.bRequest == 5 && setup.bmRequestType == 0 ) { setup.bRequest = 0; #ifdef UART_DEBUG print("set address: "); printHex(setup.wValue); print(NL); #endif USB0_ADDR = setup.wValue; } break; default: #ifdef UART_DEBUG print("PID=unknown:"); printHex(pid); print(NL); #endif break; } USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit } usb_packet_t *usb_rx( uint32_t endpoint ) { //print("USB RX"); usb_packet_t *ret; endpoint--; if ( endpoint >= NUM_ENDPOINTS ) return NULL; __disable_irq(); ret = rx_first[endpoint]; if ( ret ) rx_first[ endpoint ] = ret->next; usb_rx_byte_count_data[ endpoint ] -= ret->len; __enable_irq(); //serial_print("rx, epidx="); //serial_phex(endpoint); //serial_print(", packet="); //serial_phex32(ret); //serial_print("\n"); return ret; } static uint32_t usb_queue_byte_count( const usb_packet_t *p ) { uint32_t count=0; __disable_irq(); for ( ; p; p = p->next ) { count += p->len; } __enable_irq(); return count; } uint32_t usb_tx_byte_count( uint32_t endpoint ) { endpoint--; if ( endpoint >= NUM_ENDPOINTS ) return 0; return usb_queue_byte_count( tx_first[ endpoint ] ); } uint32_t usb_tx_packet_count( uint32_t endpoint ) { const usb_packet_t *p; uint32_t count=0; endpoint--; if ( endpoint >= NUM_ENDPOINTS ) return 0; __disable_irq(); for ( p = tx_first[ endpoint ]; p; p = p->next ) count++; __enable_irq(); return count; } // Called from usb_free, but only when usb_rx_memory_needed > 0, indicating // receive endpoints are starving for memory. The intention is to give // endpoints needing receive memory priority over the user's code, which is // likely calling usb_malloc to obtain memory for transmitting. When the // user is creating data very quickly, their consumption could starve reception // without this prioritization. The packet buffer (input) is assigned to the // first endpoint needing memory. // void usb_rx_memory( usb_packet_t *packet ) { //print("USB RX MEMORY"); unsigned int i; const uint8_t *cfg; cfg = usb_endpoint_config_table; //serial_print("rx_mem:"); __disable_irq(); for ( i = 1; i <= NUM_ENDPOINTS; i++ ) { if ( *cfg++ & USB_ENDPT_EPRXEN ) { if ( table[ index( i, RX, EVEN ) ].desc == 0 ) { table[ index( i, RX, EVEN ) ].addr = packet->buf; table[ index( i, RX, EVEN ) ].desc = BDT_DESC( 64, 0 ); usb_rx_memory_needed--; __enable_irq(); //serial_phex(i); //serial_print(",even\n"); return; } if ( table[ index( i, RX, ODD ) ].desc == 0 ) { table[ index( i, RX, ODD ) ].addr = packet->buf; table[ index( i, RX, ODD ) ].desc = BDT_DESC( 64, 1 ); usb_rx_memory_needed--; __enable_irq(); //serial_phex(i); //serial_print(",odd\n"); return; } } } __enable_irq(); // we should never reach this point. If we get here, it means // usb_rx_memory_needed was set greater than zero, but no memory // was actually needed. usb_rx_memory_needed = 0; usb_free( packet ); return; } //#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd)) //#define stat2bufferdescriptor(stat) (table + ((stat) >> 2)) void usb_tx( uint32_t endpoint, usb_packet_t *packet ) { bdt_t *b = &table[ index( endpoint, TX, EVEN ) ]; uint8_t next; endpoint--; if ( endpoint >= NUM_ENDPOINTS ) return; __disable_irq(); //serial_print("txstate="); //serial_phex(tx_state[ endpoint ]); //serial_print("\n"); switch ( tx_state[ endpoint ] ) { case TX_STATE_BOTH_FREE_EVEN_FIRST: next = TX_STATE_ODD_FREE; break; case TX_STATE_BOTH_FREE_ODD_FIRST: b++; next = TX_STATE_EVEN_FREE; break; case TX_STATE_EVEN_FREE: next = TX_STATE_NONE_FREE_ODD_FIRST; break; case TX_STATE_ODD_FREE: b++; next = TX_STATE_NONE_FREE_EVEN_FIRST; break; default: if (tx_first[ endpoint ] == NULL) { tx_first[ endpoint ] = packet; } else { tx_last[ endpoint ]->next = packet; } tx_last[ endpoint ] = packet; __enable_irq(); return; } tx_state[ endpoint ] = next; b->addr = packet->buf; b->desc = BDT_DESC( packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0 ); __enable_irq(); } void usb_device_reload() { // MCHCK #if defined(_mk20dx128vlf5_) // MCHCK Kiibohd Variant // Check to see if PTA3 (has a pull-up) is connected to GND (usually via jumper) // Only allow reload if the jumper is present (security) GPIOA_PDDR &= ~(1<<3); // Input PORTA_PCR3 = PORT_PCR_PFE | PORT_PCR_MUX(1); // Internal pull-up // Check for jumper if ( GPIOA_PDIR & (1<<3) ) { print( NL ); warn_print("Security jumper not present, cancelling firmware reload..."); info_msg("Replace jumper on middle 2 pins, or manually press the firmware reload button."); } else { // Copies variable into the VBAT register, must be identical to the variable in the bootloader to jump to the bootloader flash mode for ( int pos = 0; pos < sizeof(sys_reset_to_loader_magic); pos++ ) (&VBAT)[ pos ] = sys_reset_to_loader_magic[ pos ]; SOFTWARE_RESET(); } // Kiibohd mk20dx256vlh7 #elif defined(_mk20dx256vlh7_) // Copies variable into the VBAT register, must be identical to the variable in the bootloader to jump to the bootloader flash mode for ( int pos = 0; pos < sizeof(sys_reset_to_loader_magic); pos++ ) (&VBAT)[ pos ] = sys_reset_to_loader_magic[ pos ]; SOFTWARE_RESET(); // Teensy 3.0 and 3.1 #else asm volatile("bkpt"); #endif } void usb_isr() { uint8_t status, stat, t; //serial_print("isr"); //status = USB0_ISTAT; //serial_phex(status); //serial_print("\n"); restart: status = USB0_ISTAT; /* print("USB ISR STATUS: "); printHex( status ); print( NL ); */ if ( (status & USB_INTEN_SOFTOKEN /* 04 */ ) ) { if ( usb_configuration ) { t = usb_reboot_timer; if ( t ) { usb_reboot_timer = --t; if ( !t ) usb_device_reload(); } // CDC Interface t = usb_cdc_transmit_flush_timer; if ( t ) { usb_cdc_transmit_flush_timer = --t; if ( t == 0 ) usb_serial_flush_callback(); } } USB0_ISTAT = USB_INTEN_SOFTOKEN; } if ( (status & USB_ISTAT_TOKDNE /* 08 */ ) ) { uint8_t endpoint; stat = USB0_STAT; //serial_print("token: ep="); //serial_phex(stat >> 4); //serial_print(stat & 0x08 ? ",tx" : ",rx"); //serial_print(stat & 0x04 ? ",odd\n" : ",even\n"); endpoint = stat >> 4; if ( endpoint == 0 ) { usb_control( stat ); } else { bdt_t *b = stat2bufferdescriptor(stat); usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8); #if 0 serial_print("ep:"); serial_phex(endpoint); serial_print(", pid:"); serial_phex(BDT_PID(b->desc)); serial_print(((uint32_t)b & 8) ? ", odd" : ", even"); serial_print(", count:"); serial_phex(b->desc >> 16); serial_print("\n"); #endif endpoint--; // endpoint is index to zero-based arrays if ( stat & 0x08 ) { // transmit usb_free( packet ); packet = tx_first[ endpoint ]; if ( packet ) { //serial_print("tx packet\n"); tx_first[endpoint] = packet->next; b->addr = packet->buf; switch ( tx_state[ endpoint ] ) { case TX_STATE_BOTH_FREE_EVEN_FIRST: tx_state[ endpoint ] = TX_STATE_ODD_FREE; break; case TX_STATE_BOTH_FREE_ODD_FIRST: tx_state[ endpoint ] = TX_STATE_EVEN_FREE; break; case TX_STATE_EVEN_FREE: tx_state[ endpoint ] = TX_STATE_NONE_FREE_ODD_FIRST; break; case TX_STATE_ODD_FREE: tx_state[ endpoint ] = TX_STATE_NONE_FREE_EVEN_FIRST; break; default: break; } b->desc = BDT_DESC( packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0 ); } else { //serial_print("tx no packet\n"); switch ( tx_state[ endpoint ] ) { case TX_STATE_BOTH_FREE_EVEN_FIRST: case TX_STATE_BOTH_FREE_ODD_FIRST: break; case TX_STATE_EVEN_FREE: tx_state[ endpoint ] = TX_STATE_BOTH_FREE_EVEN_FIRST; break; case TX_STATE_ODD_FREE: tx_state[ endpoint ] = TX_STATE_BOTH_FREE_ODD_FIRST; break; default: tx_state[ endpoint ] = ((uint32_t)b & 8) ? TX_STATE_ODD_FREE : TX_STATE_EVEN_FREE; break; } } } else { // receive packet->len = b->desc >> 16; if ( packet->len > 0 ) { packet->index = 0; packet->next = NULL; if ( rx_first[ endpoint ] == NULL ) { //serial_print("rx 1st, epidx="); //serial_phex(endpoint); //serial_print(", packet="); //serial_phex32((uint32_t)packet); //serial_print("\n"); rx_first[ endpoint ] = packet; } else { //serial_print("rx Nth, epidx="); //serial_phex(endpoint); //serial_print(", packet="); //serial_phex32((uint32_t)packet); //serial_print("\n"); rx_last[ endpoint ]->next = packet; } rx_last[ endpoint ] = packet; usb_rx_byte_count_data[ endpoint ] += packet->len; // TODO: implement a per-endpoint maximum # of allocated packets // so a flood of incoming data on 1 endpoint doesn't starve // the others if the user isn't reading it regularly packet = usb_malloc(); if ( packet ) { b->addr = packet->buf; b->desc = BDT_DESC( 64, ((uint32_t)b & 8) ? DATA1 : DATA0 ); } else { //serial_print("starving "); //serial_phex(endpoint + 1); //serial_print(((uint32_t)b & 8) ? ",odd\n" : ",even\n"); b->desc = 0; usb_rx_memory_needed++; } } else { b->desc = BDT_DESC( 64, ((uint32_t)b & 8) ? DATA1 : DATA0 ); } } } USB0_ISTAT = USB_ISTAT_TOKDNE; goto restart; } if ( status & USB_ISTAT_USBRST /* 01 */ ) { //serial_print("reset\n"); // initialize BDT toggle bits USB0_CTL = USB_CTL_ODDRST; ep0_tx_bdt_bank = 0; // set up buffers to receive Setup and OUT packets table[index( 0, RX, EVEN ) ].desc = BDT_DESC( EP0_SIZE, 0 ); table[index( 0, RX, EVEN ) ].addr = ep0_rx0_buf; table[index( 0, RX, ODD ) ].desc = BDT_DESC( EP0_SIZE, 0 ); table[index( 0, RX, ODD ) ].addr = ep0_rx1_buf; table[index( 0, TX, EVEN ) ].desc = 0; table[index( 0, TX, ODD ) ].desc = 0; // activate endpoint 0 USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK; // clear all ending interrupts USB0_ERRSTAT = 0xFF; USB0_ISTAT = 0xFF; // set the address to zero during enumeration USB0_ADDR = 0; // enable other interrupts USB0_ERREN = 0xFF; USB0_INTEN = USB_INTEN_TOKDNEEN | USB_INTEN_SOFTOKEN | USB_INTEN_STALLEN | USB_INTEN_ERROREN | USB_INTEN_USBRSTEN | USB_INTEN_SLEEPEN; // is this necessary? USB0_CTL = USB_CTL_USBENSOFEN; return; } if ( (status & USB_ISTAT_STALL /* 80 */ ) ) { //serial_print("stall:\n"); USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK; USB0_ISTAT = USB_ISTAT_STALL; } if ( (status & USB_ISTAT_ERROR /* 02 */ ) ) { uint8_t err = USB0_ERRSTAT; USB0_ERRSTAT = err; //serial_print("err:"); //serial_phex(err); //serial_print("\n"); USB0_ISTAT = USB_ISTAT_ERROR; } if ( (status & USB_ISTAT_SLEEP /* 10 */ ) ) { //serial_print("sleep\n"); USB0_ISTAT = USB_ISTAT_SLEEP; } } uint8_t usb_init() { #ifdef UART_DEBUG print("USB INIT"NL); #endif // Clear out endpoints table for ( int i = 0; i <= NUM_ENDPOINTS * 4; i++ ) { table[i].desc = 0; table[i].addr = 0; } // this basically follows the flowchart in the Kinetis // Quick Reference User Guide, Rev. 1, 03/2012, page 141 // assume 48 MHz clock already running // SIM - enable clock SIM_SCGC4 |= SIM_SCGC4_USBOTG; // reset USB module USB0_USBTRC0 = USB_USBTRC_USBRESET; while ( (USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0 ); // wait for reset to end // set desc table base addr USB0_BDTPAGE1 = ((uint32_t)table) >> 8; USB0_BDTPAGE2 = ((uint32_t)table) >> 16; USB0_BDTPAGE3 = ((uint32_t)table) >> 24; // clear all ISR flags USB0_ISTAT = 0xFF; USB0_ERRSTAT = 0xFF; USB0_OTGISTAT = 0xFF; USB0_USBTRC0 |= 0x40; // undocumented bit // enable USB USB0_CTL = USB_CTL_USBENSOFEN; USB0_USBCTRL = 0; // enable reset interrupt USB0_INTEN = USB_INTEN_USBRSTEN; // enable interrupt in NVIC... NVIC_SET_PRIORITY( IRQ_USBOTG, 112 ); NVIC_ENABLE_IRQ( IRQ_USBOTG ); // enable d+ pullup USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG; return 1; } // return 0 if the USB is not configured, or the configuration // number selected by the HOST uint8_t usb_configured() { return usb_configuration; }