/* Copyright (C) 2014-2015 by Jacob Alexander * * This file is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this file. If not, see . */ // ----- Includes ----- // Compiler Includes #include // Project Includes #include #include #include // Local Includes #include "led_scan.h" // ----- Defines ----- #define I2C_TxBufferLength 300 #define I2C_RxBufferLength 8 #define LED_BufferLength 144 // ----- Structs ----- typedef struct I2C_Buffer { uint16_t head; uint16_t tail; uint8_t sequencePos; uint16_t size; uint8_t *buffer; } I2C_Buffer; typedef struct LED_Buffer { uint8_t buffer[LED_BufferLength]; } LED_Buffer; // ----- Function Declarations ----- // CLI Functions void cliFunc_echo( char* args ); void cliFunc_i2cRecv( char* args ); void cliFunc_i2cSend( char* args ); void cliFunc_ledTest( char* args ); void cliFunc_ledZero( char* args ); uint8_t I2C_TxBufferPop(); void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer ); uint16_t I2C_BufferLen( I2C_Buffer *buffer ); uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen ); // ----- Variables ----- // Scan Module command dictionary CLIDict_Entry( i2cRecv, "Send I2C sequence of bytes and expect a reply of 1 byte on the last sequence." NL "\t\tUse |'s to split sequences with a stop." ); CLIDict_Entry( i2cSend, "Send I2C sequence of bytes. Use |'s to split sequences with a stop." ); CLIDict_Entry( ledTest, "Test out the led pages." ); CLIDict_Entry( ledZero, "Zero out LED register pages (non-configuration)." ); CLIDict_Def( ledCLIDict, "ISSI LED Module Commands" ) = { CLIDict_Item( i2cRecv ), CLIDict_Item( i2cSend ), CLIDict_Item( ledTest ), CLIDict_Item( ledZero ), { 0, 0, 0 } // Null entry for dictionary end }; // Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented // Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ]; volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ]; volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, (uint8_t*)I2C_TxBufferPtr }; volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, (uint8_t*)I2C_RxBufferPtr }; LED_Buffer LED_pageBuffer; // A bit mask determining which LEDs are enabled in the ISSI chip // 0x00 -> 0x11 const uint8_t LED_ledEnableMask[] = { 0xE8, // I2C address 0x00, // Starting register address 0xFF, 0xFF, // C1-1 -> C1-16 0xFF, 0xFF, // C2-1 -> C2-16 0xFF, 0xFF, // C3-1 -> C3-16 0xFF, 0xFF, // C4-1 -> C4-16 0xFF, 0xFF, // C5-1 -> C5-16 0xFF, 0xFF, // C6-1 -> C6-16 0xFF, 0xFF, // C7-1 -> C7-16 0xFF, 0xFF, // C8-1 -> C8-16 0xFF, 0xFF, // C9-1 -> C9-16 }; // XXX Pre-fill example of buffers const uint8_t examplePage[] = { 0xE8, // I2C address 0x24, // Starting register address 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, // C1-1 -> C1-16 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, // C2-1 -> C2-16 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, // C3-1 -> C3-16 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, // C4-1 -> C4-16 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, // C5-1 -> C5-16 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, // C6-1 -> C6-16 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, // C7-1 -> C7-16 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F, // C8-1 -> C8-16 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, // C9-1 -> C9-16 }; // ----- Interrupt Functions ----- void i2c0_isr() { cli(); // Disable Interrupts uint8_t status = I2C0_S; // Read I2C Bus status // Master Mode Transmit if ( I2C0_C1 & I2C_C1_TX ) { // Check current use of the I2C bus // Currently sending data if ( I2C_TxBuffer.sequencePos > 0 ) { // Make sure slave sent an ACK if ( status & I2C_S_RXAK ) { // NACK Detected, disable interrupt erro_print("I2C NAK detected..."); I2C0_C1 = I2C_C1_IICEN; // Abort Tx Buffer I2C_TxBuffer.head = 0; I2C_TxBuffer.tail = 0; I2C_TxBuffer.sequencePos = 0; } else { // Transmit byte I2C0_D = I2C_TxBufferPop(); } } // Receiving data else if ( I2C_RxBuffer.sequencePos > 0 ) { // Master Receive, addr sent if ( status & I2C_S_ARBL ) { // Arbitration Lost erro_print("Arbitration lost..."); // TODO Abort Rx I2C0_C1 = I2C_C1_IICEN; I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt } if ( status & I2C_S_RXAK ) { // Slave Address NACK Detected, disable interrupt erro_print("Slave Address I2C NAK detected..."); // TODO Abort Rx I2C0_C1 = I2C_C1_IICEN; } else { dbug_print("Attempting to read byte"); I2C0_C1 = I2C_RxBuffer.sequencePos == 1 ? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read : I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read } } else { /* dbug_msg("STOP - "); printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) ); print(NL); */ // Delay around STOP to make sure it actually happens... delayMicroseconds( 1 ); I2C0_C1 = I2C_C1_IICEN; // Send STOP delayMicroseconds( 7 ); // If there is another sequence, start sending if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size ) { // Clear status flags I2C0_S = I2C_S_IICIF | I2C_S_ARBL; // Wait...till the master dies while ( I2C0_S & I2C_S_BUSY ); // Enable I2C interrupt I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX; // Transmit byte I2C0_D = I2C_TxBufferPop(); } } } // Master Mode Receive else { // XXX Do we need to handle 2nd last byte? //I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv // Last byte if ( I2C_TxBuffer.sequencePos <= 1 ) { // Change to Tx mode I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; // Grab last byte I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer ); delayMicroseconds( 1 ); // Should be enough time before issuing the stop I2C0_C1 = I2C_C1_IICEN; // Send STOP } else { // Retrieve data I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer ); } } I2C0_S = I2C_S_IICIF; // Clear interrupt sei(); // Re-enable Interrupts } // ----- Functions ----- inline void I2C_setup() { // Enable I2C internal clock SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0 // External pull-up resistor PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2); PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2); // SCL Frequency Divider // 400kHz -> 120 (0x85) @ 48 MHz F_BUS I2C0_F = 0x85; I2C0_FLT = 4; I2C0_C1 = I2C_C1_IICEN; I2C0_C2 = I2C_C2_HDRS; // High drive select // Enable I2C Interrupt NVIC_ENABLE_IRQ( IRQ_I2C0 ); } void LED_zeroPages( uint8_t startPage, uint8_t numPages, uint8_t startReg, uint8_t endReg ) { // Page Setup uint8_t pageSetup[] = { 0xE8, 0xFD, 0x00 }; // Max length of a page + chip id + reg start uint8_t fullPage[ 0xB4 + 2 ] = { 0 }; // Max size of page fullPage[0] = 0xE8; // Set chip id fullPage[1] = startReg; // Set start reg // Iterate through given pages, zero'ing out the given register regions for ( uint8_t page = startPage; page < startPage + numPages; page++ ) { // Set page pageSetup[2] = page; // Setup page while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 ) delay(1); // Zero out page while ( I2C_Send( fullPage, endReg - startReg + 2, 0 ) == 0 ) delay(1); } } void LED_sendPage( uint8_t *buffer, uint8_t len, uint8_t page ) { // Page Setup uint8_t pageSetup[] = { 0xE8, 0xFD, page }; // Setup page while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 ) delay(1); // Write page to I2C Tx Buffer while ( I2C_Send( buffer, len, 0 ) == 0 ) delay(1); } void LED_writeReg( uint8_t reg, uint8_t val, uint8_t page ) { // Page Setup uint8_t pageSetup[] = { 0xE8, 0xFD, page }; // Reg Write Setup uint8_t writeData[] = { 0xE8, reg, val }; // Setup page while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 ) delay(1); while ( I2C_Send( writeData, sizeof( writeData ), 0 ) == 0 ) delay(1); } // Setup inline void LED_setup() { // Register Scan CLI dictionary CLI_registerDictionary( ledCLIDict, ledCLIDictName ); // Initialize I2C I2C_setup(); // Zero out Frame Registers // This needs to be done before disabling the hardware shutdown (or the leds will do undefined things) LED_zeroPages( 0x0B, 1, 0x00, 0x0C ); // Control Registers // Disable Hardware shutdown of ISSI chip (pull high) GPIOD_PDDR |= (1<<1); PORTD_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); GPIOD_PSOR |= (1<<1); // Clear LED Pages LED_zeroPages( 0x00, 8, 0x00, 0xB4 ); // LED Registers // Enable LEDs based upon mask LED_sendPage( (uint8_t*)LED_ledEnableMask, sizeof( LED_ledEnableMask ), 0 ); // Disable Software shutdown of ISSI chip LED_writeReg( 0x0A, 0x01, 0x0B ); } inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer ) { uint8_t reTurn = 0; // If sendLen is greater than buffer fail right away if ( sendLen > buffer->size ) return 0; // Calculate new tail to determine if buffer has enough space // The first element specifies the expected number of bytes from the slave (+1) // The second element in the new buffer is the length of the buffer sequence (+1) uint16_t newTail = buffer->tail + sendLen + 2; if ( newTail >= buffer->size ) newTail -= buffer->size; if ( I2C_BufferLen( buffer ) < sendLen + 2 ) return 0; /* print("|"); printHex( sendLen + 2 ); print("|"); printHex( *tail ); print("@"); printHex( newTail ); print("@"); */ // If buffer is clean, return 1, otherwise 2 reTurn = buffer->head == buffer->tail ? 1 : 2; // Add to buffer, already know there is enough room (simplifies adding logic) uint8_t bufferHeaderPos = 0; for ( uint16_t c = 0; c < sendLen; c++ ) { // Add data to buffer switch ( bufferHeaderPos ) { case 0: buffer->buffer[ buffer->tail ] = recvLen; bufferHeaderPos++; c--; break; case 1: buffer->buffer[ buffer->tail ] = sendLen; bufferHeaderPos++; c--; break; default: buffer->buffer[ buffer->tail ] = data[ c ]; break; } // Check for wrap-around case if ( buffer->tail + 1 >= buffer->size ) { buffer->tail = 0; } // Normal case else { buffer->tail++; } } return reTurn; } inline uint16_t I2C_BufferLen( I2C_Buffer *buffer ) { // Tail >= Head if ( buffer->tail >= buffer->head ) return buffer->head + buffer->size - buffer->tail; // Head > Tail return buffer->head - buffer->tail; } void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer ) { // Make sure buffer isn't full if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) ) { warn_msg("I2C_BufferPush failed, buffer full: "); printHex( byte ); print( NL ); return; } // Check for wrap-around case if ( buffer->tail + 1 >= buffer->size ) { buffer->tail = 0; } // Normal case else { buffer->tail++; } // Add byte to buffer buffer->buffer[ buffer->tail ] = byte; } uint8_t I2C_TxBufferPop() { // Return 0xFF if no buffer left (do not rely on this) if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size ) { erro_msg("No buffer to pop an entry from... "); printHex( I2C_TxBuffer.head ); print(" "); printHex( I2C_TxBuffer.tail ); print(" "); printHex( I2C_TxBuffer.sequencePos ); print(NL); return 0xFF; } // If there is currently no sequence being sent, the first entry in the RingBuffer is the length if ( I2C_TxBuffer.sequencePos == 0 ) { I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop I2C_RxBuffer.sequencePos = I2C_TxBufferPop(); I2C_TxBuffer.sequencePos = I2C_TxBufferPop(); } uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ]; // Prune head I2C_TxBuffer.head++; // Wrap-around case if ( I2C_TxBuffer.head >= I2C_TxBuffer.size ) I2C_TxBuffer.head = 0; // Decrement buffer sequence (until next stop will be sent) I2C_TxBuffer.sequencePos--; /* dbug_msg("Popping: "); printHex( data ); print(" "); printHex( I2C_TxBuffer.head ); print(" "); printHex( I2C_TxBuffer.tail ); print(" "); printHex( I2C_TxBuffer.sequencePos ); print(NL); */ return data; } uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen ) { // Check head and tail pointers // If full, return 0 // If empty, start up I2C Master Tx // If buffer is non-empty and non-full, just append to the buffer switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) ) { // Not enough buffer space... case 0: /* erro_msg("Not enough Tx buffer space... "); printHex( I2C_TxBuffer.head ); print(":"); printHex( I2C_TxBuffer.tail ); print("+"); printHex( sendLen ); print("|"); printHex( I2C_TxBuffer.size ); print( NL ); */ return 0; // Empty buffer, initialize I2C case 1: // Clear status flags I2C0_S = I2C_S_IICIF | I2C_S_ARBL; // Check to see if we already have control of the bus if ( I2C0_C1 & I2C_C1_MST ) { // Already the master (ah yeah), send a repeated start I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX; } // Otherwise, seize control else { // Wait...till the master dies while ( I2C0_S & I2C_S_BUSY ); // Now we're the master (ah yisss), get ready to send stuffs I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; } // Enable I2C interrupt I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX; // Depending on what type of transfer, the first byte is configured for R or W I2C0_D = I2C_TxBufferPop(); return 1; } // Dirty buffer, I2C already initialized return 2; } // LED State processing loop inline uint8_t LED_scan() { // I2C Busy // S & I2C_S_BUSY //I2C_S_BUSY return 0; } // ----- CLI Command Functions ----- void cliFunc_i2cSend( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Buffer used after interpretting the args, will be sent to I2C functions // NOTE: Limited to 8 bytes currently (can be increased if necessary #define i2cSend_BuffLenMax 8 uint8_t buffer[ i2cSend_BuffLenMax ]; uint8_t bufferLen = 0; // No \r\n by default after the command is entered print( NL ); info_msg("Sending: "); // Parse args until a \0 is found while ( bufferLen < i2cSend_BuffLenMax ) { curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // If | is found, end sequence and start new one if ( *arg1Ptr == '|' ) { print("| "); I2C_Send( buffer, bufferLen, 0 ); bufferLen = 0; continue; } // Interpret the argument buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr ); // Print out the arg dPrint( arg1Ptr ); print(" "); } print( NL ); I2C_Send( buffer, bufferLen, 0 ); } void cliFunc_i2cRecv( char* args ) { char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Buffer used after interpretting the args, will be sent to I2C functions // NOTE: Limited to 8 bytes currently (can be increased if necessary #define i2cSend_BuffLenMax 8 uint8_t buffer[ i2cSend_BuffLenMax ]; uint8_t bufferLen = 0; // No \r\n by default after the command is entered print( NL ); info_msg("Sending: "); // Parse args until a \0 is found while ( bufferLen < i2cSend_BuffLenMax ) { curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // If | is found, end sequence and start new one if ( *arg1Ptr == '|' ) { print("| "); I2C_Send( buffer, bufferLen, 0 ); bufferLen = 0; continue; } // Interpret the argument buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr ); // Print out the arg dPrint( arg1Ptr ); print(" "); } print( NL ); I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip } void cliFunc_ledTest( char* args ) { print( NL ); // No \r\n by default after the command is entered LED_sendPage( (uint8_t*)examplePage, sizeof( examplePage ), 0 ); } void cliFunc_ledZero( char* args ) { print( NL ); // No \r\n by default after the command is entered LED_zeroPages( 0x00, 8, 0x24, 0xB4 ); // Only PWMs }