Arşivlenmiş
1
0
Bu depo arşivlendi. Dosyaları görüntüleyebilir ve klonlayabilirsiniz ama işleme gönderemez veya konu veya değişiklik isteği açamazsınız.
controller/Output/uartOut/arm/uart_serial.c
Jacob Alexander 9c52fb32fa Fixing default ErgoDox layout and adding FlashMode button
- Adds proper flashMode support for all keyboards and microcontrollers (usb and serial)
- flashModeEnabled must be set to 1 otherwise it will only show an error
  * This is on purpose (somewhat dangerous feature as it allows remote flashing)
- Capability cleanup
2015-08-21 19:43:45 -07:00

375 satır
9.7 KiB
C

/* Copyright (C) 2014-2015 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// ----- Includes -----
// Compiler Includes
#include <string.h> // For memcpy
// Project Includes
#include <Lib/OutputLib.h>
#include <Lib/Interrupts.h>
#include <print.h>
#include <kll_defs.h>
// Local Includes
#include "uart_serial.h"
// ----- Defines -----
// UART Configuration
#if defined(_mk20dx128_) || defined(_mk20dx128vlf5_) || defined(_mk20dx256_) // UART0 Debug
#define UART_BDH UART0_BDH
#define UART_BDL UART0_BDL
#define UART_C1 UART0_C1
#define UART_C2 UART0_C2
#define UART_C3 UART0_C3
#define UART_C4 UART0_C4
#define UART_CFIFO UART0_CFIFO
#define UART_D UART0_D
#define UART_PFIFO UART0_PFIFO
#define UART_RCFIFO UART0_RCFIFO
#define UART_RWFIFO UART0_RWFIFO
#define UART_S1 UART0_S1
#define UART_S2 UART0_S2
#define UART_SFIFO UART0_SFIFO
#define UART_TWFIFO UART0_TWFIFO
#define SIM_SCGC4_UART SIM_SCGC4_UART0
#define IRQ_UART_STATUS IRQ_UART0_STATUS
#elif defined(_mk20dx256vlh7_) // UART2 Debug
#define UART_BDH UART2_BDH
#define UART_BDL UART2_BDL
#define UART_C1 UART2_C1
#define UART_C2 UART2_C2
#define UART_C3 UART2_C3
#define UART_C4 UART2_C4
#define UART_CFIFO UART2_CFIFO
#define UART_D UART2_D
#define UART_PFIFO UART2_PFIFO
#define UART_RCFIFO UART2_RCFIFO
#define UART_RWFIFO UART2_RWFIFO
#define UART_S1 UART2_S1
#define UART_S2 UART2_S2
#define UART_SFIFO UART2_SFIFO
#define UART_TWFIFO UART2_TWFIFO
#define SIM_SCGC4_UART SIM_SCGC4_UART2
#define IRQ_UART_STATUS IRQ_UART2_STATUS
#endif
// ----- Variables -----
#define uart_buffer_size 128 // 128 byte buffer
volatile uint8_t uart_buffer_head = 0;
volatile uint8_t uart_buffer_tail = 0;
volatile uint8_t uart_buffer_items = 0;
volatile uint8_t uart_buffer[uart_buffer_size];
volatile uint8_t uart_configured = 0;
// ----- Interrupt Functions -----
#if defined(_mk20dx128_) || defined(_mk20dx128vlf5_) || defined(_mk20dx256_) // UART0 Debug
void uart0_status_isr()
#elif defined(_mk20dx256vlh7_) // UART2 Debug
void uart2_status_isr()
#endif
{
cli(); // Disable Interrupts
// UART0_S1 must be read for the interrupt to be cleared
if ( UART_S1 & ( UART_S1_RDRF | UART_S1_IDLE ) )
{
uint8_t available = UART_RCFIFO;
// If there was actually nothing
if ( available == 0 )
{
// Cleanup
available = UART_D;
UART_CFIFO = UART_CFIFO_RXFLUSH;
goto done;
}
// Read UART0 into buffer until FIFO is empty
while ( available-- > 0 )
{
uart_buffer[uart_buffer_tail++] = UART_D;
uart_buffer_items++;
// Wrap-around of tail pointer
if ( uart_buffer_tail >= uart_buffer_size )
{
uart_buffer_tail = 0;
}
// Make sure the head pointer also moves if circular buffer is overwritten
if ( uart_buffer_head == uart_buffer_tail )
{
uart_buffer_head++;
}
// Wrap-around of head pointer
if ( uart_buffer_head >= uart_buffer_size )
{
uart_buffer_head = 0;
}
}
}
done:
sei(); // Re-enable Interrupts
}
// ----- Functions -----
void uart_serial_setup()
{
// Indication that the UART is not ready yet
uart_configured = 0;
// Setup the the UART interface for keyboard data input
SIM_SCGC4 |= SIM_SCGC4_UART; // Disable clock gating
// MCHCK / Kiibohd-dfu
#if defined(_mk20dx128vlf5_)
// Pin Setup for UART0
PORTA_PCR1 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); // RX Pin
PORTA_PCR2 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(2); // TX Pin
// Kiibohd-dfu
#elif defined(_mk20dx256vlh7_)
// Pin Setup for UART2
PORTD_PCR2 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); // RX Pin
PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); // TX Pin
// Teensy
#else
// Pin Setup for UART0
PORTB_PCR16 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); // RX Pin
PORTB_PCR17 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); // TX Pin
#endif
#if defined(_mk20dx128_) || defined(_mk20dx128vlf5_) || defined(_mk20dx256_) // UART0 Debug
// Setup baud rate - 115200 Baud
// 48 MHz / ( 16 * Baud ) = BDH/L
// Baud: 115200 -> 48 MHz / ( 16 * 115200 ) = 26.0416667
// Thus baud setting = 26
// NOTE: If finer baud adjustment is needed see UARTx_C4 -> BRFA in the datasheet
uint16_t baud = 26; // Max setting of 8191
UART_BDH = (uint8_t)(baud >> 8);
UART_BDL = (uint8_t)baud;
UART_C4 = 0x02;
#elif defined(_mk20dx256vlh7_) // UART2 Debug
// Setup baud rate - 115200 Baud
// Uses Bus Clock
// 36 MHz / ( 16 * Baud ) = BDH/L
// Baud: 115200 -> 36 MHz / ( 16 * 115200 ) = 19.53125
// Thus baud setting = 19
// NOTE: If finer baud adjustment is needed see UARTx_C4 -> BRFA in the datasheet
uint16_t baud = 19; // Max setting of 8191
UART_BDH = (uint8_t)(baud >> 8);
UART_BDL = (uint8_t)baud;
UART_C4 = 0x11;
#endif
// 8 bit, No Parity, Idle Character bit after stop
UART_C1 = UART_C1_ILT;
// Interrupt notification watermarks
#if defined(_mk20dx128_) || defined(_mk20dx128vlf5_) || defined(_mk20dx256_) // UART0 Debug
UART_TWFIFO = 2;
UART_RWFIFO = 4;
#elif defined(_mk20dx256vlh7_) // UART2 Debug
// UART2 has a single byte FIFO
UART_TWFIFO = 1;
UART_RWFIFO = 1;
#endif
// TX FIFO Enabled, TX FIFO Size 1 (Max 8 datawords), RX FIFO Enabled, RX FIFO Size 1 (Max 8 datawords)
// TX/RX FIFO Size:
// 0x0 - 1 dataword
// 0x1 - 4 dataword
// 0x2 - 8 dataword
UART_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
// Reciever Inversion Disabled, LSBF
// UART_S2_RXINV UART_S2_MSBF
UART_S2 |= 0x00;
// Transmit Inversion Disabled
// UART_C3_TXINV
UART_C3 |= 0x00;
// TX Enabled, RX Enabled, RX Interrupt Enabled, Generate idles
// UART_C2_TE UART_C2_RE UART_C2_RIE UART_C2_ILIE
UART_C2 = UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE;
// Add interrupt to the vector table
NVIC_ENABLE_IRQ( IRQ_UART_STATUS );
// UART is now ready to use
uart_configured = 1;
}
// Get the next character, or -1 if nothing received
int uart_serial_getchar()
{
if ( !uart_configured )
return -1;
unsigned int value = -1;
// Check to see if the FIFO has characters
if ( uart_buffer_items > 0 )
{
value = uart_buffer[uart_buffer_head++];
uart_buffer_items--;
// Wrap-around of head pointer
if ( uart_buffer_head >= uart_buffer_size )
{
uart_buffer_head = 0;
}
}
return value;
}
// Number of bytes available in the receive buffer
int uart_serial_available()
{
return uart_buffer_items;
}
// Discard any buffered input
void uart_serial_flush_input()
{
uart_buffer_head = 0;
uart_buffer_tail = 0;
uart_buffer_items = 0;
}
// Transmit a character. 0 returned on success, -1 on error
int uart_serial_putchar( uint8_t c )
{
if ( !uart_configured )
return -1;
while ( !( UART_SFIFO & UART_SFIFO_TXEMPT ) ); // Wait till there is room to send
UART_D = c;
return 0;
}
int uart_serial_write( const void *buffer, uint32_t size )
{
if ( !uart_configured )
return -1;
const uint8_t *data = (const uint8_t *)buffer;
uint32_t position = 0;
// While buffer is not empty and transmit buffer is
while ( position < size )
{
while ( !( UART_SFIFO & UART_SFIFO_TXEMPT ) ); // Wait till there is room to send
UART_D = data[position++];
}
return 0;
}
void uart_serial_flush_output()
{
// Delay until buffer has been sent
while ( !( UART_SFIFO & UART_SFIFO_TXEMPT ) ); // Wait till there is room to send
}
void uart_device_reload()
{
if ( flashModeEnabled_define == 0 )
{
print( NL );
warn_print("flashModeEnabled not set, cancelling firmware reload...");
info_msg("Set flashModeEnabled to 1 in your kll configuration.");
return;
}
// MCHCK
#if defined(_mk20dx128vlf5_)
// MCHCK Kiibohd Variant
// Check to see if PTA3 (has a pull-up) is connected to GND (usually via jumper)
// Only allow reload if the jumper is present (security)
GPIOA_PDDR &= ~(1<<3); // Input
PORTA_PCR3 = PORT_PCR_PFE | PORT_PCR_MUX(1); // Internal pull-up
// Check for jumper
if ( GPIOA_PDIR & (1<<3) && flashModeEnabled_define != 0 )
{
print( NL );
warn_print("Security jumper not present, cancelling firmware reload...");
info_msg("Replace jumper on middle 2 pins, or manually press the firmware reload button.");
}
else
{
// Copies variable into the VBAT register, must be identical to the variable in the bootloader to jump to the bootloader flash mode
for ( int pos = 0; pos < sizeof(sys_reset_to_loader_magic); pos++ )
(&VBAT)[ pos ] = sys_reset_to_loader_magic[ pos ];
SOFTWARE_RESET();
}
// Kiibohd mk20dx256vlh7
#elif defined(_mk20dx256vlh7_)
// Copies variable into the VBAT register, must be identical to the variable in the bootloader to jump to the bootloader flash mode
for ( int pos = 0; pos < sizeof(sys_reset_to_loader_magic); pos++ )
(&VBAT)[ pos ] = sys_reset_to_loader_magic[ pos ];
SOFTWARE_RESET();
// Teensy 3.0 and 3.1
#else
asm volatile("bkpt");
#endif
}