Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/avr-capsense/scan_loop.c
Jacob Alexander 3d98028679 Removed a keyscan layer and added more debug information
- Added a print macro for colourful convenience
- Removed the usb_keymap variable as it is no longer needed
- Changed usb_dirty to keymap_change (more accurate description)
- Removed the dumpkeys function and now detect key changes much sooner as well as displaying error messages more often
- Added a warming up information message and removed its error status (as it's not an error)
2013-11-17 19:17:54 -05:00

1033 lines
22 KiB
C

/* Copyright (C) 2011-2013 by Joseph Makuch
* Additions by Jacob Alexander (2013)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3.0 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <led.h>
#include <print.h>
// Local Includes
#include "scan_loop.h"
// ----- Defines -----
// TODO dfj defines...needs commenting and maybe some cleaning...
#define MAX_PRESS_DELTA_MV 470
#define THRESHOLD_MV (MAX_PRESS_DELTA_MV >> 1)
//(2560 / (0x3ff/2)) ~= 5
#define MV_PER_ADC 5
// 5
#define THRESHOLD (THRESHOLD_MV / MV_PER_ADC)
#define BUMP_DETECTION 0
#define BUMP_THRESHOLD 0x50
#define BUMP_REST_US 1200
#define STROBE_SETTLE 1
#define MUX_SETTLE 1
#define TEST_KEY_STROBE (0x05)
#define TEST_KEY_MASK (1 << 0)
#define ADHSM 7
#define RIGHT_JUSTIFY 0
#define LEFT_JUSTIFY (0xff)
// set left or right justification here:
#define JUSTIFY_ADC RIGHT_JUSTIFY
#define ADLAR_MASK (1 << ADLAR)
#ifdef JUSTIFY_ADC
#define ADLAR_BITS ((ADLAR_MASK) & (JUSTIFY_ADC))
#else // defaults to right justification.
#define ADLAR_BITS 0
#endif
// full muxmask
#define FULL_MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2) | (1 << MUX3) | (1 << MUX4))
// F0-f7 pins only muxmask.
#define MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2))
// Strobe Masks
#define D_MASK (0xff)
#define E_MASK (0x03)
#define C_MASK (0xff)
// set ADC clock prescale
#define PRESCALE_MASK ((1 << ADPS0) | (1 << ADPS1) | (1 << ADPS2))
#define PRESCALE_SHIFT (ADPS0)
#define PRESCALE 3
// TODO Remove this define when unnecessary -HaaTa
#define STROBE_LINES 16
#define MUXES_COUNT 8
#define MUXES_COUNT_XSHIFT 3
#define WARMUP_LOOPS ( 1024 )
#define WARMUP_STOP (WARMUP_LOOPS - 1)
#define SAMPLES 10
#define SAMPLE_OFFSET ((SAMPLES) - MUXES_COUNT)
#define SAMPLE_CONTROL 3
// TODO Figure out calculation or best way to determine at startup -HaaTa
//#define DEFAULT_KEY_BASE 0xc8
#define DEFAULT_KEY_BASE 0x95
#define KEY_COUNT ((STROBE_LINES) * (MUXES_COUNT))
#define RECOVERY_CONTROL 1
#define RECOVERY_SOURCE 0
#define RECOVERY_SINK 2
#define ON 1
#define OFF 0
// mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
#define MUX_MIX 2
#define IDLE_COUNT_MASK 0xff
#define IDLE_COUNT_SHIFT 8
// av = (av << shift) - av + sample; av >>= shift
// e.g. 1 -> (av + sample) / 2 simple average of new and old
// 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new.
// 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new.
#define KEYS_AVERAGES_MIX_SHIFT 3
// ----- Macros -----
// Make sure we haven't overflowed the buffer
#define bufferAdd(byte) \
if ( KeyIndex_BufferUsed < KEYBOARD_BUFFER ) \
KeyIndex_Buffer[KeyIndex_BufferUsed++] = byte
// Select mux
#define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))
// ----- Variables -----
// Buffer used to inform the macro processing module which keys have been detected as pressed
volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
volatile uint8_t KeyIndex_BufferUsed;
// TODO dfj variables...needs cleaning up and commenting
volatile uint16_t full_av = 0;
uint8_t ze_strober = 0;
uint16_t samples [SAMPLES];
uint16_t adc_mux_averages [MUXES_COUNT];
uint16_t adc_strobe_averages[STROBE_LINES];
uint8_t cur_keymap[STROBE_LINES];
uint8_t keymap_change;
uint16_t threshold = 0x25; // HaaTa Hack -TODO
//uint16_t threshold = 0x16; // HaaTa Hack -TODO
//uint16_t threshold = THRESHOLD;
uint8_t column = 0;
uint16_t keys_averages_acc[KEY_COUNT];
uint16_t keys_averages[KEY_COUNT];
uint8_t full_samples[KEY_COUNT];
// TODO: change this to 'booting', then count down.
uint16_t boot_count = 0;
uint16_t idle_count = 0;
uint8_t idle = 1;
uint8_t error = 0;
uint16_t error_data = 0;
uint16_t mux_averages[MUXES_COUNT];
uint16_t strobe_averages[STROBE_LINES];
uint8_t dump_count = 0;
uint16_t db_delta = 0;
uint8_t db_sample = 0;
uint16_t db_threshold = 0;
// ----- Function Declarations -----
void dump( void );
void recovery( uint8_t on );
int sampleColumn( uint8_t column );
void setup_ADC( void );
void strobe_w( uint8_t strobe_num );
uint8_t testColumn( uint8_t strobe );
// ----- Functions -----
// Initial setup for cap sense controller
inline void scan_setup()
{
// TODO dfj code...needs cleanup + commenting...
setup_ADC();
DDRC = C_MASK;
PORTC = 0;
DDRD = D_MASK;
PORTD = 0;
DDRE = E_MASK;
PORTE = 0 ;
// TODO all this code should probably be in scan_resetKeyboard
for (int i=0; i < STROBE_LINES; ++i) {
cur_keymap[i] = 0;
}
for(int i=0; i < MUXES_COUNT; ++i) {
adc_mux_averages[i] = 0x20; // experimentally determined.
}
for(int i=0; i < STROBE_LINES; ++i) {
adc_strobe_averages[i] = 0x20; // yup.
}
for(int i=0; i < KEY_COUNT; ++i) {
keys_averages[i] = DEFAULT_KEY_BASE;
keys_averages_acc[i] = (DEFAULT_KEY_BASE);
}
/** warm things up a bit before we start collecting data, taking real samples. */
for(uint8_t i = 0; i < STROBE_LINES; ++i) {
sampleColumn(i);
}
// Reset the keyboard before scanning, we might be in a wierd state
// Also sets the KeyIndex_BufferUsed to 0
scan_resetKeyboard();
}
// Main Detection Loop
// This is where the important stuff happens
inline uint8_t scan_loop()
{
// TODO dfj code...needs commenting + cleanup...
uint8_t strober = 0;
uint32_t full_av_acc = 0;
for (strober = 0; strober < STROBE_LINES; ++strober)
{
uint8_t tries = 1;
while ( tries++ && sampleColumn( strober ) ) { tries &= 0x7; } // don't waste this one just because the last one was poop.
column = testColumn(strober);
idle |= column; // if column has any pressed keys, then we are not idle.
if( column != cur_keymap[strober] && ( boot_count >= WARMUP_LOOPS ) )
{
cur_keymap[strober] = column;
keymap_change = 1;
// The keypresses on this strobe are now know, send them right away
for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
{
if ( column & (1 << mux) )
{
uint8_t key = (strober << MUXES_COUNT_XSHIFT) + mux;
// Add to the Macro processing buffer
// Automatically handles converting to a USB code and sending off to the PC
//bufferAdd( key );
printHex( key );
print("\n");
}
}
}
idle |= keymap_change; // if any keys have changed inc. released, then we are not idle.
if ( error == 0x50 )
{
error_data |= (((uint16_t)strober) << 12);
}
uint8_t strobe_line = strober << MUXES_COUNT_XSHIFT;
for ( int i = 0; i < MUXES_COUNT; ++i )
{
// discard sketchy low bit, and meaningless high bits.
uint8_t sample = samples[SAMPLE_OFFSET + i] >> 1;
full_samples[strobe_line + i] = sample;
keys_averages_acc[strobe_line + i] += sample;
}
strobe_averages[strober] = 0;
for ( uint8_t i = SAMPLE_OFFSET; i < ( SAMPLE_OFFSET + MUXES_COUNT ); ++i )
{
full_av_acc += (samples[i]);
#ifdef COLLECT_STROBE_AVERAGES
mux_averages[i - SAMPLE_OFFSET] += samples[i];
strobe_averages[strober] += samples[i];
#endif
}
#ifdef COLLECT_STROBE_AVERAGES
adc_strobe_averages[strober] += strobe_averages[strober] >> 3;
adc_strobe_averages[strober] >>= 1;
/** test if we went negative. */
if ( ( adc_strobe_averages[strober] & 0xFF00 ) && ( boot_count >= WARMUP_LOOPS ) )
{
error = 0xf; error_data = adc_strobe_averages[strober];
}
#endif
} // for strober
#ifdef VERIFY_TEST_PAD
// verify test key is not down.
if ( ( cur_keymap[TEST_KEY_STROBE] & TEST_KEY_MASK ) )
{
error = 0x05;
error_data = cur_keymap[TEST_KEY_STROBE] << 8;
error_data += full_samples[TEST_KEY_STROBE * 8];
//threshold++;
}
#endif
#ifdef COLLECT_STROBE_AVERAGES
// calc mux averages.
if ( boot_count < WARMUP_LOOPS )
{
full_av += (full_av_acc >> (7));
full_av >>= 1;
full_av_acc = 0;
for ( int i = 0; i < MUXES_COUNT; ++i )
{
adc_mux_averages[i] = (adc_mux_averages[i] << MUX_MIX) - adc_mux_averages[i];
adc_mux_averages[i] += (mux_averages[i] >> 4);
adc_mux_averages[i] >>= MUX_MIX;
mux_averages[i] = 0;
}
}
#endif
/** aggregate if booting, or if idle;
* else, if not booting, check for dirty USB.
* */
idle_count++;
idle_count &= IDLE_COUNT_MASK;
// Warm up voltage references
if ( boot_count < WARMUP_LOOPS )
{
boot_count++;
switch ( boot_count )
{
// First loop
case 1:
// Show msg at first iteration only
info_msg("Warming up the voltage references");
break;
// Middle iterations
case 300:
case 600:
case 900:
case 1200:
print(".");
break;
// Last loop
case WARMUP_STOP:
print("\n");
info_msg("Warmup finished using ");
printInt16( WARMUP_LOOPS );
print(" iterations\n");
break;
}
}
else
{
// Reset accumulators and idle flag/counter
if ( keymap_change )
{
for ( uint8_t c = 0; c < KEY_COUNT; ++c ) { keys_averages_acc[c] = 0; }
idle_count = 0;
idle = 0;
keymap_change = 0;
}
if ( !idle_count )
{
if( idle )
{
// aggregate
for ( uint8_t i = 0; i < KEY_COUNT; ++i )
{
uint16_t acc = keys_averages_acc[i] >> IDLE_COUNT_SHIFT;
uint32_t av = keys_averages[i];
av = (av << KEYS_AVERAGES_MIX_SHIFT) - av + acc;
av >>= KEYS_AVERAGES_MIX_SHIFT;
keys_averages[i] = av;
keys_averages_acc[i] = 0;
}
}
if ( boot_count >= WARMUP_LOOPS )
{
dump();
}
sampleColumn(0x0); // to resync us if we dumped a mess 'o text.
}
}
// Error case, should not occur in normal operation
if ( error )
{
erro_msg("Problem detected... ");
// Keymap scan debug
for ( uint8_t i = 0; i < STROBE_LINES; ++i )
{
printHex(cur_keymap[i]);
print(" ");
}
print(" : ");
printHex(error);
error = 0;
print(" : ");
printHex(error_data);
error_data = 0;
// Display keymaps and other debug information if warmup completede
if ( boot_count >= WARMUP_LOOPS )
{
dump();
}
}
// Return non-zero if macro and USB processing should be delayed
// Macro processing will always run if returning 0
// USB processing only happens once the USB send timer expires, if it has not, scan_loop will be called
// after the macro processing has been completed
return 0;
}
// Reset Keyboard
void scan_resetKeyboard( void )
{
// Empty buffer, now that keyboard has been reset
KeyIndex_BufferUsed = 0;
}
// Send data to keyboard
// NOTE: Only used for converters, since the scan module shouldn't handle sending data in a controller
uint8_t scan_sendData( uint8_t dataPayload )
{
return 0;
}
// Reset/Hold keyboard
// NOTE: Only used for converters, not needed for full controllers
void scan_lockKeyboard( void )
{
}
// NOTE: Only used for converters, not needed for full controllers
void scan_unlockKeyboard( void )
{
}
// Signal KeyIndex_Buffer that it has been properly read
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
void scan_finishedWithBuffer( uint8_t sentKeys )
{
// Convenient place to clear the KeyIndex_Buffer
KeyIndex_BufferUsed = 0;
return;
}
// Signal KeyIndex_Buffer that it has been properly read and sent out by the USB module
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
void scan_finishedWithUSBBuffer( uint8_t sentKeys )
{
return;
}
void _delay_loop( uint8_t __count )
{
__asm__ volatile (
"1: dec %0" "\n\t"
"brne 1b"
: "=r" (__count)
: "0" (__count)
);
}
void setup_ADC()
{
// disable adc digital pins.
DIDR1 |= (1 << AIN0D) | (1<<AIN1D); // set disable on pins 1,0.
DDRF = 0x0;
PORTF = 0x0;
uint8_t mux = 0 & 0x1f; // 0 == first. // 0x1e = 1.1V ref.
// 0 = external aref 1,1 = 2.56V internal ref
uint8_t aref = ((1 << REFS1) | (1 << REFS0)) & ((1 << REFS1) | (1 << REFS0));
uint8_t adate = (1 << ADATE) & (1 << ADATE); // trigger enable
uint8_t trig = 0 & ((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2)); // 0 = free running
// ps2, ps1 := /64 ( 2^6 ) ps2 := /16 (2^4), ps1 := 4, ps0 :=2, PS1,PS0 := 8 (2^8)
uint8_t prescale = ( ((PRESCALE) << PRESCALE_SHIFT) & PRESCALE_MASK ); // 001 == 2^1 == 2
uint8_t hispeed = (1 << ADHSM);
uint8_t en_mux = (1 << ACME);
ADCSRA = (1 << ADEN) | prescale; // ADC enable
// select ref.
//ADMUX |= ((1 << REFS1) | (1 << REFS0)); // 2.56 V internal.
//ADMUX |= ((1 << REFS0) ); // Vcc with external cap.
//ADMUX &= ~((1 << REFS1) | (1 << REFS0)); // 0,0 : aref.
ADMUX = aref | mux | ADLAR_BITS;
// set free-running
ADCSRA |= adate; // trigger enable
ADCSRB = en_mux | hispeed | trig | (ADCSRB & ~((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2))); // trigger select free running
ADCSRA |= (1 << ADEN); // ADC enable
ADCSRA |= (1 << ADSC); // start conversions q
}
void recovery( uint8_t on )
{
DDRB |= (1 << RECOVERY_CONTROL);
PORTB &= ~(1 << RECOVERY_SINK); // SINK always zero
DDRB &= ~(1 << RECOVERY_SOURCE); // SOURCE high imp
if ( on )
{
// set strobes to sink to gnd.
DDRC |= C_MASK;
DDRD |= D_MASK;
DDRE |= E_MASK;
PORTC &= ~C_MASK;
PORTD &= ~D_MASK;
PORTE &= ~E_MASK;
DDRB |= (1 << RECOVERY_SINK); // SINK pull
PORTB |= (1 << RECOVERY_CONTROL);
PORTB |= (1 << RECOVERY_SOURCE); // SOURCE high
DDRB |= (1 << RECOVERY_SOURCE);
}
else
{
PORTB &= ~(1 << RECOVERY_CONTROL);
DDRB &= ~(1 << RECOVERY_SOURCE);
PORTB &= ~(1 << RECOVERY_SOURCE); // SOURCE low
DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp
}
}
void hold_sample( uint8_t on )
{
if ( !on )
{
PORTB |= (1 << SAMPLE_CONTROL);
DDRB |= (1 << SAMPLE_CONTROL);
}
else
{
DDRB |= (1 << SAMPLE_CONTROL);
PORTB &= ~(1 << SAMPLE_CONTROL);
}
}
void strobe_w( uint8_t strobe_num )
{
PORTC &= ~(C_MASK);
PORTD &= ~(D_MASK);
PORTE &= ~(E_MASK);
#ifdef SHORT_C
//strobe_num = 15 - strobe_num;
#endif
/*
printHex( strobe_num );
print(" ");
strobe_num = 9 - strobe_num;
printHex( strobe_num );
print("\n");
*/
switch(strobe_num) {
// XXX Kishsaver strobe (note that D0, D1 are not used)
case 0: PORTD |= (1 << 0); break;
case 1: PORTD |= (1 << 1); break;
case 2: PORTD |= (1 << 2); break;
case 3: PORTD |= (1 << 3); break;
case 4: PORTD |= (1 << 4); break;
case 5: PORTD |= (1 << 5); break;
// TODO REMOVEME
case 6: PORTD |= (1 << 6); break;
case 7: PORTD |= (1 << 7); break;
case 8: PORTE |= (1 << 0); break;
case 9: PORTE |= (1 << 1); break;
//case 15: PORTC |= (1 << 5); break; // Test strobe on kishsaver
#if 0
// XXX Kishsaver strobe (note that D0, D1 are not used)
case 0: PORTD |= (1 << 2); break;
case 1: PORTD |= (1 << 3); break;
case 2: PORTD |= (1 << 4); break;
case 3: PORTD |= (1 << 5); break;
// TODO REMOVEME
case 4: PORTD |= (1 << 6); break;
case 5: PORTD |= (1 << 7); break;
case 6: PORTE |= (1 << 0); break;
case 7: PORTE |= (1 << 1); break;
case 15: PORTC |= (1 << 5); break; // Test strobe on kishsaver
#endif
/*
#ifdef ALL_D
case 6: PORTD |= (1 << 6); break;
case 7: PORTD |= (1 << 7); break;
case 8: PORTC |= (1 << 0); break;
case 9: PORTC |= (1 << 1); break;
case 10: PORTC |= (1 << 2); break;
case 11: PORTC |= (1 << 3); break;
case 12: PORTC |= (1 << 4); break;
case 13: PORTC |= (1 << 5); break;
case 14: PORTC |= (1 << 6); break;
case 15: PORTC |= (1 << 7); break;
case 16: PORTE |= (1 << 0); break;
case 17: PORTE |= (1 << 1); break;
#else
#ifdef SHORT_D
case 6: PORTE |= (1 << 0); break;
case 7: PORTE |= (1 << 1); break;
case 8: PORTC |= (1 << 0); break;
case 9: PORTC |= (1 << 1); break;
case 10: PORTC |= (1 << 2); break;
case 11: PORTC |= (1 << 3); break;
case 12: PORTC |= (1 << 4); break;
case 13: PORTC |= (1 << 5); break;
case 14: PORTC |= (1 << 6); break;
case 15: PORTC |= (1 << 7); break;
#else
#ifdef SHORT_C
case 6: PORTD |= (1 << 6); break;
case 7: PORTD |= (1 << 7); break;
case 8: PORTE |= (1 << 0); break;
case 9: PORTE |= (1 << 1); break;
case 10: PORTC |= (1 << 0); break;
case 11: PORTC |= (1 << 1); break;
case 12: PORTC |= (1 << 2); break;
case 13: PORTC |= (1 << 3); break;
case 14: PORTC |= (1 << 4); break;
case 15: PORTC |= (1 << 5); break;
case 16: PORTC |= (1 << 6); break;
case 17: PORTC |= (1 << 7); break;
#endif
#endif
#endif
*/
default:
break;
}
#if 0 // New code from dfj -> still needs redoing for kishsaver and autodetection of strobes
#ifdef SHORT_C
strobe_num = 15 - strobe_num;
#endif
#ifdef SINGLE_COLUMN_TEST
strobe_num = 5;
#endif
switch(strobe_num) {
case 0: PORTD |= (1 << 0); DDRD &= ~(1 << 0); break;
case 1: PORTD |= (1 << 1); DDRD &= ~(1 << 1); break;
case 2: PORTD |= (1 << 2); DDRD &= ~(1 << 2); break;
case 3: PORTD |= (1 << 3); DDRD &= ~(1 << 3); break;
case 4: PORTD |= (1 << 4); DDRD &= ~(1 << 4); break;
case 5: PORTD |= (1 << 5); DDRD &= ~(1 << 5); break;
#ifdef ALL_D
case 6: PORTD |= (1 << 6); break;
case 7: PORTD |= (1 << 7); break;
case 8: PORTC |= (1 << 0); break;
case 9: PORTC |= (1 << 1); break;
case 10: PORTC |= (1 << 2); break;
case 11: PORTC |= (1 << 3); break;
case 12: PORTC |= (1 << 4); break;
case 13: PORTC |= (1 << 5); break;
case 14: PORTC |= (1 << 6); break;
case 15: PORTC |= (1 << 7); break;
case 16: PORTE |= (1 << 0); break;
case 17: PORTE |= (1 << 1); break;
#else
#ifdef SHORT_D
case 6: PORTE |= (1 << 0); break;
case 7: PORTE |= (1 << 1); break;
case 8: PORTC |= (1 << 0); break;
case 9: PORTC |= (1 << 1); break;
case 10: PORTC |= (1 << 2); break;
case 11: PORTC |= (1 << 3); break;
case 12: PORTC |= (1 << 4); break;
case 13: PORTC |= (1 << 5); break;
case 14: PORTC |= (1 << 6); break;
case 15: PORTC |= (1 << 7); break;
#else
#ifdef SHORT_C
case 6: PORTD |= (1 << 6); DDRD &= ~(1 << 6); break;
case 7: PORTD |= (1 << 7); DDRD &= ~(1 << 7); break;
case 8: PORTE |= (1 << 0); DDRE &= ~(1 << 0); break;
case 9: PORTE |= (1 << 1); DDRE &= ~(1 << 1); break;
case 10: PORTC |= (1 << 0); DDRC &= ~(1 << 0); break;
case 11: PORTC |= (1 << 1); DDRC &= ~(1 << 1); break;
case 12: PORTC |= (1 << 2); DDRC &= ~(1 << 2); break;
case 13: PORTC |= (1 << 3); DDRC &= ~(1 << 3); break;
case 14: PORTC |= (1 << 4); DDRC &= ~(1 << 4); break;
case 15: PORTC |= (1 << 5); DDRC &= ~(1 << 5); break;
case 16: PORTC |= (1 << 6); DDRC &= ~(1 << 6); break;
case 17: PORTC |= (1 << 7); DDRC &= ~(1 << 7); break;
#endif
#endif
#endif
default:
break;
}
#endif
}
inline uint16_t getADC(void)
{
ADCSRA |= (1 << ADIF); // clear int flag by writing 1.
//wait for last read to complete.
while ( !( ADCSRA & (1 << ADIF) ) );
return ADC; // return sample
}
int sampleColumn_8x( uint8_t column, uint16_t * buffer )
{
// ensure all probe lines are driven low, and chill for recovery delay.
ADCSRA |= (1 << ADEN) | (1 << ADSC); // enable and start conversions
PORTC &= ~C_MASK;
PORTD &= ~D_MASK;
PORTE &= ~E_MASK;
PORTF = 0;
DDRF = 0;
recovery(OFF);
strobe_w(column);
hold_sample(OFF);
SET_FULL_MUX(0);
for ( uint8_t i = 0; i < STROBE_SETTLE; ++i ) { getADC(); }
hold_sample(ON);
#undef MUX_SETTLE
#if (MUX_SETTLE)
for ( uint8_t mux = 0; mux < 8; ++mux )
{
SET_FULL_MUX(mux); // our sample will use this
// wait for mux to settle.
for ( uint8_t i = 0; i < MUX_SETTLE; ++i ) { getADC(); }
// retrieve current read.
buffer[mux] = getADC();
}
#else
uint8_t mux = 0;
SET_FULL_MUX(mux);
getADC(); // throw away; unknown mux.
do {
SET_FULL_MUX(mux + 1); // our *next* sample will use this
// retrieve current read.
buffer[mux] = getADC();
mux++;
} while (mux < 8);
#endif
hold_sample(OFF);
recovery(ON);
// turn off adc.
ADCSRA &= ~(1 << ADEN);
// pull all columns' strobe-lines low.
DDRC |= C_MASK;
DDRD |= D_MASK;
DDRE |= E_MASK;
PORTC &= ~C_MASK;
PORTD &= ~D_MASK;
PORTE &= ~E_MASK;
return 0;
}
int sampleColumn( uint8_t column )
{
int rval = 0;
rval = sampleColumn_8x( column, samples + SAMPLE_OFFSET );
#if (BUMP_DETECTION)
for ( uint8_t i = 0; i < 8; ++i )
{
if ( samples[SAMPLE_OFFSET + i] - adc_mux_averages[i] > BUMP_THRESHOLD )
{
// was a hump
_delay_us(BUMP_REST_US);
rval++;
error = 0x50;
error_data = samples[SAMPLE_OFFSET +i]; // | ((uint16_t)i << 8);
return rval;
}
}
#endif
return rval;
}
uint8_t testColumn( uint8_t strobe )
{
uint8_t column = 0;
uint8_t bit = 1;
for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
{
uint16_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + i];
if ( (db_sample = samples[SAMPLE_OFFSET + i] >> 1) > (db_threshold = threshold) + (db_delta = delta) )
{
column |= bit;
}
#ifdef THRESHOLD_VERIFICATION
if ( db_sample > 0xA0 )
{
printHex( db_sample );
print(" : ");
printHex( db_threshold );
print(" : ");
printHex( db_delta );
print(" :: ");
printHex( column );
print(" : ");
printHex( strobe );
print(NL);
}
#endif
bit <<= 1;
}
return column;
}
void dump(void) {
#ifdef DEBUG_FULL_SAMPLES_AVERAGES
// we don't want to debug-out during the measurements.
if ( !dump_count )
{
// Averages currently set per key
for ( int i = 0; i < KEY_COUNT; ++i )
{
if ( !(i & 0x0f) )
{
print("\n");
}
else if ( !(i & 0x07) )
{
print(" ");
}
print(" ");
printHex( keys_averages[i] );
}
print("\n");
// Previously read full ADC scans?
for ( int i = 0; i< KEY_COUNT; ++i)
{
if ( !(i & 0x0f) )
{
print("\n");
}
else if ( !(i & 0x07) )
{
print(" ");
}
print(" ");
printHex(full_samples[i]);
}
}
#endif
#ifdef DEBUG_STROBE_SAMPLES_AVERAGES
// Per strobe information
uint8_t cur_strober = ze_strober;
print("\n");
printHex(cur_strober);
// Previously read ADC scans on current strobe
print(" :");
for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
{
print(" ");
printHex(full_samples[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
}
// Averages current set on current strobe
print(" :");
for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
{
print(" ");
printHex(keys_averages[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
}
#endif
#ifdef DEBUG_DELTA_SAMPLE_THRESHOLD
print("\n");
printHex( db_delta );
print(" ");
printHex( db_sample );
print(" ");
printHex( db_threshold );
print(" ");
printHex( column );
#endif
#ifdef DEBUG_USB_KEYMAP
print("\n ");
// Current keymap values
for ( uint8_t i = 0; i < STROBE_LINES; ++i )
{
printHex(cur_keymap[i]);
print(" ");
}
#endif
ze_strober++;
ze_strober &= 0xf;
dump_count++;
dump_count &= 0x0f;
}