Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Output/pjrcUSB/avr/usb_keyboard_serial.c
Jacob Alexander 94608f93e9 Cleanup
- Changing main device type to HID (0x03)
2014-09-23 11:42:40 -07:00

944 lines
24 KiB
C

/* USB Keyboard and CDC Serial Device for Teensy USB Development Board
* Copyright (c) 2009 PJRC.COM, LLC
* Modifications by Jacob Alexander (2011-2014)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// Local Includes
#include "usb_keyboard_serial.h"
#include <print.h>
// ----- Variables -----
// zero when we are not configured, non-zero when enumerated
static volatile uint8_t usb_configuration = 0;
// the time remaining before we transmit any partially full
// packet, or send a zero length packet.
static volatile uint8_t transmit_flush_timer = 0;
static uint8_t transmit_previous_timeout = 0;
// serial port settings (baud rate, control signals, etc) set
// by the PC. These are ignored, but kept in RAM.
static uint8_t cdc_line_coding[7] = {0x00, 0xE1, 0x00, 0x00, 0x00, 0x00, 0x08};
static uint8_t cdc_line_rtsdtr = 0;
// ----- USB Keyboard Functions -----
// Sends normal keyboard out to host
// NOTE: Make sure to match the descriptor
void usb_keyboard_toHost()
{
uint8_t i;
// Modifiers
UEDATX = USBKeys_Modifiers;
// Reserved Byte
UEDATX = 0x00;
// Normal Keys, only supports 6 in Boot mode
for ( i = 0; i < 6; i++)
{
UEDATX = USBKeys_Keys[i];
}
UEINTX = 0x00;
}
// send the contents of USBKeys_Keys and USBKeys_Modifiers
inline void usb_keyboard_send()
{
uint8_t intr_state, timeout;
intr_state = SREG;
timeout = UDFNUML + 50;
// Ready to transmit keypresses?
do
{
SREG = intr_state;
// has the USB gone offline? or exceeded timeout?
if ( !usb_configuration || UDFNUML == timeout )
{
erro_print("USB Offline? Timeout?");
return;
}
// get ready to try checking again
intr_state = SREG;
cli();
// If not using Boot protocol, send NKRO
UENUM = USBKeys_Protocol ? KEYBOARD_NKRO_ENDPOINT : KEYBOARD_ENDPOINT;
} while ( !( UEINTX & (1 << RWAL) ) );
switch ( USBKeys_Protocol )
{
// Send boot keyboard interrupt packet(s)
case 0:
usb_keyboard_toHost();
USBKeys_Changed = USBKeyChangeState_None;
break;
// Send NKRO keyboard interrupts packet(s)
case 1:
// Check modifiers
if ( USBKeys_Changed & USBKeyChangeState_Modifiers )
{
UEDATX = 0x01; // ID
UEDATX = USBKeys_Modifiers;
UEINTX = 0; // Finished with ID
USBKeys_Changed &= ~USBKeyChangeState_Modifiers; // Mark sent
}
// Check main key section
else if ( USBKeys_Changed & USBKeyChangeState_MainKeys )
{
UEDATX = 0x03; // ID
// 4-164 (first 20 bytes)
for ( uint8_t byte = 0; byte < 20; byte++ )
UEDATX = USBKeys_Keys[ byte ];
UEINTX = 0; // Finished with ID
USBKeys_Changed &= ~USBKeyChangeState_MainKeys; // Mark sent
}
// Check secondary key section
else if ( USBKeys_Changed & USBKeyChangeState_SecondaryKeys )
{
UEDATX = 0x04; // ID
// 176-221 (last 6 bytes)
for ( uint8_t byte = 20; byte < 26; byte++ )
UEDATX = USBKeys_Keys[ byte ];
UEINTX = 0; // Finished with ID
USBKeys_Changed &= ~USBKeyChangeState_SecondaryKeys; // Mark sent
}
// Check system control keys
else if ( USBKeys_Changed & USBKeyChangeState_System )
{
UEDATX = 0x05; // ID
UEDATX = USBKeys_SysCtrl;
UEINTX = 0; // Finished with ID
USBKeys_Changed &= ~USBKeyChangeState_System; // Mark sent
}
// Check consumer control keys
else if ( USBKeys_Changed & USBKeyChangeState_Consumer )
{
UEDATX = 0x06; // ID
UEDATX = (uint8_t)(USBKeys_ConsCtrl & 0x00FF);
UEDATX = (uint8_t)(USBKeys_ConsCtrl >> 8);
UEINTX = 0; // Finished with ID
USBKeys_Changed &= ~USBKeyChangeState_Consumer; // Mark sent
}
break;
}
USBKeys_Idle_Count = 0;
SREG = intr_state;
}
// ----- USB Virtual Serial Port (CDC) Functions -----
// get the next character, or -1 if nothing received
int16_t usb_serial_getchar()
{
uint8_t c, intr_state;
// interrupts are disabled so these functions can be
// used from the main program or interrupt context,
// even both in the same program!
intr_state = SREG;
cli();
if (!usb_configuration) {
SREG = intr_state;
return -1;
}
UENUM = CDC_RX_ENDPOINT;
retry:
c = UEINTX;
if (!(c & (1<<RWAL))) {
// no data in buffer
if (c & (1<<RXOUTI)) {
UEINTX = 0x6B;
goto retry;
}
SREG = intr_state;
return -2;
}
// take one byte out of the buffer
c = UEDATX;
// if buffer completely used, release it
if (!(UEINTX & (1<<RWAL))) UEINTX = 0x6B;
SREG = intr_state;
return c;
}
// number of bytes available in the receive buffer
uint8_t usb_serial_available()
{
uint8_t n=0, i, intr_state;
intr_state = SREG;
cli();
if (usb_configuration) {
UENUM = CDC_RX_ENDPOINT;
n = UEBCLX;
if (!n) {
i = UEINTX;
if (i & (1<<RXOUTI) && !(i & (1<<RWAL))) UEINTX = 0x6B;
}
}
SREG = intr_state;
return n;
}
// discard any buffered input
void usb_serial_flush_input()
{
uint8_t intr_state;
if (usb_configuration) {
intr_state = SREG;
cli();
UENUM = CDC_RX_ENDPOINT;
while ((UEINTX & (1<<RWAL))) {
UEINTX = 0x6B;
}
SREG = intr_state;
}
}
// transmit a character. 0 returned on success, -1 on error
int8_t usb_serial_putchar(uint8_t c)
{
uint8_t timeout, intr_state;
// if we're not online (enumerated and configured), error
if (!usb_configuration) return -1;
// interrupts are disabled so these functions can be
// used from the main program or interrupt context,
// even both in the same program!
intr_state = SREG;
cli();
UENUM = CDC_TX_ENDPOINT;
// if we gave up due to timeout before, don't wait again
if (transmit_previous_timeout) {
if (!(UEINTX & (1<<RWAL))) {
SREG = intr_state;
return -1;
}
transmit_previous_timeout = 0;
}
// wait for the FIFO to be ready to accept data
timeout = UDFNUML + TRANSMIT_TIMEOUT;
while (1) {
// are we ready to transmit?
if (UEINTX & (1<<RWAL)) break;
SREG = intr_state;
// have we waited too long? This happens if the user
// is not running an application that is listening
if (UDFNUML == timeout) {
transmit_previous_timeout = 1;
return -1;
}
// has the USB gone offline?
if (!usb_configuration) return -1;
// get ready to try checking again
intr_state = SREG;
cli();
UENUM = CDC_TX_ENDPOINT;
}
// actually write the byte into the FIFO
UEDATX = c;
// if this completed a packet, transmit it now!
if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;
transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;
SREG = intr_state;
return 0;
}
// transmit a character, but do not wait if the buffer is full,
// 0 returned on success, -1 on buffer full or error
int8_t usb_serial_putchar_nowait(uint8_t c)
{
uint8_t intr_state;
if (!usb_configuration) return -1;
intr_state = SREG;
cli();
UENUM = CDC_TX_ENDPOINT;
if (!(UEINTX & (1<<RWAL))) {
// buffer is full
SREG = intr_state;
return -2;
}
// actually write the byte into the FIFO
UEDATX = c;
// if this completed a packet, transmit it now!
if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;
transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;
SREG = intr_state;
return 0;
}
// transmit a buffer.
// 0 returned on success, -1 on error
// This function is optimized for speed! Each call takes approx 6.1 us overhead
// plus 0.25 us per byte. 12 Mbit/sec USB has 8.67 us per-packet overhead and
// takes 0.67 us per byte. If called with 64 byte packet-size blocks, this function
// can transmit at full USB speed using 43% CPU time. The maximum theoretical speed
// is 19 packets per USB frame, or 1216 kbytes/sec. However, bulk endpoints have the
// lowest priority, so any other USB devices will likely reduce the speed. Speed
// can also be limited by how quickly the PC-based software reads data, as the host
// controller in the PC will not allocate bandwitdh without a pending read request.
// (thanks to Victor Suarez for testing and feedback and initial code)
int8_t usb_serial_write(const char *buffer, uint16_t size)
{
uint8_t timeout, intr_state, write_size;
// if we're not online (enumerated and configured), error
if (!usb_configuration) return -1;
// interrupts are disabled so these functions can be
// used from the main program or interrupt context,
// even both in the same program!
intr_state = SREG;
cli();
UENUM = CDC_TX_ENDPOINT;
// if we gave up due to timeout before, don't wait again
/*
if (transmit_previous_timeout) {
if (!(UEINTX & (1<<RWAL))) {
SREG = intr_state;
return -2;
}
transmit_previous_timeout = 0;
}
*/
// each iteration of this loop transmits a packet
while (size) {
// wait for the FIFO to be ready to accept data
timeout = UDFNUML + TRANSMIT_TIMEOUT;
while (1) {
// are we ready to transmit?
if (UEINTX & (1<<RWAL)) break;
SREG = intr_state;
// have we waited too long? This happens if the user
// is not running an application that is listening
if (UDFNUML == timeout) {
transmit_previous_timeout = 1;
return -3;
}
// has the USB gone offline?
if (!usb_configuration) return -4;
// get ready to try checking again
intr_state = SREG;
cli();
UENUM = CDC_TX_ENDPOINT;
}
// compute how many bytes will fit into the next packet
write_size = CDC_TX_SIZE - UEBCLX;
if (write_size > size) write_size = size;
size -= write_size;
// write the packet
switch (write_size) {
#if (CDC_TX_SIZE == 64)
case 64: UEDATX = *buffer++;
case 63: UEDATX = *buffer++;
case 62: UEDATX = *buffer++;
case 61: UEDATX = *buffer++;
case 60: UEDATX = *buffer++;
case 59: UEDATX = *buffer++;
case 58: UEDATX = *buffer++;
case 57: UEDATX = *buffer++;
case 56: UEDATX = *buffer++;
case 55: UEDATX = *buffer++;
case 54: UEDATX = *buffer++;
case 53: UEDATX = *buffer++;
case 52: UEDATX = *buffer++;
case 51: UEDATX = *buffer++;
case 50: UEDATX = *buffer++;
case 49: UEDATX = *buffer++;
case 48: UEDATX = *buffer++;
case 47: UEDATX = *buffer++;
case 46: UEDATX = *buffer++;
case 45: UEDATX = *buffer++;
case 44: UEDATX = *buffer++;
case 43: UEDATX = *buffer++;
case 42: UEDATX = *buffer++;
case 41: UEDATX = *buffer++;
case 40: UEDATX = *buffer++;
case 39: UEDATX = *buffer++;
case 38: UEDATX = *buffer++;
case 37: UEDATX = *buffer++;
case 36: UEDATX = *buffer++;
case 35: UEDATX = *buffer++;
case 34: UEDATX = *buffer++;
case 33: UEDATX = *buffer++;
#endif
#if (CDC_TX_SIZE >= 32)
case 32: UEDATX = *buffer++;
case 31: UEDATX = *buffer++;
case 30: UEDATX = *buffer++;
case 29: UEDATX = *buffer++;
case 28: UEDATX = *buffer++;
case 27: UEDATX = *buffer++;
case 26: UEDATX = *buffer++;
case 25: UEDATX = *buffer++;
case 24: UEDATX = *buffer++;
case 23: UEDATX = *buffer++;
case 22: UEDATX = *buffer++;
case 21: UEDATX = *buffer++;
case 20: UEDATX = *buffer++;
case 19: UEDATX = *buffer++;
case 18: UEDATX = *buffer++;
case 17: UEDATX = *buffer++;
#endif
#if (CDC_TX_SIZE >= 16)
case 16: UEDATX = *buffer++;
case 15: UEDATX = *buffer++;
case 14: UEDATX = *buffer++;
case 13: UEDATX = *buffer++;
case 12: UEDATX = *buffer++;
case 11: UEDATX = *buffer++;
case 10: UEDATX = *buffer++;
case 9: UEDATX = *buffer++;
#endif
case 8: UEDATX = *buffer++;
case 7: UEDATX = *buffer++;
case 6: UEDATX = *buffer++;
case 5: UEDATX = *buffer++;
case 4: UEDATX = *buffer++;
case 3: UEDATX = *buffer++;
case 2: UEDATX = *buffer++;
default:
case 1: UEDATX = *buffer++;
case 0: break;
}
// if this completed a packet, transmit it now!
if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;
transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;
SREG = intr_state;
}
return 0;
}
// immediately transmit any buffered output.
// This doesn't actually transmit the data - that is impossible!
// USB devices only transmit when the host allows, so the best
// we can do is release the FIFO buffer for when the host wants it
void usb_serial_flush_output(void)
{
uint8_t intr_state;
intr_state = SREG;
cli();
if (transmit_flush_timer) {
UENUM = CDC_TX_ENDPOINT;
UEINTX = 0x3A;
transmit_flush_timer = 0;
}
SREG = intr_state;
}
// functions to read the various async serial settings. These
// aren't actually used by USB at all (communication is always
// at full USB speed), but they are set by the host so we can
// set them properly if we're converting the USB to a real serial
// communication
uint32_t usb_serial_get_baud()
{
uint32_t *baud = (uint32_t*)cdc_line_coding;
return *baud;
}
uint8_t usb_serial_get_stopbits()
{
return cdc_line_coding[4];
}
uint8_t usb_serial_get_paritytype()
{
return cdc_line_coding[5];
}
uint8_t usb_serial_get_numbits()
{
return cdc_line_coding[6];
}
uint8_t usb_serial_get_control()
{
return cdc_line_rtsdtr;
}
// write the control signals, DCD, DSR, RI, etc
// There is no CTS signal. If software on the host has transmitted
// data to you but you haven't been calling the getchar function,
// it remains buffered (either here or on the host) and can not be
// lost because you weren't listening at the right time, like it
// would in real serial communication.
int8_t usb_serial_set_control(uint8_t signals)
{
uint8_t intr_state;
intr_state = SREG;
cli();
if (!usb_configuration) {
// we're not enumerated/configured
SREG = intr_state;
return -1;
}
UENUM = CDC_ACM_ENDPOINT;
if (!(UEINTX & (1<<RWAL))) {
// unable to write
// TODO; should this try to abort the previously
// buffered message??
SREG = intr_state;
return -1;
}
UEDATX = 0xA1;
UEDATX = 0x20;
UEDATX = 0;
UEDATX = 0;
UEDATX = 0; // 0 seems to work nicely. what if this is 1??
UEDATX = 0;
UEDATX = 1;
UEDATX = 0;
UEDATX = signals;
UEINTX = 0x3A;
SREG = intr_state;
return 0;
}
// ----- General USB Functions -----
// Set the avr into firmware reload mode
void usb_device_reload()
{
cli();
// Disable watchdog, if enabled
// Disable all peripherals
UDCON = 1;
USBCON = (1 << FRZCLK); // Disable USB
UCSR1B = 0;
_delay_ms( 5 );
#if defined(__AVR_AT90USB162__) // Teensy 1.0
EIMSK = 0; PCICR = 0; SPCR = 0; ACSR = 0; EECR = 0;
TIMSK0 = 0; TIMSK1 = 0; UCSR1B = 0;
DDRB = 0; DDRC = 0; DDRD = 0;
PORTB = 0; PORTC = 0; PORTD = 0;
asm volatile("jmp 0x3E00");
#elif defined(__AVR_ATmega32U4__) // Teensy 2.0
EIMSK = 0; PCICR = 0; SPCR = 0; ACSR = 0; EECR = 0; ADCSRA = 0;
TIMSK0 = 0; TIMSK1 = 0; TIMSK3 = 0; TIMSK4 = 0; UCSR1B = 0; TWCR = 0;
DDRB = 0; DDRC = 0; DDRD = 0; DDRE = 0; DDRF = 0; TWCR = 0;
PORTB = 0; PORTC = 0; PORTD = 0; PORTE = 0; PORTF = 0;
asm volatile("jmp 0x7E00");
#elif defined(__AVR_AT90USB646__) // Teensy++ 1.0
EIMSK = 0; PCICR = 0; SPCR = 0; ACSR = 0; EECR = 0; ADCSRA = 0;
TIMSK0 = 0; TIMSK1 = 0; TIMSK2 = 0; TIMSK3 = 0; UCSR1B = 0; TWCR = 0;
DDRA = 0; DDRB = 0; DDRC = 0; DDRD = 0; DDRE = 0; DDRF = 0;
PORTA = 0; PORTB = 0; PORTC = 0; PORTD = 0; PORTE = 0; PORTF = 0;
asm volatile("jmp 0xFC00");
#elif defined(__AVR_AT90USB1286__) // Teensy++ 2.0
EIMSK = 0; PCICR = 0; SPCR = 0; ACSR = 0; EECR = 0; ADCSRA = 0;
TIMSK0 = 0; TIMSK1 = 0; TIMSK2 = 0; TIMSK3 = 0; UCSR1B = 0; TWCR = 0;
DDRA = 0; DDRB = 0; DDRC = 0; DDRD = 0; DDRE = 0; DDRF = 0;
PORTA = 0; PORTB = 0; PORTC = 0; PORTD = 0; PORTE = 0; PORTF = 0;
asm volatile("jmp 0x1FC00");
#endif
}
// WDT Setup for software reset the chip
void wdt_init()
{
MCUSR = 0;
wdt_disable();
}
// initialize USB
void usb_init()
{
HW_CONFIG();
USB_FREEZE(); // enable USB
PLL_CONFIG(); // config PLL
while (!(PLLCSR & (1<<PLOCK))) ; // wait for PLL lock
USB_CONFIG(); // start USB clock
UDCON = 0; // enable attach resistor
usb_configuration = 0;
UDIEN = (1<<EORSTE) | (1<<SOFE);
sei();
// Disable watchdog timer after possible software reset
//wdt_init(); // XXX Not working...seems to be ok without this, not sure though
}
// return 0 if the USB is not configured, or the configuration
// number selected by the HOST
uint8_t usb_configured()
{
return usb_configuration;
}
// USB Device Interrupt - handle all device-level events
// the transmit buffer flushing is triggered by the start of frame
//
ISR( USB_GEN_vect )
{
uint8_t intbits, t_cdc;
intbits = UDINT;
UDINT = 0;
if ( intbits & (1 << EORSTI) )
{
UENUM = 0;
UECONX = 1;
UECFG0X = EP_TYPE_CONTROL;
UECFG1X = EP_SIZE(ENDPOINT0_SIZE) | EP_SINGLE_BUFFER;
UEIENX = (1 << RXSTPE);
usb_configuration = 0;
cdc_line_rtsdtr = 0;
}
if ( (intbits & (1 << SOFI)) && usb_configuration )
{
t_cdc = transmit_flush_timer;
if ( t_cdc )
{
transmit_flush_timer = --t_cdc;
if ( !t_cdc )
{
UENUM = CDC_TX_ENDPOINT;
UEINTX = 0x3A;
}
}
static uint8_t div4 = 0;
if ( USBKeys_Idle_Config && (++div4 & 3) == 0 )
{
USBKeys_Idle_Count++;
if ( USBKeys_Idle_Count == USBKeys_Idle_Config )
{
// XXX TODO Is this even used? If so, when? -Jacob
// From hasu's code, this section looks like it could fix the Mac SET_IDLE problem
// Send normal keyboard interrupt packet(s)
switch ( USBKeys_Protocol )
{
// Send boot keyboard interrupt packet(s)
case 0: usb_keyboard_toHost(); break;
// Send NKRO keyboard interrupts packet(s)
//case 1: usb_nkrokeyboard_toHost(); break; // XXX Not valid anymore
}
print("IDLE");
}
}
}
}
// Misc functions to wait for ready and send/receive packets
static inline void usb_wait_in_ready()
{
while (!(UEINTX & (1<<TXINI))) ;
}
static inline void usb_send_in()
{
UEINTX = ~(1<<TXINI);
}
static inline void usb_wait_receive_out()
{
while (!(UEINTX & (1<<RXOUTI))) ;
}
static inline void usb_ack_out()
{
UEINTX = ~(1<<RXOUTI);
}
// USB Endpoint Interrupt - endpoint 0 is handled here. The
// other endpoints are manipulated by the user-callable
// functions, and the start-of-frame interrupt.
//
ISR( USB_COM_vect )
{
uint8_t intbits;
const uint8_t *list;
const uint8_t *cfg;
uint8_t i, n, len, en;
uint8_t *p;
uint8_t bmRequestType;
uint8_t bRequest;
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;
uint16_t desc_val;
const uint8_t *desc_addr;
uint8_t desc_length;
UENUM = 0;
intbits = UEINTX;
if (intbits & (1<<RXSTPI))
{
bmRequestType = UEDATX;
bRequest = UEDATX;
wValue = UEDATX;
wValue |= (UEDATX << 8);
wIndex = UEDATX;
wIndex |= (UEDATX << 8);
wLength = UEDATX;
wLength |= (UEDATX << 8);
UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
if ( bRequest == GET_DESCRIPTOR )
{
list = (const uint8_t *)descriptor_list;
for ( i = 0; ; i++ )
{
if ( i >= NUM_DESC_LIST )
{
UECONX = (1 << STALLRQ) | (1 << EPEN); //stall
return;
}
desc_val = pgm_read_word(list);
if ( desc_val != wValue )
{
list += sizeof( struct descriptor_list_struct );
continue;
}
list += 2;
desc_val = pgm_read_word(list);
if ( desc_val != wIndex )
{
list += sizeof(struct descriptor_list_struct) - 2;
continue;
}
list += 2;
desc_addr = (const uint8_t *)pgm_read_word(list);
list += 2;
desc_length = pgm_read_byte(list);
break;
}
len = (wLength < 256) ? wLength : 255;
if (len > desc_length) len = desc_length;
do {
// wait for host ready for IN packet
do {
i = UEINTX;
} while (!(i & ((1<<TXINI)|(1<<RXOUTI))));
if (i & (1<<RXOUTI)) return; // abort
// send IN packet
n = len < ENDPOINT0_SIZE ? len : ENDPOINT0_SIZE;
for (i = n; i; i--) {
UEDATX = pgm_read_byte(desc_addr++);
}
len -= n;
usb_send_in();
} while (len || n == ENDPOINT0_SIZE);
return;
}
if (bRequest == SET_ADDRESS) {
usb_send_in();
usb_wait_in_ready();
UDADDR = wValue | (1<<ADDEN);
return;
}
if ( bRequest == SET_CONFIGURATION && bmRequestType == 0 )
{
usb_configuration = wValue;
cdc_line_rtsdtr = 0;
transmit_flush_timer = 0;
usb_send_in();
cfg = endpoint_config_table;
// Setup each of the 6 additional endpoints (0th already configured)
for ( i = 1; i < 6; i++ )
{
UENUM = i;
en = pgm_read_byte(cfg++);
UECONX = en;
if (en)
{
UECFG0X = pgm_read_byte(cfg++);
UECFG1X = pgm_read_byte(cfg++);
}
}
UERST = 0x7E;
UERST = 0;
return;
}
if (bRequest == GET_CONFIGURATION && bmRequestType == 0x80) {
usb_wait_in_ready();
UEDATX = usb_configuration;
usb_send_in();
return;
}
if ( ( wIndex == KEYBOARD_INTERFACE && USBKeys_Protocol == 0 )
|| ( wIndex == KEYBOARD_NKRO_INTERFACE && USBKeys_Protocol == 1 ) )
{
if ( bmRequestType == 0xA1)
{
if ( bRequest == HID_GET_REPORT )
{
usb_wait_in_ready();
// Send normal keyboard interrupt packet(s)
switch ( USBKeys_Protocol )
{
// Send boot keyboard interrupt packet(s)
case 0: usb_keyboard_toHost(); break;
// Send NKRO keyboard interrupts packet(s)
//case 1: usb_nkrokeyboard_toHost(); break; // XXX Not valid anymore
}
usb_send_in();
return;
}
if ( bRequest == HID_GET_IDLE )
{
usb_wait_in_ready();
UEDATX = USBKeys_Idle_Config;
usb_send_in();
return;
}
if ( bRequest == HID_GET_PROTOCOL )
{
usb_wait_in_ready();
UEDATX = USBKeys_Protocol;
usb_send_in();
return;
}
}
if ( bmRequestType == 0x21 )
{
if ( bRequest == HID_SET_REPORT )
{
usb_wait_receive_out();
USBKeys_LEDs = UEDATX;
usb_ack_out();
usb_send_in();
return;
}
if ( bRequest == HID_SET_IDLE )
{
usb_wait_in_ready();
USBKeys_Idle_Config = (wValue >> 8);
USBKeys_Idle_Count = 0;
usb_send_in();
print("HID IDLE");
return;
}
if ( bRequest == HID_SET_PROTOCOL )
{
usb_wait_in_ready();
USBKeys_Protocol = wValue; // 0 - Boot Mode, 1 - NKRO Mode
usb_send_in();
print("HID SET");
return;
}
}
}
if (bRequest == CDC_GET_LINE_CODING && bmRequestType == 0xA1) {
usb_wait_in_ready();
p = cdc_line_coding;
for (i=0; i<7; i++) {
UEDATX = *p++;
}
usb_send_in();
return;
}
if (bRequest == CDC_SET_LINE_CODING && bmRequestType == 0x21) {
usb_wait_receive_out();
p = cdc_line_coding;
for (i=0; i<7; i++) {
*p++ = UEDATX;
}
usb_ack_out();
usb_send_in();
return;
}
if (bRequest == CDC_SET_CONTROL_LINE_STATE && bmRequestType == 0x21) {
cdc_line_rtsdtr = wValue;
usb_wait_in_ready();
usb_send_in();
return;
}
if (bRequest == GET_STATUS) {
usb_wait_in_ready();
i = 0;
if (bmRequestType == 0x82) {
UENUM = wIndex;
if (UECONX & (1<<STALLRQ)) i = 1;
UENUM = 0;
}
UEDATX = i;
UEDATX = 0;
usb_send_in();
return;
}
if ((bRequest == CLEAR_FEATURE || bRequest == SET_FEATURE)
&& bmRequestType == 0x02 && wValue == 0) {
i = wIndex & 0x7F;
if (i >= 1 && i <= MAX_ENDPOINT) {
usb_send_in();
UENUM = i;
if (bRequest == SET_FEATURE) {
UECONX = (1<<STALLRQ)|(1<<EPEN);
} else {
UECONX = (1<<STALLRQC)|(1<<RSTDT)|(1<<EPEN);
UERST = (1 << i);
UERST = 0;
}
return;
}
}
}
UECONX = (1 << STALLRQ) | (1 << EPEN); // stall
}