/* Copyright (C) 2014 by Jacob Alexander * * This file is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this file. If not, see . */ // ----- Includes ----- // Compiler Includes #include // Project Includes #include #include #include #include // Keymaps #include "usb_hid.h" #include #include "generatedKeymap.h" // TODO Use actual generated version // Local Includes #include "macro.h" // ----- Function Declarations ----- void cliFunc_capList ( char* args ); void cliFunc_capSelect ( char* args ); void cliFunc_keyHold ( char* args ); void cliFunc_keyPress ( char* args ); void cliFunc_keyRelease( char* args ); void cliFunc_layerList ( char* args ); void cliFunc_layerState( char* args ); void cliFunc_macroDebug( char* args ); void cliFunc_macroList ( char* args ); void cliFunc_macroProc ( char* args ); void cliFunc_macroShow ( char* args ); void cliFunc_macroStep ( char* args ); // ----- Enums ----- // Bit positions are important, passes (correct key) always trump incorrect key votes typedef enum TriggerMacroVote { TriggerMacroVote_Release = 0x8, // Correct key TriggerMacroVote_PassRelease = 0xC, // Correct key (both pass and release) TriggerMacroVote_Pass = 0x4, // Correct key TriggerMacroVote_DoNothing = 0x2, // Incorrect key TriggerMacroVote_Fail = 0x1, // Incorrect key TriggerMacroVote_Invalid = 0x0, // Invalid state } TriggerMacroVote; typedef enum TriggerMacroEval { TriggerMacroEval_DoNothing, TriggerMacroEval_DoResult, TriggerMacroEval_DoResultAndRemove, TriggerMacroEval_Remove, } TriggerMacroEval; typedef enum ResultMacroEval { ResultMacroEval_DoNothing, ResultMacroEval_Remove, } ResultMacroEval; // ----- Variables ----- // Macro Module command dictionary const char macroCLIDictName[] = "Macro Module Commands"; const CLIDictItem macroCLIDict[] = { { "capList", "Prints an indexed list of all non USB keycode capabilities.", cliFunc_capList }, { "capSelect", "Triggers the specified capabilities. First two args are state and stateType." NL "\t\t\033[35mK11\033[0m Keyboard Capability 0x0B", cliFunc_capSelect }, { "keyHold", "Send key-hold events to the macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A", cliFunc_keyHold }, { "keyPress", "Send key-press events to the macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A", cliFunc_keyPress }, { "keyRelease", "Send key-release event to macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A", cliFunc_keyRelease }, { "layerList", "List available layers.", cliFunc_layerList }, { "layerState", "Modify specified indexed layer state ." NL "\t\t\033[35mL2\033[0m Indexed Layer 0x02" NL "\t\t0 Off, 1 Shift, 2 Latch, 4 Lock States", cliFunc_layerState }, { "macroDebug", "Disables/Enables sending USB keycodes to the Output Module and prints U/K codes.", cliFunc_macroDebug }, { "macroList", "List the defined trigger and result macros.", cliFunc_macroList }, { "macroProc", "Pause/Resume macro processing.", cliFunc_macroProc }, { "macroShow", "Show the macro corresponding to the given index." NL "\t\t\033[35mT16\033[0m Indexed Trigger Macro 0x10, \033[35mR12\033[0m Indexed Result Macro 0x0C", cliFunc_macroShow }, { "macroStep", "Do N macro processing steps. Defaults to 1.", cliFunc_macroStep }, { 0, 0, 0 } // Null entry for dictionary end }; // Macro debug flag - If set, clears the USB Buffers after signalling processing completion uint8_t macroDebugMode = 0; // Macro pause flag - If set, the macro module pauses processing, unless unset, or the step counter is non-zero uint8_t macroPauseMode = 0; // Macro step counter - If non-zero, the step counter counts down every time the macro module does one processing loop unsigned int macroStepCounter = 0; // Key Trigger List Buffer TriggerGuide macroTriggerListBuffer[ MaxScanCode ]; uint8_t macroTriggerListBufferSize = 0; // Pending Trigger Macro Index List // * Any trigger macros that need processing from a previous macro processing loop // TODO, figure out a good way to scale this array size without wasting too much memory, but not rejecting macros // Possibly could be calculated by the KLL compiler // XXX It may be possible to calculate the worst case using the KLL compiler unsigned int macroTriggerMacroPendingList[ TriggerMacroNum ] = { 0 }; unsigned int macroTriggerMacroPendingListSize = 0; // Layer Index Stack // * When modifying layer state and the state is non-0x0, the stack must be adjusted unsigned int macroLayerIndexStack[ LayerNum ] = { 0 }; unsigned int macroLayerIndexStackSize = 0; // Pending Result Macro Index List // * Any result macro that needs processing from a previous macro processing loop unsigned int macroResultMacroPendingList[ ResultMacroNum ] = { 0 }; unsigned int macroResultMacroPendingListSize = 0; // ----- Capabilities ----- // Modifies the specified Layer control byte // Argument #1: Layer Index -> unsigned int // Argument #2: Toggle byte -> uint8_t void Macro_layerStateToggle_capability( uint8_t state, uint8_t stateType, uint8_t *args ) { // Display capability name if ( stateType == 0xFF && state == 0xFF ) { print("Macro_layerState(layerIndex,toggleByte)"); return; } // Get layer index from arguments // Cast pointer to uint8_t to unsigned int then access that memory location unsigned int layer = *(unsigned int*)(&args[0]); // Get layer toggle byte uint8_t toggleByte = args[ sizeof(unsigned int) ]; // Is layer in the LayerIndexStack? uint8_t inLayerIndexStack = 0; unsigned int stackItem = 0; while ( stackItem < macroLayerIndexStackSize ) { // Flag if layer is already in the LayerIndexStack if ( macroLayerIndexStack[ stackItem ] == layer ) { inLayerIndexStack = 1; break; } // Increment to next item stackItem++; } // Toggle Layer State Byte if ( LayerIndex[ layer ].state & toggleByte ) { // Unset LayerIndex[ layer ].state &= ~toggleByte; } else { // Set LayerIndex[ layer ].state |= toggleByte; } // If the layer was not in the LayerIndexStack add it if ( !inLayerIndexStack ) { macroLayerIndexStack[ macroLayerIndexStackSize++ ] = layer; } // If the layer is in the LayerIndexStack and the state is 0x00, remove if ( LayerIndex[ layer ].state == 0x00 && inLayerIndexStack ) { // Remove the layer from the LayerIndexStack // Using the already positioned stackItem variable from the loop above while ( stackItem < macroLayerIndexStackSize ) { macroLayerIndexStack[ stackItem ] = macroLayerIndexStack[ stackItem + 1 ]; stackItem++; } // Reduce LayerIndexStack size macroLayerIndexStackSize--; } } // ----- Functions ----- // Looks up the trigger list for the given scan code (from the active layer) // NOTE: Calling function must handle the NULL pointer case unsigned int *Macro_layerLookup( uint8_t scanCode ) { // If no trigger macro is defined at the given layer, fallthrough to the next layer for ( unsigned int layerIndex = 0; layerIndex < macroLayerIndexStackSize; layerIndex++ ) { // Lookup Layer Layer *layer = &LayerIndex[ macroLayerIndexStack[ layerIndex ] ]; // Check if latch has been pressed for this layer // XXX Regardless of whether a key is found, the latch is removed on first lookup uint8_t latch = layer->state & 0x02; if ( latch ) { layer->state &= ~0x02; } // Only use layer, if state is valid // XOR each of the state bits // If only two are enabled, do not use this state if ( (layer->state & 0x01) ^ (latch>>1) ^ ((layer->state & 0x04)>>2) ) { // Lookup layer unsigned int **map = (unsigned int**)layer->triggerMap; // Determine if layer has key defined if ( map != 0 && *map[ scanCode ] != 0 ) return map[ scanCode ]; } } // Do lookup on default layer unsigned int **map = (unsigned int**)LayerIndex[0].triggerMap; // Determine if layer has key defined if ( map == 0 && *map[ scanCode ] == 0 ) { erro_msg("Scan Code has no defined Trigger Macro: "); printHex( scanCode ); return 0; } // Return lookup result return map[ scanCode ]; } // Update the scancode key state // States: // * 0x00 - Off // * 0x01 - Pressed // * 0x02 - Held // * 0x03 - Released // * 0x04 - Unpressed (this is currently ignored) inline void Macro_keyState( uint8_t scanCode, uint8_t state ) { // Only add to macro trigger list if one of three states switch ( state ) { case 0x01: // Pressed case 0x02: // Held case 0x03: // Released macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = scanCode; macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state; macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x00; // Normal key macroTriggerListBufferSize++; break; } } // Update the scancode analog state // States: // * 0x00 - Off // * 0x01 - Released // * 0x02-0xFF - Analog value (low to high) inline void Macro_analogState( uint8_t scanCode, uint8_t state ) { // Only add to macro trigger list if non-off if ( state != 0x00 ) { macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = scanCode; macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state; macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x02; // Analog key macroTriggerListBufferSize++; } } // Update led state // States: // * 0x00 - Off // * 0x01 - On inline void Macro_ledState( uint8_t ledCode, uint8_t state ) { // Only add to macro trigger list if non-off if ( state != 0x00 ) { macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = ledCode; macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state; macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x01; // LED key macroTriggerListBufferSize++; } } // Append result macro to pending list, checking for duplicates // Do nothing if duplicate inline void Macro_appendResultMacroToPendingList( unsigned int resultMacroIndex ) { // Iterate through result macro pending list, making sure this macro hasn't been added yet for ( unsigned int macro = 0; macro < macroResultMacroPendingListSize; macro++ ) { // If duplicate found, do nothing if ( macroResultMacroPendingList[ macro ] == resultMacroIndex ) return; } // No duplicates found, add to pending list macroResultMacroPendingList[ macroResultMacroPendingListSize++ ] = resultMacroIndex; } // Determine if long ResultMacro (more than 1 seqence element) inline uint8_t Macro_isLongResultMacro( ResultMacro *macro ) { // Check the second sequence combo length // If non-zero return 1 (long sequence) // 0 otherwise (short sequence) return macro->guide[ macro->guide[0] * ResultGuideSize( (ResultGuide*)macro->guide ) ] > 0 ? 1 : 0; } // Votes on the given key vs. guide inline TriggerMacroVote Macro_evalTriggerMacroVote( TriggerGuide *key, TriggerGuide *guide ) { // Depending on key type switch ( guide->type ) { // Normal State Type case 0x00: // Depending on the state of the buffered key, make voting decision // Incorrect key if ( guide->scanCode != key->scanCode ) { switch ( key->state ) { // Wrong key, pressed, fail case 0x01: return TriggerMacroVote_Fail; // Wrong key, held or released, do not pass (no effect) case 0x02: case 0x03: return TriggerMacroVote_DoNothing; } } // Correct key else { switch ( key->state ) { // Correct key, pressed, possible passing case 0x01: return TriggerMacroVote_Pass; // Correct key, held, possible passing or release case 0x02: return TriggerMacroVote_PassRelease; // Correct key, released, possible release case 0x03: return TriggerMacroVote_Release; } } break; // LED State Type case 0x01: erro_print("LED State Type - Not implemented..."); break; // Analog State Type case 0x02: erro_print("Analog State Type - Not implemented..."); break; // Invalid State Type default: erro_print("Invalid State Type. This is a bug."); break; } // XXX Shouldn't reach here return TriggerMacroVote_Invalid; } // Evaluate/Update TriggerMacro inline TriggerMacroEval Macro_evalTriggerMacro( unsigned int triggerMacroIndex ) { // Lookup TriggerMacro TriggerMacro *macro = &TriggerMacroList[ triggerMacroIndex ]; // Check if macro has finished and should be incremented sequence elements if ( macro->state == TriggerMacro_Release ) { macro->state = TriggerMacro_Waiting; macro->pos = macro->pos + macro->guide[ macro->pos ] * TriggerGuideSize; } // Current Macro position unsigned int pos = macro->pos; // Length of the combo being processed uint8_t comboLength = macro->guide[ pos ]; // If no combo items are left, remove the TriggerMacro from the pending list if ( comboLength == 0 ) { return TriggerMacroEval_Remove; } // Iterate through the key buffer, comparing to each key in the combo // If any of the pressed keys do not match, fail the macro // // The macro is waiting for input when in the TriggerMacro_Waiting state // Once all keys have been pressed/held (only those keys), entered TriggerMacro_Press state (passing) // Transition to the next combo (if it exists) when a single key is released (TriggerMacro_Release state) // On scan after position increment, change to TriggerMacro_Waiting state // TODO Add support for system LED states (NumLock, CapsLock, etc.) // TODO Add support for analog key states // TODO Add support for 0x00 Key state (not pressing a key, not all that useful in general) // TODO Add support for Press/Hold/Release differentiation when evaluating (not sure if useful) TriggerMacroVote overallVote = TriggerMacroVote_Invalid; for ( uint8_t key = 0; key < macroTriggerListBufferSize; key++ ) { // Lookup key information TriggerGuide *keyInfo = ¯oTriggerListBuffer[ key ]; // Iterate through the items in the combo, voting the on the key state TriggerMacroVote vote = TriggerMacroVote_Invalid; for ( uint8_t comboItem = pos + 1; comboItem < pos + comboLength + 1; comboItem += TriggerGuideSize ) { // Assign TriggerGuide element (key type, state and scancode) TriggerGuide *guide = (TriggerGuide*)(¯o->guide[ comboItem ]); // If vote is a pass (>= 0x08, no more keys in the combo need to be looked at) // Also mask all of the non-passing votes vote |= Macro_evalTriggerMacroVote( keyInfo, guide ); if ( vote >= TriggerMacroVote_Pass ) { vote &= TriggerMacroVote_Release | TriggerMacroVote_PassRelease | TriggerMacroVote_Pass; break; } } // After voting, append to overall vote overallVote |= vote; } // Decide new state of macro after voting // Fail macro, remove from pending list if ( overallVote & TriggerMacroVote_Fail ) { return TriggerMacroEval_Remove; } // Do nothing, incorrect key is being held or released else if ( overallVote & TriggerMacroVote_DoNothing ) { // Just doing nothing :) } // If passing and in Waiting state, set macro state to Press else if ( overallVote & TriggerMacroVote_Pass && macro->state == TriggerMacro_Waiting ) { macro->state = TriggerMacro_Press; // If in press state, and this is the final combo, send request for ResultMacro // Check to see if the result macro only has a single element // If this result macro has more than 1 key, only send once // TODO Add option to have macro repeat rate if ( macro->guide[ pos + comboLength ] == 0 ) { // Long Macro, only send once (more than 1 sequence item) // Short Macro (only 1 sequence item) return Macro_isLongResultMacro( &ResultMacroList[ macro->result ] ) ? TriggerMacroEval_DoResult : TriggerMacroEval_DoResultAndRemove; } } // If ready for transition and in Press state, set to Waiting and increment combo position // Position is incremented (and possibly remove the macro from the pending list) on the next iteration else if ( overallVote & TriggerMacroVote_Release && macro->state == TriggerMacro_Press ) { macro->state = TriggerMacro_Release; } return TriggerMacroEval_DoNothing; } // Evaluate/Update ResultMacro inline ResultMacroEval Macro_evalResultMacro( unsigned int resultMacroIndex ) { // Lookup ResultMacro ResultMacro *macro = &ResultMacroList[ resultMacroIndex ]; // Current Macro position unsigned int pos = macro->pos; // Length of combo being processed uint8_t comboLength = macro->guide[ pos ]; // If no combo items are left, remove the ResultMacro from the pending list if ( comboLength == 0 ) { return ResultMacroEval_Remove; } // Function Counter, used to keep track of the combo items processed unsigned int funcCount = 0; // Combo Item Position within the guide unsigned int comboItem = pos + 1; // Iterate through the Result Combo while ( funcCount < comboLength ) { // Assign TriggerGuide element (key type, state and scancode) ResultGuide *guide = (ResultGuide*)(¯o->guide[ pos ]); // Do lookup on capability function void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ guide->index ].func); // Call capability capability( macro->state, macro->stateType, &guide->args ); // Increment counters funcCount++; comboItem += ResultGuideSize( (ResultGuide*)(¯o->guide[ comboItem ]) ); } // Move to next item in the sequence macro->pos = comboItem; // If the ResultMacro is finished, it will be removed on the next iteration return ResultMacroEval_DoNothing; } // Update pending trigger list void Macro_updateTriggerMacroPendingList() { // Iterate over the macroTriggerListBuffer to add any new Trigger Macros to the pending list for ( uint8_t key = 0; key < macroTriggerListBufferSize; key++ ) { // Lookup Trigger List unsigned int *triggerList = Macro_layerLookup( macroTriggerListBuffer[ key ].scanCode ); // Number of Triggers in list unsigned int triggerListSize = triggerList[0]; // Iterate over triggerList to see if any TriggerMacros need to be added // First item is the number of items in the TriggerList for ( unsigned int macro = 1; macro < triggerListSize + 1; macro++ ) { // Lookup trigger macro index unsigned int triggerMacroIndex = triggerList[ macro ]; // Iterate over macroTriggerMacroPendingList to see if any macro in the scancode's // triggerList needs to be added unsigned int pending = 0; for ( ; pending < macroTriggerMacroPendingListSize; pending++ ) { // Stop scanning if the trigger macro index is found in the pending list if ( macroTriggerMacroPendingList[ pending ] == triggerMacroIndex ) break; } // If the triggerMacroIndex (macro) was not found in the macroTriggerMacroPendingList // Add it to the list if ( pending == macroTriggerMacroPendingListSize ) { macroTriggerMacroPendingList[ macroTriggerMacroPendingListSize++ ] = triggerMacroIndex; } } } } // Macro Procesing Loop // Called once per USB buffer send inline void Macro_process() { // Only do one round of macro processing between Output Module timer sends if ( USBKeys_Sent != 0 ) return; // If the pause flag is set, only process if the step counter is non-zero if ( macroPauseMode ) { if ( macroStepCounter == 0 ) return; // Proceed, decrementing the step counter macroStepCounter--; dbug_print("Macro Step"); } // Update pending trigger list, before processing TriggerMacros Macro_updateTriggerMacroPendingList(); // Tail pointer for macroTriggerMacroPendingList // Macros must be explicitly re-added unsigned int macroTriggerMacroPendingListTail = 0; // Iterate through the pending TriggerMacros, processing each of them for ( unsigned int macro = 0; macro < macroTriggerMacroPendingListSize; macro++ ) { switch ( Macro_evalTriggerMacro( macroTriggerMacroPendingList[ macro ] ) ) { // Trigger Result Macro (purposely falling through) case TriggerMacroEval_DoResult: // Append ResultMacro to PendingList Macro_appendResultMacroToPendingList( TriggerMacroList[ macroTriggerMacroPendingList[ macro ] ].result ); // Otherwise, just re-add default: macroTriggerMacroPendingList[ macroTriggerMacroPendingListTail++ ] = macroTriggerMacroPendingList[ macro ]; break; // Trigger Result Macro and Remove (purposely falling through) case TriggerMacroEval_DoResultAndRemove: // Append ResultMacro to PendingList Macro_appendResultMacroToPendingList( TriggerMacroList[ macroTriggerMacroPendingList[ macro ] ].result ); // Remove Macro from Pending List, nothing to do, removing by default case TriggerMacroEval_Remove: break; } } // Update the macroTriggerMacroPendingListSize with the tail pointer macroTriggerMacroPendingListSize = macroTriggerMacroPendingListTail; // Tail pointer for macroResultMacroPendingList // Macros must be explicitly re-added unsigned int macroResultMacroPendingListTail = 0; // Iterate through the pending ResultMacros, processing each of them for ( unsigned int macro = 0; macro < macroResultMacroPendingListSize; macro++ ) { switch ( Macro_evalResultMacro( macroResultMacroPendingList[ macro ] ) ) { // Re-add macros to pending list case ResultMacroEval_DoNothing: default: macroResultMacroPendingList[ macroResultMacroPendingListTail++ ] = macroResultMacroPendingList[ macro ]; break; // Remove Macro from Pending List, nothing to do, removing by default case ResultMacroEval_Remove: break; } } // Update the macroResultMacroPendingListSize with the tail pointer macroResultMacroPendingListSize = macroResultMacroPendingListTail; // Signal buffer that we've used it Scan_finishedWithMacro( macroTriggerListBufferSize ); // Reset TriggerList buffer macroTriggerListBufferSize = 0; // If Macro debug mode is set, clear the USB Buffer if ( macroDebugMode ) { USBKeys_Modifiers = 0; USBKeys_Sent = 0; } } inline void Macro_setup() { // Register Macro CLI dictionary CLI_registerDictionary( macroCLIDict, macroCLIDictName ); // Disable Macro debug mode macroDebugMode = 0; // Disable Macro pause flag macroPauseMode = 0; // Set Macro step counter to zero macroStepCounter = 0; // Make sure macro trigger buffer is empty macroTriggerListBufferSize = 0; // Initialize TriggerMacro states for ( unsigned int macro = 0; macro < TriggerMacroNum; macro++ ) { TriggerMacroList[ macro ].pos = 0; TriggerMacroList[ macro ].state = TriggerMacro_Waiting; } // Initialize ResultMacro states for ( unsigned int macro = 0; macro < ResultMacroNum; macro++ ) { ResultMacroList[ macro ].pos = 0; ResultMacroList[ macro ].state = 0; ResultMacroList[ macro ].stateType = 0; } } // ----- CLI Command Functions ----- void cliFunc_capList( char* args ) { print( NL ); info_msg("Capabilities List"); printHex( CapabilitiesNum ); // Iterate through all of the capabilities and display them for ( unsigned int cap = 0; cap < CapabilitiesNum; cap++ ) { print( NL "\t" ); printHex( cap ); print(" - "); // Display/Lookup Capability Name (utilize debug mode of capability) void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ cap ].func); capability( 0xFF, 0xFF, 0 ); } } void cliFunc_capSelect( char* args ) { // Parse code from argument char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Total number of args to scan (must do a lookup if a keyboard capability is selected) unsigned int totalArgs = 2; // Always at least two args unsigned int cap = 0; // Arguments used for keyboard capability function unsigned int argSetCount = 0; uint8_t *argSet = (uint8_t*)args; // Process all args for ( unsigned int c = 0; argSetCount < totalArgs; c++ ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found // Extra arguments are ignored if ( *arg1Ptr == '\0' ) break; // For the first argument, choose the capability if ( c == 0 ) switch ( arg1Ptr[0] ) { // Keyboard Capability case 'K': // Determine capability index cap = decToInt( &arg1Ptr[1] ); // Lookup the number of args totalArgs += CapabilitiesList[ cap ].argCount; continue; } // Because allocating memory isn't doable, and the argument count is arbitrary // The argument pointer is repurposed as the argument list (much smaller anyways) argSet[ argSetCount++ ] = (uint8_t)decToInt( arg1Ptr ); // Once all the arguments are prepared, call the keyboard capability function if ( argSetCount == totalArgs ) { // Indicate that the capability was called print( NL ); info_msg("K"); printInt8( cap ); print(" - "); printHex( argSet[0] ); print(" - "); printHex( argSet[1] ); print(" - "); printHex( argSet[2] ); print( "..." NL ); void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ cap ].func); capability( argSet[0], argSet[1], &argSet[2] ); } } } void cliFunc_keyHold( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Ignore non-Scancode numbers switch ( arg1Ptr[0] ) { // Scancode case 'S': Macro_keyState( (uint8_t)decToInt( &arg1Ptr[1] ), 0x02 ); // Hold scancode break; } } } void cliFunc_keyPress( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Ignore non-Scancode numbers switch ( arg1Ptr[0] ) { // Scancode case 'S': Macro_keyState( (uint8_t)decToInt( &arg1Ptr[1] ), 0x01 ); // Press scancode break; } } } void cliFunc_keyRelease( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Ignore non-Scancode numbers switch ( arg1Ptr[0] ) { // Scancode case 'S': Macro_keyState( (uint8_t)decToInt( &arg1Ptr[1] ), 0x03 ); // Release scancode break; } } } void cliFunc_layerList( char* args ) { print( NL ); info_msg("Layer List"); // Iterate through all of the layers and display them for ( unsigned int layer = 0; layer < LayerNum; layer++ ) { print( NL "\t" ); printHex( layer ); print(" - "); // Display layer name dPrint( (char*)LayerIndex[ layer ].name ); // Default map if ( layer == 0 ) print(" \033[1m(default)\033[0m"); // Layer State print( NL "\t\t Layer State: " ); printHex( LayerIndex[ layer ].state ); // Max Index print(" Max Index: "); printHex( LayerIndex[ layer ].max ); } } void cliFunc_layerState( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; uint8_t arg1 = 0; uint8_t arg2 = 0; // Process first two args for ( uint8_t c = 0; c < 2; c++ ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; switch ( c ) { // First argument (e.g. L1) case 0: if ( arg1Ptr[0] != 'L' ) return; arg1 = (uint8_t)decToInt( &arg1Ptr[1] ); break; // Second argument (e.g. 4) case 1: arg2 = (uint8_t)decToInt( arg1Ptr ); // Display operation (to indicate that it worked) print( NL ); info_msg("Setting Layer L"); printInt8( arg1 ); print(" to - "); printHex( arg2 ); // Set the layer state LayerIndex[ arg1 ].state = arg2; break; } } } void cliFunc_macroDebug( char* args ) { // Toggle macro debug mode macroDebugMode = macroDebugMode ? 0 : 1; print( NL ); info_msg("Macro Debug Mode: "); printInt8( macroDebugMode ); } void cliFunc_macroList( char* args ) { // Show pending key events print( NL ); info_msg("Pending Key Events: "); printInt16( (uint16_t)macroTriggerListBufferSize ); print(" : "); for ( uint8_t key = 0; key < macroTriggerListBufferSize; key++ ) { printHex( macroTriggerListBuffer[ key ].scanCode ); print(" "); } // Show pending trigger macros print( NL ); info_msg("Pending Trigger Macros: "); printInt16( (uint16_t)macroTriggerMacroPendingListSize ); print(" : "); for ( unsigned int macro = 0; macro < macroTriggerMacroPendingListSize; macro++ ) { printHex( macroTriggerMacroPendingList[ macro ] ); print(" "); } // Show pending result macros print( NL ); info_msg("Pending Result Macros: "); printInt16( (uint16_t)macroResultMacroPendingListSize ); print(" : "); for ( unsigned int macro = 0; macro < macroResultMacroPendingListSize; macro++ ) { printHex( macroResultMacroPendingList[ macro ] ); print(" "); } // Show available trigger macro indices print( NL ); info_msg("Trigger Macros Range: T0 -> T"); printInt16( (uint16_t)TriggerMacroNum - 1 ); // Hopefully large enough :P (can't assume 32-bit) // Show available result macro indices print( NL ); info_msg("Result Macros Range: R0 -> R"); printInt16( (uint16_t)ResultMacroNum - 1 ); // Hopefully large enough :P (can't assume 32-bit) // Show Trigger to Result Macro Links print( NL ); info_msg("Trigger : Result Macro Pairs"); for ( unsigned int macro = 0; macro < TriggerMacroNum; macro++ ) { print( NL ); print("\tT"); printInt16( (uint16_t)macro ); // Hopefully large enough :P (can't assume 32-bit) print(" : R"); printInt16( (uint16_t)TriggerMacroList[ macro ].result ); // Hopefully large enough :P (can't assume 32-bit) } } void cliFunc_macroProc( char* args ) { // Toggle macro pause mode macroPauseMode = macroPauseMode ? 0 : 1; print( NL ); info_msg("Macro Processing Mode: "); printInt8( macroPauseMode ); } void macroDebugShowTrigger( unsigned int index ) { // Only proceed if the macro exists if ( index >= TriggerMacroNum ) return; // Trigger Macro Show TriggerMacro *macro = &TriggerMacroList[ index ]; print( NL ); info_msg("Trigger Macro Index: "); printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit) print( NL ); // Read the comboLength for combo in the sequence (sequence of combos) unsigned int pos = 0; uint8_t comboLength = macro->guide[ pos ]; // Iterate through and interpret the guide while ( comboLength != 0 ) { // Initial position of the combo unsigned int comboPos = ++pos; // Iterate through the combo while ( pos < comboLength * TriggerGuideSize + comboPos ) { // Assign TriggerGuide element (key type, state and scancode) TriggerGuide *guide = (TriggerGuide*)(¯o->guide[ pos ]); // Display guide information about trigger key printHex( guide->scanCode ); print("|"); printHex( guide->type ); print("|"); printHex( guide->state ); // Increment position pos += TriggerGuideSize; // Only show combo separator if there are combos left in the sequence element if ( pos < comboLength * TriggerGuideSize + comboPos ) print("+"); } // Read the next comboLength comboLength = macro->guide[ pos ]; // Only show sequence separator if there is another combo to process if ( comboLength != 0 ) print(";"); } // Display current position print( NL "Position: " ); printInt16( (uint16_t)macro->pos ); // Hopefully large enough :P (can't assume 32-bit) // Display result macro index print( NL "Result Macro Index: " ); printInt16( (uint16_t)macro->result ); // Hopefully large enough :P (can't assume 32-bit) } void macroDebugShowResult( unsigned int index ) { // Only proceed if the macro exists if ( index >= ResultMacroNum ) return; // Trigger Macro Show ResultMacro *macro = &ResultMacroList[ index ]; print( NL ); info_msg("Result Macro Index: "); printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit) print( NL ); // Read the comboLength for combo in the sequence (sequence of combos) unsigned int pos = 0; uint8_t comboLength = macro->guide[ pos++ ]; // Iterate through and interpret the guide while ( comboLength != 0 ) { // Function Counter, used to keep track of the combos processed unsigned int funcCount = 0; // Iterate through the combo while ( funcCount < comboLength ) { // Assign TriggerGuide element (key type, state and scancode) ResultGuide *guide = (ResultGuide*)(¯o->guide[ pos ]); // Display Function Index printHex( guide->index ); print("|"); // Display Function Ptr Address printHex( (unsigned int)CapabilitiesList[ guide->index ].func ); print("|"); // Display/Lookup Capability Name (utilize debug mode of capability) void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ guide->index ].func); capability( 0xFF, 0xFF, 0 ); // Display Argument(s) print("("); for ( unsigned int arg = 0; arg < CapabilitiesList[ guide->index ].argCount; arg++ ) { // Arguments are only 8 bit values printHex( (&guide->args)[ arg ] ); // Only show arg separator if there are args left if ( arg + 1 < CapabilitiesList[ guide->index ].argCount ) print(","); } print(")"); // Increment position pos += ResultGuideSize( guide ); // Increment function count funcCount++; // Only show combo separator if there are combos left in the sequence element if ( funcCount < comboLength ) print("+"); } // Read the next comboLength comboLength = macro->guide[ pos++ ]; // Only show sequence separator if there is another combo to process if ( comboLength != 0 ) print(";"); } // Display current position print( NL "Position: " ); printInt16( (uint16_t)macro->pos ); // Hopefully large enough :P (can't assume 32-bit) // Display final trigger state/type print( NL "Final Trigger State (State/Type): " ); printHex( macro->state ); print("/"); printHex( macro->stateType ); } void cliFunc_macroShow( char* args ) { // Parse codes from arguments char* curArgs; char* arg1Ptr; char* arg2Ptr = args; // Process all args for ( ;; ) { curArgs = arg2Ptr; CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); // Stop processing args if no more are found if ( *arg1Ptr == '\0' ) break; // Ignore invalid codes switch ( arg1Ptr[0] ) { // Indexed Trigger Macro case 'T': macroDebugShowTrigger( decToInt( &arg1Ptr[1] ) ); break; // Indexed Result Macro case 'R': macroDebugShowResult( decToInt( &arg1Ptr[1] ) ); break; } } } void cliFunc_macroStep( char* args ) { // Parse number from argument // NOTE: Only first argument is used char* arg1Ptr; char* arg2Ptr; CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr ); // Default to 1, if no argument given unsigned int count = (unsigned int)decToInt( arg1Ptr ); if ( count == 0 ) count = 1; // Set the macro step counter, negative int's are cast to uint macroStepCounter = count; }