Kiibohd Controller
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.

scan_loop.c 25KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035
  1. /* Copyright (C) 2011-2013 by Joseph Makuch
  2. * Additions by Jacob Alexander (2013-2014)
  3. *
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 3.0 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with this library. If not, see <http://www.gnu.org/licenses/>.
  16. */
  17. // ----- Includes -----
  18. // Compiler Includes
  19. #include <Lib/ScanLib.h>
  20. // Project Includes
  21. #include <cli.h>
  22. #include <led.h>
  23. #include <macro.h>
  24. #include <print.h>
  25. // Local Includes
  26. #include "scan_loop.h"
  27. // ----- Defines -----
  28. // TODO dfj defines...needs commenting and maybe some cleaning...
  29. #define MAX_PRESS_DELTA_MV 450 // As measured from the Teensy ADC pin
  30. #define THRESHOLD_MV (MAX_PRESS_DELTA_MV >> 1)
  31. //(2560 / (0x3ff/2)) ~= 5
  32. #define MV_PER_ADC 5
  33. #define THRESHOLD (THRESHOLD_MV / MV_PER_ADC)
  34. #define STROBE_SETTLE 1
  35. #define ADHSM 7
  36. // Right justification of ADLAR
  37. #define ADLAR_BITS 0
  38. // full muxmask
  39. #define FULL_MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2) | (1 << MUX3) | (1 << MUX4))
  40. // F0-f7 pins only muxmask.
  41. #define MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2))
  42. // Strobe Masks
  43. #define D_MASK (0xff)
  44. #define E_MASK (0x03)
  45. #define C_MASK (0xff)
  46. // set ADC clock prescale
  47. #define PRESCALE_MASK ((1 << ADPS0) | (1 << ADPS1) | (1 << ADPS2))
  48. #define PRESCALE_SHIFT (ADPS0)
  49. #define PRESCALE 3
  50. // Max number of strobes supported by the hardware
  51. // Strobe lines are detected at startup, extra strobes cause anomalies like phantom keypresses
  52. #define MAX_STROBES 18
  53. // Number of consecutive samples required to pass debounce
  54. #define DEBOUNCE_THRESHOLD 5
  55. // Scans to remain idle after all keys were release before starting averaging
  56. // XXX So this makes the initial keypresses fast,
  57. // but it's still possible to lose a keypress if you press at the wrong time -HaaTa
  58. #define KEY_IDLE_SCANS 30000
  59. // Total number of muxes/sense lines available
  60. #define MUXES_COUNT 8
  61. #define MUXES_COUNT_XSHIFT 3
  62. // Number of warm-up loops before starting to scan keys
  63. #define WARMUP_LOOPS ( 1024 )
  64. #define WARMUP_STOP (WARMUP_LOOPS - 1)
  65. #define SAMPLE_CONTROL 3
  66. #define KEY_COUNT ((MAX_STROBES) * (MUXES_COUNT))
  67. #define RECOVERY_CONTROL 1
  68. #define RECOVERY_SOURCE 0
  69. #define RECOVERY_SINK 2
  70. #define ON 1
  71. #define OFF 0
  72. // mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
  73. #define MUX_MIX 2
  74. #define IDLE_COUNT_SHIFT 8
  75. // av = (av << shift) - av + sample; av >>= shift
  76. // e.g. 1 -> (av + sample) / 2 simple average of new and old
  77. // 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new.
  78. // 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new.
  79. #define KEYS_AVERAGES_MIX_SHIFT 3
  80. // ----- Macros -----
  81. // Select mux
  82. #define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))
  83. // ----- Function Declarations -----
  84. // CLI Functions
  85. void cliFunc_avgDebug ( char* args );
  86. void cliFunc_echo ( char* args );
  87. void cliFunc_keyDebug ( char* args );
  88. void cliFunc_pressDebug ( char* args );
  89. void cliFunc_problemKeys( char* args );
  90. void cliFunc_senseDebug ( char* args );
  91. // Debug Functions
  92. void dumpSenseTable();
  93. // High-level Capsense Functions
  94. void setup_ADC();
  95. void capsense_scan();
  96. // Capsense Sense Functions
  97. void testColumn ( uint8_t strobe );
  98. void sampleColumn( uint8_t column );
  99. // Low-level Capsense Functions
  100. void strobe_w( uint8_t strobe_num );
  101. void recovery( uint8_t on );
  102. // ----- Variables -----
  103. // Scan Module command dictionary
  104. CLIDict_Entry( echo, "Example command, echos the arguments." );
  105. CLIDict_Entry( avgDebug, "Enables/Disables averaging results." NL "\t\tDisplays each average, starting from Key 0x00, ignoring 0 valued averages." );
  106. CLIDict_Entry( keyDebug, "Enables/Disables long debug for each keypress." NL "\t\tkeycode - [strobe:mux] : sense val : threshold+delta=total : margin" );
  107. CLIDict_Entry( pressDebug, "Enables/Disables short debug for each keypress." );
  108. CLIDict_Entry( problemKeys, "Display current list of problem keys," );
  109. CLIDict_Entry( senseDebug, "Prints out the current sense table N times." NL "\t\tsense:max sense:delta" );
  110. CLIDict_Def( scanCLIDict, "DPH Module Commands" ) = {
  111. CLIDict_Item( echo ),
  112. CLIDict_Item( avgDebug ),
  113. CLIDict_Item( keyDebug ),
  114. CLIDict_Item( pressDebug ),
  115. CLIDict_Item( problemKeys ),
  116. CLIDict_Item( senseDebug ),
  117. { 0, 0, 0 } // Null entry for dictionary end
  118. };
  119. // CLI Control Variables
  120. uint8_t enableAvgDebug = 0;
  121. uint8_t enableKeyDebug = 0;
  122. uint8_t enablePressDebug = 0;
  123. uint8_t senseDebugCount = 3; // In order to get boot-time oddities
  124. // Variables used to calculate the starting sense value (averaging)
  125. uint32_t full_avg = 0;
  126. uint32_t high_avg = 0;
  127. uint32_t low_avg = 0;
  128. uint8_t high_count = 0;
  129. uint8_t low_count = 0;
  130. uint16_t samples[MAX_STROBES][MUXES_COUNT]; // Overall table of cap sense ADC values
  131. uint16_t sampleMax[MAX_STROBES][MUXES_COUNT]; // Records the max seen ADC value
  132. uint8_t key_activity = 0; // Increments for each detected key per each full scan of the keyboard, it is reset before each full scan
  133. uint16_t key_idle = 0; // Defines how scans after all keys were released before starting averaging again
  134. uint8_t key_release = 0; // Indicates if going from key press state to release state (some keys pressed to no keys pressed)
  135. uint16_t threshold = THRESHOLD;
  136. uint16_t keys_averages_acc[KEY_COUNT];
  137. uint16_t keys_averages [KEY_COUNT];
  138. uint8_t keys_debounce [KEY_COUNT]; // Contains debounce statistics
  139. uint8_t keys_problem [KEY_COUNT]; // Marks keys that should be ignored (determined by averaging at startup)
  140. // TODO: change this to 'booting', then count down.
  141. uint16_t boot_count = 0;
  142. uint8_t total_strobes = MAX_STROBES;
  143. uint8_t strobe_map[MAX_STROBES];
  144. // ----- Functions -----
  145. // Initial setup for cap sense controller
  146. inline void Scan_setup()
  147. {
  148. // Register Scan CLI dictionary
  149. CLI_registerDictionary( scanCLIDict, scanCLIDictName );
  150. // Scan for active strobes
  151. // NOTE1: On IBM PCBs, each strobe line that is *NOT* used is connected to GND.
  152. // This means, the strobe GPIO can be set to Tri-State pull-up to detect which strobe lines are not used.
  153. // NOTE2: This will *NOT* detect floating strobes.
  154. // NOTE3: Rev 0.4, the strobe numbers are reversed, so D0 is actually strobe 0 and C7 is strobe 17
  155. info_msg("Detecting Strobes...");
  156. DDRC = 0;
  157. PORTC = C_MASK;
  158. DDRD = 0;
  159. PORTD = D_MASK;
  160. DDRE = 0;
  161. PORTE = E_MASK;
  162. // Initially there are 0 strobes
  163. total_strobes = 0;
  164. // Iterate over each the strobes
  165. for ( uint8_t strobe = 0; strobe < MAX_STROBES; strobe++ )
  166. {
  167. uint8_t detected = 0;
  168. // If PIN is high, then strobe is *NOT* connected to GND and may be a strobe
  169. switch ( strobe )
  170. {
  171. // Strobe Mappings
  172. // Rev Rev
  173. // 0.2 0.4
  174. #ifndef REV0_4_DEBUG // XXX These pins should be reworked, and connect to GND on Rev 0.4
  175. case 0: // D0 0 n/c
  176. case 1: // D1 1 n/c
  177. #endif
  178. case 2: // D2 2 15
  179. case 3: // D3 3 14
  180. case 4: // D4 4 13
  181. case 5: // D5 5 12
  182. case 6: // D6 6 11
  183. case 7: // D7 7 10
  184. detected = PIND & (1 << strobe);
  185. break;
  186. case 8: // E0 8 9
  187. case 9: // E1 9 8
  188. detected = PINE & (1 << (strobe - 8));
  189. break;
  190. case 10: // C0 10 7
  191. case 11: // C1 11 6
  192. case 12: // C2 12 5
  193. case 13: // C3 13 4
  194. case 14: // C4 14 3
  195. case 15: // C5 15 2
  196. #ifndef REV0_2_DEBUG // XXX If not using the 18 pin connector on Rev 0.2, rework these pins to GND
  197. case 16: // C6 16 1
  198. case 17: // C7 17 0
  199. #endif
  200. detected = PINC & (1 << (strobe - 10));
  201. break;
  202. default:
  203. break;
  204. }
  205. // Potential strobe line detected
  206. if ( detected )
  207. {
  208. strobe_map[total_strobes] = strobe;
  209. total_strobes++;
  210. }
  211. }
  212. printInt8( total_strobes );
  213. print( " strobes found." NL );
  214. // Setup Pins for Strobing
  215. DDRC = C_MASK;
  216. PORTC = 0;
  217. DDRD = D_MASK;
  218. PORTD = 0;
  219. DDRE = E_MASK;
  220. PORTE = 0 ;
  221. // Initialize ADC
  222. setup_ADC();
  223. // Reset debounce table
  224. for ( int i = 0; i < KEY_COUNT; ++i )
  225. {
  226. keys_debounce[i] = 0;
  227. }
  228. // Warm things up a bit before we start collecting data, taking real samples.
  229. for ( uint8_t i = 0; i < total_strobes; ++i )
  230. {
  231. sampleColumn( strobe_map[i] );
  232. }
  233. }
  234. // Main Detection Loop
  235. // This is where the important stuff happens
  236. inline uint8_t Scan_loop()
  237. {
  238. capsense_scan();
  239. // Return non-zero if macro and USB processing should be delayed
  240. // Macro processing will always run if returning 0
  241. // USB processing only happens once the USB send timer expires, if it has not, Scan_loop will be called
  242. // after the macro processing has been completed
  243. return 0;
  244. }
  245. // Signal from macro module that keys have been processed
  246. // NOTE: Only really required for implementing "tricks" in converters for odd protocols
  247. void Scan_finishedWithMacro( uint8_t sentKeys )
  248. {
  249. return;
  250. }
  251. // Signal from output module that keys have been processed/sent
  252. // NOTE: Only really required for implementing "tricks" in converters for odd protocols
  253. void Scan_finishedWithOutput( uint8_t sentKeys )
  254. {
  255. return;
  256. }
  257. inline void capsense_scan()
  258. {
  259. // Accumulated average used for the next scan
  260. uint32_t cur_full_avg = 0;
  261. uint32_t cur_high_avg = 0;
  262. // Reset average counters
  263. low_avg = 0;
  264. low_count = 0;
  265. high_count = 0;
  266. // Reset key activity, if there is no key activity, averages will accumulate for sense deltas, otherwise they will be reset
  267. key_activity = 0;
  268. // Scan each of the mapped strobes in the matrix
  269. for ( uint8_t strober = 0; strober < total_strobes; ++strober )
  270. {
  271. uint8_t map_strobe = strobe_map[strober];
  272. // Sample the ADCs for the given column/strobe
  273. sampleColumn( map_strobe );
  274. // Only process sense data if warmup is finished
  275. if ( boot_count >= WARMUP_LOOPS )
  276. {
  277. testColumn( map_strobe );
  278. }
  279. uint8_t strobe_line = map_strobe << MUXES_COUNT_XSHIFT;
  280. for ( int mux = 0; mux < MUXES_COUNT; ++mux )
  281. {
  282. // discard sketchy low bit, and meaningless high bits.
  283. uint8_t sample = samples[map_strobe][mux] >> 1;
  284. keys_averages_acc[strobe_line + mux] += sample;
  285. }
  286. // Accumulate 3 total averages (used for determining starting average during warmup)
  287. // full_avg - Average of all sampled lines on the previous scan set
  288. // cur_full_avg - Average of all sampled lines for this scan set
  289. // high_avg - Average of all sampled lines above full_avg on the previous scan set
  290. // cur_high_avg - Average of all sampled lines above full_avg
  291. // low_avg - Average of all sampled lines below or equal to full_avg
  292. if ( boot_count < WARMUP_LOOPS )
  293. {
  294. for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
  295. {
  296. uint8_t sample = samples[map_strobe][mux] >> 1;
  297. // Sample is high, add it to high avg
  298. if ( sample > full_avg )
  299. {
  300. high_count++;
  301. cur_high_avg += sample;
  302. }
  303. // Sample is low, add it to low avg
  304. else
  305. {
  306. low_count++;
  307. low_avg += sample;
  308. }
  309. // If sample is higher than previous high_avg, then mark as "problem key"
  310. // XXX Giving a bit more margin to pass (high_avg vs. high_avg + high_avg - full_avg) -HaaTa
  311. keys_problem[strobe_line + mux] = sample > high_avg + (high_avg - full_avg) ? sample : 0;
  312. // Prepare for next average
  313. cur_full_avg += sample;
  314. }
  315. }
  316. } // for strober
  317. // Update total sense average (only during warm-up)
  318. if ( boot_count < WARMUP_LOOPS )
  319. {
  320. full_avg = cur_full_avg / (total_strobes * MUXES_COUNT);
  321. high_avg = cur_high_avg / high_count;
  322. low_avg /= low_count;
  323. // Update the base average value using the low_avg (best chance of not ignoring a keypress)
  324. for ( int i = 0; i < KEY_COUNT; ++i )
  325. {
  326. keys_averages[i] = low_avg;
  327. keys_averages_acc[i] = low_avg;
  328. }
  329. }
  330. // Warm up voltage references
  331. if ( boot_count < WARMUP_LOOPS )
  332. {
  333. boot_count++;
  334. switch ( boot_count )
  335. {
  336. // First loop
  337. case 1:
  338. // Show msg at first iteration only
  339. info_msg("Warming up the voltage references");
  340. break;
  341. // Middle iterations
  342. case 300:
  343. case 600:
  344. case 900:
  345. case 1200:
  346. print(".");
  347. break;
  348. // Last loop
  349. case WARMUP_STOP:
  350. print( NL );
  351. info_msg("Warmup finished using ");
  352. printInt16( WARMUP_LOOPS );
  353. print(" iterations" NL );
  354. // Display the final calculated averages of all the sensed strobes
  355. info_msg("Full average (");
  356. printInt8( total_strobes * MUXES_COUNT );
  357. print("): ");
  358. printHex( full_avg );
  359. print(" High average (");
  360. printInt8( high_count );
  361. print("): ");
  362. printHex( high_avg );
  363. print(" Low average (");
  364. printInt8( low_count );
  365. print("): ");
  366. printHex( low_avg );
  367. print(" Rejection threshold: ");
  368. printHex( high_avg + (high_avg - full_avg) );
  369. print( NL );
  370. // Display problem keys, and the sense value at the time
  371. for ( uint8_t key = 0; key < KEY_COUNT; key++ )
  372. {
  373. if ( keys_problem[key] )
  374. {
  375. warn_msg("Problem key detected: ");
  376. printHex( key );
  377. print(" (");
  378. printHex( keys_problem[key] );
  379. print(")" NL );
  380. }
  381. }
  382. info_print("If problem keys were detected, and were being held down, they will be reset as soon as let go.");
  383. info_print("Some keys have unusually high sense values, on the first press they should be re-enabled.");
  384. break;
  385. }
  386. }
  387. else
  388. {
  389. // No keypress, accumulate averages
  390. if( !key_activity )
  391. {
  392. // Only start averaging once the idle counter has counted down to 0
  393. if ( key_idle == 0 )
  394. {
  395. // Average Debugging
  396. if ( enableAvgDebug )
  397. {
  398. print("\033[1mAvg\033[0m: ");
  399. }
  400. // aggregate
  401. for ( uint8_t i = 0; i < KEY_COUNT; ++i )
  402. {
  403. uint16_t acc = keys_averages_acc[i];
  404. //uint16_t acc = keys_averages_acc[i] >> IDLE_COUNT_SHIFT; // XXX This fixes things... -HaaTa
  405. uint32_t av = keys_averages[i];
  406. av = (av << KEYS_AVERAGES_MIX_SHIFT) - av + acc;
  407. av >>= KEYS_AVERAGES_MIX_SHIFT;
  408. keys_averages[i] = av;
  409. keys_averages_acc[i] = 0;
  410. // Average Debugging
  411. if ( enableAvgDebug && av > 0 )
  412. {
  413. printHex( av );
  414. print(" ");
  415. }
  416. }
  417. // Average Debugging
  418. if ( enableAvgDebug )
  419. {
  420. print( NL );
  421. }
  422. // No key presses detected, set key_release indicator
  423. key_release = 1;
  424. }
  425. // Otherwise decrement the idle counter
  426. else
  427. {
  428. key_idle--;
  429. }
  430. }
  431. // Keypresses, reset accumulators
  432. else if ( key_release )
  433. {
  434. for ( uint8_t c = 0; c < KEY_COUNT; ++c ) { keys_averages_acc[c] = 0; }
  435. key_release = 0;
  436. }
  437. // If the debugging sense table is non-zero, display
  438. if ( senseDebugCount > 0 )
  439. {
  440. senseDebugCount--;
  441. print( NL );
  442. dumpSenseTable();
  443. }
  444. }
  445. }
  446. void setup_ADC()
  447. {
  448. // disable adc digital pins.
  449. DIDR1 |= (1 << AIN0D) | (1<<AIN1D); // set disable on pins 1,0.
  450. DDRF = 0x0;
  451. PORTF = 0x0;
  452. uint8_t mux = 0 & 0x1f; // 0 == first. // 0x1e = 1.1V ref.
  453. // 0 = external aref 1,1 = 2.56V internal ref
  454. uint8_t aref = ((1 << REFS1) | (1 << REFS0)) & ((1 << REFS1) | (1 << REFS0));
  455. uint8_t adate = (1 << ADATE) & (1 << ADATE); // trigger enable
  456. uint8_t trig = 0 & ((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2)); // 0 = free running
  457. // ps2, ps1 := /64 ( 2^6 ) ps2 := /16 (2^4), ps1 := 4, ps0 :=2, PS1,PS0 := 8 (2^8)
  458. uint8_t prescale = ( ((PRESCALE) << PRESCALE_SHIFT) & PRESCALE_MASK ); // 001 == 2^1 == 2
  459. uint8_t hispeed = (1 << ADHSM);
  460. uint8_t en_mux = (1 << ACME);
  461. ADCSRA = (1 << ADEN) | prescale; // ADC enable
  462. // select ref.
  463. //ADMUX |= ((1 << REFS1) | (1 << REFS0)); // 2.56 V internal.
  464. //ADMUX |= ((1 << REFS0) ); // Vcc with external cap.
  465. //ADMUX &= ~((1 << REFS1) | (1 << REFS0)); // 0,0 : aref.
  466. ADMUX = aref | mux | ADLAR_BITS;
  467. // set free-running
  468. ADCSRA |= adate; // trigger enable
  469. ADCSRB = en_mux | hispeed | trig | (ADCSRB & ~((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2))); // trigger select free running
  470. ADCSRA |= (1 << ADEN); // ADC enable
  471. ADCSRA |= (1 << ADSC); // start conversions q
  472. }
  473. void recovery( uint8_t on )
  474. {
  475. DDRB |= (1 << RECOVERY_CONTROL);
  476. PORTB &= ~(1 << RECOVERY_SINK); // SINK always zero
  477. DDRB &= ~(1 << RECOVERY_SOURCE); // SOURCE high imp
  478. if ( on )
  479. {
  480. // set strobes to sink to gnd.
  481. DDRC |= C_MASK;
  482. DDRD |= D_MASK;
  483. DDRE |= E_MASK;
  484. PORTC &= ~C_MASK;
  485. PORTD &= ~D_MASK;
  486. PORTE &= ~E_MASK;
  487. DDRB |= (1 << RECOVERY_SINK); // SINK pull
  488. PORTB |= (1 << RECOVERY_CONTROL);
  489. PORTB |= (1 << RECOVERY_SOURCE); // SOURCE high
  490. DDRB |= (1 << RECOVERY_SOURCE);
  491. }
  492. else
  493. {
  494. PORTB &= ~(1 << RECOVERY_CONTROL);
  495. DDRB &= ~(1 << RECOVERY_SOURCE);
  496. PORTB &= ~(1 << RECOVERY_SOURCE); // SOURCE low
  497. DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp
  498. }
  499. }
  500. void hold_sample( uint8_t on )
  501. {
  502. if ( !on )
  503. {
  504. PORTB |= (1 << SAMPLE_CONTROL);
  505. DDRB |= (1 << SAMPLE_CONTROL);
  506. }
  507. else
  508. {
  509. DDRB |= (1 << SAMPLE_CONTROL);
  510. PORTB &= ~(1 << SAMPLE_CONTROL);
  511. }
  512. }
  513. void strobe_w( uint8_t strobe_num )
  514. {
  515. PORTC &= ~(C_MASK);
  516. PORTD &= ~(D_MASK);
  517. PORTE &= ~(E_MASK);
  518. // Strobe table
  519. // Not all strobes are used depending on which are detected
  520. switch ( strobe_num )
  521. {
  522. case 0: PORTD |= (1 << 0); break;
  523. case 1: PORTD |= (1 << 1); break;
  524. case 2: PORTD |= (1 << 2); break;
  525. case 3: PORTD |= (1 << 3); break;
  526. case 4: PORTD |= (1 << 4); break;
  527. case 5: PORTD |= (1 << 5); break;
  528. case 6: PORTD |= (1 << 6); break;
  529. case 7: PORTD |= (1 << 7); break;
  530. case 8: PORTE |= (1 << 0); break;
  531. case 9: PORTE |= (1 << 1); break;
  532. case 10: PORTC |= (1 << 0); break;
  533. case 11: PORTC |= (1 << 1); break;
  534. case 12: PORTC |= (1 << 2); break;
  535. case 13: PORTC |= (1 << 3); break;
  536. case 14: PORTC |= (1 << 4); break;
  537. case 15: PORTC |= (1 << 5); break;
  538. case 16: PORTC |= (1 << 6); break;
  539. case 17: PORTC |= (1 << 7); break;
  540. default:
  541. break;
  542. }
  543. }
  544. inline uint16_t getADC(void)
  545. {
  546. ADCSRA |= (1 << ADIF); // clear int flag by writing 1.
  547. //wait for last read to complete.
  548. while ( !( ADCSRA & (1 << ADIF) ) );
  549. return ADC; // return sample
  550. }
  551. void sampleColumn( uint8_t column )
  552. {
  553. // ensure all probe lines are driven low, and chill for recovery delay.
  554. ADCSRA |= (1 << ADEN) | (1 << ADSC); // enable and start conversions
  555. PORTC &= ~C_MASK;
  556. PORTD &= ~D_MASK;
  557. PORTE &= ~E_MASK;
  558. PORTF = 0;
  559. DDRF = 0;
  560. recovery( OFF );
  561. strobe_w( column );
  562. hold_sample( OFF );
  563. SET_FULL_MUX( 0 );
  564. // Allow strobes to settle
  565. for ( uint8_t i = 0; i < STROBE_SETTLE; ++i ) { getADC(); }
  566. hold_sample( ON );
  567. uint8_t mux = 0;
  568. SET_FULL_MUX( mux );
  569. getADC(); // throw away; unknown mux.
  570. do {
  571. SET_FULL_MUX( mux + 1 ); // our *next* sample will use this
  572. // retrieve current read.
  573. uint16_t readVal = getADC();
  574. samples[column][mux] = readVal;
  575. // Update max sense sample table
  576. if ( readVal > sampleMax[column][mux] )
  577. {
  578. sampleMax[column][mux] = readVal;
  579. }
  580. mux++;
  581. } while ( mux < 8 );
  582. hold_sample( OFF );
  583. recovery( ON );
  584. // turn off adc.
  585. ADCSRA &= ~(1 << ADEN);
  586. // pull all columns' strobe-lines low.
  587. DDRC |= C_MASK;
  588. DDRD |= D_MASK;
  589. DDRE |= E_MASK;
  590. PORTC &= ~C_MASK;
  591. PORTD &= ~D_MASK;
  592. PORTE &= ~E_MASK;
  593. }
  594. void testColumn( uint8_t strobe )
  595. {
  596. uint16_t db_delta = 0;
  597. uint8_t db_sample = 0;
  598. uint16_t db_threshold = 0;
  599. uint8_t column = 0;
  600. uint8_t bit = 1;
  601. for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
  602. {
  603. uint16_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + mux];
  604. uint8_t key = (strobe << MUXES_COUNT_XSHIFT) + mux;
  605. // Check if this is a bad key (e.g. test point, or non-existent key)
  606. if ( keys_problem[key] )
  607. {
  608. // If the sample value of the problem key goes above initally recorded result + threshold
  609. // re-enable the key
  610. if ( (db_sample = samples[strobe][mux] >> 1) > keys_problem[key] + threshold )
  611. //if ( (db_sample = samples[strobe][mux] >> 1) < high_avg )
  612. {
  613. info_msg("Re-enabling problem key: ");
  614. printHex( key );
  615. print( NL );
  616. keys_problem[key] = 0;
  617. }
  618. // Do not waste any more cycles processing, regardless, a keypress cannot be detected
  619. continue;
  620. }
  621. // Keypress detected
  622. // db_sample (uint8_t), discard meaningless high bit, and garbage low bit
  623. if ( (db_sample = samples[strobe][mux] >> 1) > (db_threshold = threshold) + (db_delta = delta) )
  624. {
  625. column |= bit;
  626. key_activity++; // No longer idle, stop averaging ADC data
  627. key_idle = KEY_IDLE_SCANS; // Reset idle count-down
  628. // Only register keypresses once the warmup is complete, or not enough debounce info
  629. if ( keys_debounce[key] <= DEBOUNCE_THRESHOLD )
  630. {
  631. // Add to the Macro processing buffer if debounce criteria met
  632. // Automatically handles converting to a USB code and sending off to the PC
  633. if ( keys_debounce[key] == DEBOUNCE_THRESHOLD )
  634. {
  635. // Debug message, pressDebug CLI
  636. if ( enablePressDebug )
  637. {
  638. print("0x");
  639. printHex_op( key, 2 );
  640. print(" ");
  641. }
  642. // Initial Keypress
  643. Macro_keyState( key, 0x01 );
  644. }
  645. keys_debounce[key]++;
  646. }
  647. else if ( keys_debounce[key] >= DEBOUNCE_THRESHOLD )
  648. {
  649. // Held Key
  650. Macro_keyState( key, 0x02 );
  651. }
  652. // Long form key debugging
  653. if ( enableKeyDebug )
  654. {
  655. // Debug message
  656. // <key> [<strobe>:<mux>] : <sense val> : <delta + threshold> : <margin>
  657. dbug_msg("");
  658. printHex_op( key, 1 );
  659. print(" [");
  660. printInt8( strobe );
  661. print(":");
  662. printInt8( mux );
  663. print("] : ");
  664. printHex( db_sample ); // Sense
  665. print(" : ");
  666. printHex( db_threshold );
  667. print("+");
  668. printHex( db_delta );
  669. print("=");
  670. printHex( db_threshold + db_delta ); // Sense compare
  671. print(" : ");
  672. printHex( db_sample - ( db_threshold + db_delta ) ); // Margin
  673. print( NL );
  674. }
  675. }
  676. // Clear debounce entry if no keypress detected
  677. else
  678. {
  679. // Release Key
  680. if ( keys_debounce[key] >= DEBOUNCE_THRESHOLD )
  681. {
  682. Macro_keyState( key, 0x03 );
  683. }
  684. // Clear debounce entry
  685. keys_debounce[key] = 0;
  686. }
  687. bit <<= 1;
  688. }
  689. }
  690. void dumpSenseTable()
  691. {
  692. // Initial table alignment, with base threshold used for every key
  693. print("\033[1m");
  694. printHex( threshold );
  695. print("\033[0m ");
  696. // Print out headers first
  697. for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
  698. {
  699. print(" Mux \033[1m");
  700. printInt8( mux );
  701. print("\033[0m ");
  702. }
  703. print( NL );
  704. // Display the full strobe/sense table
  705. for ( uint8_t strober = 0; strober < total_strobes; ++strober )
  706. {
  707. uint8_t strobe = strobe_map[strober];
  708. // Display the strobe
  709. print("Strobe \033[1m");
  710. printHex( strobe );
  711. print("\033[0m ");
  712. // For each mux, display sense:threshold:delta
  713. for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
  714. {
  715. uint8_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + mux];
  716. uint8_t sample = samples[strobe][mux] >> 1;
  717. uint8_t max = sampleMax[strobe][mux] >> 1;
  718. // Indicate if the key is being pressed by displaying green
  719. if ( sample > delta + threshold )
  720. {
  721. print("\033[1;32m");
  722. }
  723. printHex_op( sample, 2 );
  724. print(":");
  725. printHex_op( max, 2 );
  726. print(":");
  727. printHex_op( delta, 2 );
  728. print("\033[0m ");
  729. }
  730. // New line for each strobe
  731. print( NL );
  732. }
  733. }
  734. // ----- CLI Command Functions -----
  735. // XXX Just an example command showing how to parse arguments (more complex than generally needed)
  736. void cliFunc_echo( char* args )
  737. {
  738. char* curArgs;
  739. char* arg1Ptr;
  740. char* arg2Ptr = args;
  741. // Parse args until a \0 is found
  742. while ( 1 )
  743. {
  744. print( NL ); // No \r\n by default after the command is entered
  745. curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
  746. CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
  747. // Stop processing args if no more are found
  748. if ( *arg1Ptr == '\0' )
  749. break;
  750. // Print out the arg
  751. dPrint( arg1Ptr );
  752. }
  753. }
  754. void cliFunc_avgDebug( char* args )
  755. {
  756. print( NL );
  757. // Args ignored, just toggling
  758. if ( enableAvgDebug )
  759. {
  760. info_print("Cap Sense averaging debug disabled.");
  761. enableAvgDebug = 0;
  762. }
  763. else
  764. {
  765. info_print("Cap Sense averaging debug enabled.");
  766. enableAvgDebug = 1;
  767. }
  768. }
  769. void cliFunc_keyDebug( char* args )
  770. {
  771. print( NL );
  772. // Args ignored, just toggling
  773. if ( enableKeyDebug )
  774. {
  775. info_print("Cap Sense key long debug disabled - pre debounce.");
  776. enableKeyDebug = 0;
  777. }
  778. else
  779. {
  780. info_print("Cap Sense key long debug enabled - pre debounce.");
  781. enableKeyDebug = 1;
  782. }
  783. }
  784. void cliFunc_pressDebug( char* args )
  785. {
  786. print( NL );
  787. // Args ignored, just toggling
  788. if ( enablePressDebug )
  789. {
  790. info_print("Cap Sense key debug disabled - post debounce.");
  791. enablePressDebug = 0;
  792. }
  793. else
  794. {
  795. info_print("Cap Sense key debug enabled - post debounce.");
  796. enablePressDebug = 1;
  797. }
  798. }
  799. void cliFunc_problemKeys( char* args )
  800. {
  801. print( NL );
  802. uint8_t count = 0;
  803. // Args ignored, just displaying
  804. // Display problem keys, and the sense value at the time
  805. for ( uint8_t key = 0; key < KEY_COUNT; key++ )
  806. {
  807. if ( keys_problem[key] )
  808. {
  809. if ( count++ == 0 )
  810. {
  811. warn_msg("Problem keys: ");
  812. }
  813. printHex( key );
  814. print(" (");
  815. printHex( keys_problem[key] );
  816. print(") " );
  817. }
  818. }
  819. }
  820. void cliFunc_senseDebug( char* args )
  821. {
  822. // Parse code from argument
  823. // NOTE: Only first argument is used
  824. char* arg1Ptr;
  825. char* arg2Ptr;
  826. CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
  827. // Default to a single print
  828. senseDebugCount = 1;
  829. // If there was an argument, use that instead
  830. if ( *arg1Ptr != '\0' )
  831. {
  832. senseDebugCount = numToInt( arg1Ptr );
  833. }
  834. }