59d425ccfe
- Now enabled by default - Added protection around remote jumps
1858 righe
52 KiB
C
1858 righe
52 KiB
C
/* Copyright (C) 2014-2015 by Jacob Alexander
|
|
*
|
|
* This file is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this file. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// ----- Includes -----
|
|
|
|
// Compiler Includes
|
|
#include <Lib/MacroLib.h>
|
|
|
|
// Project Includes
|
|
#include <cli.h>
|
|
#include <led.h>
|
|
#include <print.h>
|
|
#include <scan_loop.h>
|
|
|
|
// Keymaps
|
|
#include "usb_hid.h"
|
|
#include <generatedKeymap.h> // Generated using kll at compile time, in build directory
|
|
|
|
// Connect Includes
|
|
#if defined(ConnectEnabled_define)
|
|
#include <connect_scan.h>
|
|
#endif
|
|
|
|
// Local Includes
|
|
#include "macro.h"
|
|
|
|
|
|
|
|
// ----- Function Declarations -----
|
|
|
|
void cliFunc_capList ( char* args );
|
|
void cliFunc_capSelect ( char* args );
|
|
void cliFunc_keyHold ( char* args );
|
|
void cliFunc_keyPress ( char* args );
|
|
void cliFunc_keyRelease( char* args );
|
|
void cliFunc_layerDebug( char* args );
|
|
void cliFunc_layerList ( char* args );
|
|
void cliFunc_layerState( char* args );
|
|
void cliFunc_macroDebug( char* args );
|
|
void cliFunc_macroList ( char* args );
|
|
void cliFunc_macroProc ( char* args );
|
|
void cliFunc_macroShow ( char* args );
|
|
void cliFunc_macroStep ( char* args );
|
|
|
|
|
|
|
|
// ----- Enums -----
|
|
|
|
// Bit positions are important, passes (correct key) always trump incorrect key votes
|
|
typedef enum TriggerMacroVote {
|
|
TriggerMacroVote_Release = 0x10, // Correct key
|
|
TriggerMacroVote_PassRelease = 0x18, // Correct key (both pass and release)
|
|
TriggerMacroVote_Pass = 0x8, // Correct key
|
|
TriggerMacroVote_DoNothingRelease = 0x4, // Incorrect key
|
|
TriggerMacroVote_DoNothing = 0x2, // Incorrect key
|
|
TriggerMacroVote_Fail = 0x1, // Incorrect key
|
|
TriggerMacroVote_Invalid = 0x0, // Invalid state
|
|
} TriggerMacroVote;
|
|
|
|
typedef enum TriggerMacroEval {
|
|
TriggerMacroEval_DoNothing,
|
|
TriggerMacroEval_DoResult,
|
|
TriggerMacroEval_DoResultAndRemove,
|
|
TriggerMacroEval_Remove,
|
|
} TriggerMacroEval;
|
|
|
|
typedef enum ResultMacroEval {
|
|
ResultMacroEval_DoNothing,
|
|
ResultMacroEval_Remove,
|
|
} ResultMacroEval;
|
|
|
|
|
|
|
|
// ----- Variables -----
|
|
|
|
// Macro Module command dictionary
|
|
CLIDict_Entry( capList, "Prints an indexed list of all non USB keycode capabilities." );
|
|
CLIDict_Entry( capSelect, "Triggers the specified capabilities. First two args are state and stateType." NL "\t\t\033[35mK11\033[0m Keyboard Capability 0x0B" );
|
|
CLIDict_Entry( keyHold, "Send key-hold events to the macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A" );
|
|
CLIDict_Entry( keyPress, "Send key-press events to the macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A" );
|
|
CLIDict_Entry( keyRelease, "Send key-release event to macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A" );
|
|
CLIDict_Entry( layerDebug, "Layer debug mode. Shows layer stack and any changes." );
|
|
CLIDict_Entry( layerList, "List available layers." );
|
|
CLIDict_Entry( layerState, "Modify specified indexed layer state <layer> <state byte>." NL "\t\t\033[35mL2\033[0m Indexed Layer 0x02" NL "\t\t0 Off, 1 Shift, 2 Latch, 4 Lock States" );
|
|
CLIDict_Entry( macroDebug, "Disables/Enables sending USB keycodes to the Output Module and prints U/K codes." );
|
|
CLIDict_Entry( macroList, "List the defined trigger and result macros." );
|
|
CLIDict_Entry( macroProc, "Pause/Resume macro processing." );
|
|
CLIDict_Entry( macroShow, "Show the macro corresponding to the given index." NL "\t\t\033[35mT16\033[0m Indexed Trigger Macro 0x10, \033[35mR12\033[0m Indexed Result Macro 0x0C" );
|
|
CLIDict_Entry( macroStep, "Do N macro processing steps. Defaults to 1." );
|
|
|
|
CLIDict_Def( macroCLIDict, "Macro Module Commands" ) = {
|
|
CLIDict_Item( capList ),
|
|
CLIDict_Item( capSelect ),
|
|
CLIDict_Item( keyHold ),
|
|
CLIDict_Item( keyPress ),
|
|
CLIDict_Item( keyRelease ),
|
|
CLIDict_Item( layerDebug ),
|
|
CLIDict_Item( layerList ),
|
|
CLIDict_Item( layerState ),
|
|
CLIDict_Item( macroDebug ),
|
|
CLIDict_Item( macroList ),
|
|
CLIDict_Item( macroProc ),
|
|
CLIDict_Item( macroShow ),
|
|
CLIDict_Item( macroStep ),
|
|
{ 0, 0, 0 } // Null entry for dictionary end
|
|
};
|
|
|
|
|
|
// Layer debug flag - If set, displays any changes to layers and the full layer stack on change
|
|
uint8_t layerDebugMode = 0;
|
|
|
|
// Macro debug flag - If set, clears the USB Buffers after signalling processing completion
|
|
uint8_t macroDebugMode = 0;
|
|
|
|
// Macro pause flag - If set, the macro module pauses processing, unless unset, or the step counter is non-zero
|
|
uint8_t macroPauseMode = 0;
|
|
|
|
// Macro step counter - If non-zero, the step counter counts down every time the macro module does one processing loop
|
|
uint16_t macroStepCounter = 0;
|
|
|
|
|
|
// Key Trigger List Buffer and Layer Cache
|
|
// The layer cache is set on press only, hold and release events refer to the value set on press
|
|
TriggerGuide macroTriggerListBuffer[ MaxScanCode ];
|
|
uint8_t macroTriggerListBufferSize = 0;
|
|
var_uint_t macroTriggerListLayerCache[ MaxScanCode ];
|
|
|
|
// Pending Trigger Macro Index List
|
|
// * Any trigger macros that need processing from a previous macro processing loop
|
|
// TODO, figure out a good way to scale this array size without wasting too much memory, but not rejecting macros
|
|
// Possibly could be calculated by the KLL compiler
|
|
// XXX It may be possible to calculate the worst case using the KLL compiler
|
|
uint16_t macroTriggerMacroPendingList[ TriggerMacroNum ] = { 0 };
|
|
uint16_t macroTriggerMacroPendingListSize = 0;
|
|
|
|
// Layer Index Stack
|
|
// * When modifying layer state and the state is non-0x0, the stack must be adjusted
|
|
uint16_t macroLayerIndexStack[ LayerNum + 1 ] = { 0 };
|
|
uint16_t macroLayerIndexStackSize = 0;
|
|
|
|
// Pending Result Macro Index List
|
|
// * Any result macro that needs processing from a previous macro processing loop
|
|
uint16_t macroResultMacroPendingList[ ResultMacroNum ] = { 0 };
|
|
uint16_t macroResultMacroPendingListSize = 0;
|
|
|
|
// Interconnect ScanCode Cache
|
|
#if defined(ConnectEnabled_define)
|
|
// TODO This can be shrunk by the size of the max node 0 ScanCode
|
|
TriggerGuide macroInterconnectCache[ MaxScanCode ];
|
|
uint8_t macroInterconnectCacheSize = 0;
|
|
#endif
|
|
|
|
|
|
|
|
// ----- Capabilities -----
|
|
|
|
// Sets the given layer with the specified layerState
|
|
void Macro_layerState( uint8_t state, uint8_t stateType, uint16_t layer, uint8_t layerState )
|
|
{
|
|
// Ignore if layer does not exist or trying to manipulate layer 0/Default layer
|
|
if ( layer >= LayerNum || layer == 0 )
|
|
return;
|
|
|
|
// Is layer in the LayerIndexStack?
|
|
uint8_t inLayerIndexStack = 0;
|
|
uint16_t stackItem = 0;
|
|
while ( stackItem < macroLayerIndexStackSize )
|
|
{
|
|
// Flag if layer is already in the LayerIndexStack
|
|
if ( macroLayerIndexStack[ stackItem ] == layer )
|
|
{
|
|
inLayerIndexStack = 1;
|
|
break;
|
|
}
|
|
|
|
// Increment to next item
|
|
stackItem++;
|
|
}
|
|
|
|
// Toggle Layer State Byte
|
|
if ( LayerState[ layer ] & layerState )
|
|
{
|
|
// Unset
|
|
LayerState[ layer ] &= ~layerState;
|
|
}
|
|
else
|
|
{
|
|
// Set
|
|
LayerState[ layer ] |= layerState;
|
|
}
|
|
|
|
// If the layer was not in the LayerIndexStack add it
|
|
if ( !inLayerIndexStack )
|
|
{
|
|
macroLayerIndexStack[ macroLayerIndexStackSize++ ] = layer;
|
|
}
|
|
|
|
// If the layer is in the LayerIndexStack and the state is 0x00, remove
|
|
if ( LayerState[ layer ] == 0x00 && inLayerIndexStack )
|
|
{
|
|
// Remove the layer from the LayerIndexStack
|
|
// Using the already positioned stackItem variable from the loop above
|
|
while ( stackItem < macroLayerIndexStackSize )
|
|
{
|
|
macroLayerIndexStack[ stackItem ] = macroLayerIndexStack[ stackItem + 1 ];
|
|
stackItem++;
|
|
}
|
|
|
|
// Reduce LayerIndexStack size
|
|
macroLayerIndexStackSize--;
|
|
}
|
|
|
|
// Layer Debug Mode
|
|
if ( layerDebugMode )
|
|
{
|
|
dbug_msg("Layer ");
|
|
|
|
// Iterate over each of the layers displaying the state as a hex value
|
|
for ( uint16_t index = 0; index < LayerNum; index++ )
|
|
{
|
|
printHex_op( LayerState[ index ], 0 );
|
|
}
|
|
|
|
// Always show the default layer (it's always 0)
|
|
print(" 0");
|
|
|
|
// Iterate over the layer stack starting from the bottom of the stack
|
|
for ( uint16_t index = macroLayerIndexStackSize; index > 0; index-- )
|
|
{
|
|
print(":");
|
|
printHex_op( macroLayerIndexStack[ index - 1 ], 0 );
|
|
}
|
|
|
|
print( NL );
|
|
}
|
|
}
|
|
|
|
// Modifies the specified Layer control byte
|
|
// Argument #1: Layer Index -> uint16_t
|
|
// Argument #2: Layer State -> uint8_t
|
|
void Macro_layerState_capability( uint8_t state, uint8_t stateType, uint8_t *args )
|
|
{
|
|
// Display capability name
|
|
if ( stateType == 0xFF && state == 0xFF )
|
|
{
|
|
print("Macro_layerState(layerIndex,layerState)");
|
|
return;
|
|
}
|
|
|
|
// Only use capability on press or release
|
|
// TODO Analog
|
|
// XXX This may cause issues, might be better to implement state table here to decide -HaaTa
|
|
if ( stateType == 0x00 && state == 0x02 ) // Hold condition
|
|
return;
|
|
|
|
// Get layer index from arguments
|
|
// Cast pointer to uint8_t to uint16_t then access that memory location
|
|
uint16_t layer = *(uint16_t*)(&args[0]);
|
|
|
|
// Get layer toggle byte
|
|
uint8_t layerState = args[ sizeof(uint16_t) ];
|
|
|
|
Macro_layerState( state, stateType, layer, layerState );
|
|
}
|
|
|
|
|
|
// Latches given layer
|
|
// Argument #1: Layer Index -> uint16_t
|
|
void Macro_layerLatch_capability( uint8_t state, uint8_t stateType, uint8_t *args )
|
|
{
|
|
// Display capability name
|
|
if ( stateType == 0xFF && state == 0xFF )
|
|
{
|
|
print("Macro_layerLatch(layerIndex)");
|
|
return;
|
|
}
|
|
|
|
// Only use capability on press
|
|
// TODO Analog
|
|
if ( stateType == 0x00 && state != 0x03 ) // Only on release
|
|
return;
|
|
|
|
// Get layer index from arguments
|
|
// Cast pointer to uint8_t to uint16_t then access that memory location
|
|
uint16_t layer = *(uint16_t*)(&args[0]);
|
|
|
|
Macro_layerState( state, stateType, layer, 0x02 );
|
|
}
|
|
|
|
|
|
// Locks given layer
|
|
// Argument #1: Layer Index -> uint16_t
|
|
void Macro_layerLock_capability( uint8_t state, uint8_t stateType, uint8_t *args )
|
|
{
|
|
// Display capability name
|
|
if ( stateType == 0xFF && state == 0xFF )
|
|
{
|
|
print("Macro_layerLock(layerIndex)");
|
|
return;
|
|
}
|
|
|
|
// Only use capability on press
|
|
// TODO Analog
|
|
// XXX Could also be on release, but that's sorta dumb -HaaTa
|
|
if ( stateType == 0x00 && state != 0x01 ) // All normal key conditions except press
|
|
return;
|
|
|
|
// Get layer index from arguments
|
|
// Cast pointer to uint8_t to uint16_t then access that memory location
|
|
uint16_t layer = *(uint16_t*)(&args[0]);
|
|
|
|
Macro_layerState( state, stateType, layer, 0x04 );
|
|
}
|
|
|
|
|
|
// Shifts given layer
|
|
// Argument #1: Layer Index -> uint16_t
|
|
void Macro_layerShift_capability( uint8_t state, uint8_t stateType, uint8_t *args )
|
|
{
|
|
// Display capability name
|
|
if ( stateType == 0xFF && state == 0xFF )
|
|
{
|
|
print("Macro_layerShift(layerIndex)");
|
|
return;
|
|
}
|
|
|
|
// Only use capability on press or release
|
|
// TODO Analog
|
|
if ( stateType == 0x00 && ( state == 0x00 || state == 0x02 ) ) // Only pass press or release conditions
|
|
return;
|
|
|
|
// Get layer index from arguments
|
|
// Cast pointer to uint8_t to uint16_t then access that memory location
|
|
uint16_t layer = *(uint16_t*)(&args[0]);
|
|
|
|
Macro_layerState( state, stateType, layer, 0x01 );
|
|
}
|
|
|
|
|
|
// Rotate layer to next/previous
|
|
// Uses state variable to keep track of the current layer position
|
|
// Layers are still evaluated using the layer stack
|
|
uint16_t Macro_rotationLayer;
|
|
void Macro_layerRotate_capability( uint8_t state, uint8_t stateType, uint8_t *args )
|
|
{
|
|
// Display capability name
|
|
if ( stateType == 0xFF && state == 0xFF )
|
|
{
|
|
print("Macro_layerRotate(previous)");
|
|
return;
|
|
}
|
|
|
|
// Only use capability on press
|
|
// TODO Analog
|
|
// XXX Could also be on release, but that's sorta dumb -HaaTa
|
|
if ( stateType == 0x00 && state != 0x01 ) // All normal key conditions except press
|
|
return;
|
|
|
|
// Unset previous rotation layer if not 0
|
|
if ( Macro_rotationLayer != 0 )
|
|
{
|
|
Macro_layerState( state, stateType, Macro_rotationLayer, 0x04 );
|
|
}
|
|
|
|
// Get direction of rotation, 0, next, non-zero previous
|
|
uint8_t direction = *args;
|
|
|
|
// Next
|
|
if ( !direction )
|
|
{
|
|
Macro_rotationLayer++;
|
|
|
|
// Invalid layer
|
|
if ( Macro_rotationLayer >= LayerNum )
|
|
Macro_rotationLayer = 0;
|
|
}
|
|
// Previous
|
|
else
|
|
{
|
|
Macro_rotationLayer--;
|
|
|
|
// Layer wrap
|
|
if ( Macro_rotationLayer >= LayerNum )
|
|
Macro_rotationLayer = LayerNum - 1;
|
|
}
|
|
|
|
// Toggle the computed layer rotation
|
|
Macro_layerState( state, stateType, Macro_rotationLayer, 0x04 );
|
|
}
|
|
|
|
|
|
|
|
// ----- Functions -----
|
|
|
|
// Looks up the trigger list for the given scan code (from the active layer)
|
|
// NOTE: Calling function must handle the NULL pointer case
|
|
nat_ptr_t *Macro_layerLookup( TriggerGuide *guide, uint8_t latch_expire )
|
|
{
|
|
uint8_t scanCode = guide->scanCode;
|
|
|
|
// TODO Analog
|
|
// If a normal key, and not pressed, do a layer cache lookup
|
|
if ( guide->type == 0x00 && guide->state != 0x01 )
|
|
{
|
|
// Cached layer
|
|
var_uint_t cachedLayer = macroTriggerListLayerCache[ scanCode ];
|
|
|
|
// Lookup map, then layer
|
|
nat_ptr_t **map = (nat_ptr_t**)LayerIndex[ cachedLayer ].triggerMap;
|
|
const Layer *layer = &LayerIndex[ cachedLayer ];
|
|
|
|
// Cache trigger list before attempting to expire latch
|
|
nat_ptr_t *trigger_list = map[ scanCode - layer->first ];
|
|
|
|
// Check if latch has been pressed for this layer
|
|
uint8_t latch = LayerState[ cachedLayer ] & 0x02;
|
|
if ( latch && latch_expire )
|
|
{
|
|
Macro_layerState( 0, 0, cachedLayer, 0x02 );
|
|
#if defined(ConnectEnabled_define) && defined(LCDEnabled_define)
|
|
// Evaluate the layerStack capability if available (LCD + Interconnect)
|
|
extern void LCD_layerStack_capability( uint8_t state, uint8_t stateType, uint8_t *args );
|
|
LCD_layerStack_capability( 0, 0, 0 );
|
|
#endif
|
|
}
|
|
|
|
return trigger_list;
|
|
}
|
|
|
|
// If no trigger macro is defined at the given layer, fallthrough to the next layer
|
|
for ( uint16_t layerIndex = macroLayerIndexStackSize; layerIndex != 0xFFFF; layerIndex-- )
|
|
{
|
|
// Lookup Layer
|
|
const Layer *layer = &LayerIndex[ macroLayerIndexStack[ layerIndex ] ];
|
|
|
|
// Check if latch has been pressed for this layer
|
|
// XXX Regardless of whether a key is found, the latch is removed on first lookup
|
|
uint8_t latch = LayerState[ macroLayerIndexStack[ layerIndex ] ] & 0x02;
|
|
if ( latch && latch_expire )
|
|
{
|
|
Macro_layerState( 0, 0, macroLayerIndexStack[ layerIndex ], 0x02 );
|
|
}
|
|
|
|
// Only use layer, if state is valid
|
|
// XOR each of the state bits
|
|
// If only two are enabled, do not use this state
|
|
if ( (LayerState[ macroLayerIndexStack[ layerIndex ] ] & 0x01) ^ (latch>>1) ^ ((LayerState[ macroLayerIndexStack[ layerIndex ] ] & 0x04)>>2) )
|
|
{
|
|
// Lookup layer
|
|
nat_ptr_t **map = (nat_ptr_t**)layer->triggerMap;
|
|
|
|
// Determine if layer has key defined
|
|
// Make sure scanCode is between layer first and last scancodes
|
|
if ( map != 0
|
|
&& scanCode <= layer->last
|
|
&& scanCode >= layer->first
|
|
&& *map[ scanCode - layer->first ] != 0 )
|
|
{
|
|
// Set the layer cache
|
|
macroTriggerListLayerCache[ scanCode ] = macroLayerIndexStack[ layerIndex ];
|
|
|
|
return map[ scanCode - layer->first ];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Do lookup on default layer
|
|
nat_ptr_t **map = (nat_ptr_t**)LayerIndex[0].triggerMap;
|
|
|
|
// Lookup default layer
|
|
const Layer *layer = &LayerIndex[0];
|
|
|
|
// Make sure scanCode is between layer first and last scancodes
|
|
if ( map != 0
|
|
&& scanCode <= layer->last
|
|
&& scanCode >= layer->first
|
|
&& *map[ scanCode - layer->first ] != 0 )
|
|
{
|
|
// Set the layer cache to default map
|
|
macroTriggerListLayerCache[ scanCode ] = 0;
|
|
|
|
return map[ scanCode - layer->first ];
|
|
}
|
|
|
|
// Otherwise no defined Trigger Macro
|
|
erro_msg("Scan Code has no defined Trigger Macro: ");
|
|
printHex( scanCode );
|
|
print( NL );
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Add an interconnect ScanCode
|
|
// These are handled differently (less information is sent, hold/off states must be assumed)
|
|
#if defined(ConnectEnabled_define)
|
|
inline void Macro_interconnectAdd( void *trigger_ptr )
|
|
{
|
|
TriggerGuide *trigger = (TriggerGuide*)trigger_ptr;
|
|
|
|
// Error checking
|
|
uint8_t error = 0;
|
|
switch ( trigger->type )
|
|
{
|
|
case 0x00: // Normal key
|
|
switch ( trigger->state )
|
|
{
|
|
case 0x00:
|
|
case 0x01:
|
|
case 0x02:
|
|
case 0x03:
|
|
break;
|
|
default:
|
|
erro_msg("Invalid key state - ");
|
|
error = 1;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
// Invalid TriggerGuide type
|
|
default:
|
|
erro_msg("Invalid type - ");
|
|
error = 1;
|
|
break;
|
|
}
|
|
|
|
// Check if ScanCode is out of range
|
|
if ( trigger->scanCode > MaxScanCode )
|
|
{
|
|
warn_msg("ScanCode is out of range/not defined - ");
|
|
error = 1;
|
|
}
|
|
|
|
// Display TriggerGuide
|
|
if ( error )
|
|
{
|
|
printHex( trigger->type );
|
|
print(" ");
|
|
printHex( trigger->state );
|
|
print(" ");
|
|
printHex( trigger->scanCode );
|
|
print( NL );
|
|
return;
|
|
}
|
|
|
|
// Add trigger to the Interconnect Cache
|
|
// During each processing loop, a scancode may be re-added depending on it's state
|
|
for ( uint8_t c = 0; c < macroInterconnectCacheSize; c++ )
|
|
{
|
|
// Check if the same ScanCode
|
|
if ( macroInterconnectCache[ c ].scanCode == trigger->scanCode )
|
|
{
|
|
// Update the state
|
|
macroInterconnectCache[ c ].state = trigger->state;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If not in the list, add it
|
|
macroInterconnectCache[ macroInterconnectCacheSize++ ] = *trigger;
|
|
}
|
|
#endif
|
|
|
|
|
|
// Update the scancode key state
|
|
// States:
|
|
// * 0x00 - Off
|
|
// * 0x01 - Pressed
|
|
// * 0x02 - Held
|
|
// * 0x03 - Released
|
|
// * 0x04 - Unpressed (this is currently ignored)
|
|
inline void Macro_keyState( uint8_t scanCode, uint8_t state )
|
|
{
|
|
#if defined(ConnectEnabled_define)
|
|
// Only compile in if a Connect node module is available
|
|
if ( !Connect_master )
|
|
{
|
|
// ScanCodes are only added if there was a state change (on/off)
|
|
switch ( state )
|
|
{
|
|
case 0x00: // Off
|
|
case 0x02: // Held
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Only add to macro trigger list if one of three states
|
|
switch ( state )
|
|
{
|
|
case 0x01: // Pressed
|
|
case 0x02: // Held
|
|
case 0x03: // Released
|
|
// Check if ScanCode is out of range
|
|
if ( scanCode > MaxScanCode )
|
|
{
|
|
warn_msg("ScanCode is out of range/not defined: ");
|
|
printHex( scanCode );
|
|
print( NL );
|
|
return;
|
|
}
|
|
|
|
macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = scanCode;
|
|
macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state;
|
|
macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x00; // Normal key
|
|
macroTriggerListBufferSize++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
// Update the scancode analog state
|
|
// States:
|
|
// * 0x00 - Off
|
|
// * 0x01 - Released
|
|
// * 0x02-0xFF - Analog value (low to high)
|
|
inline void Macro_analogState( uint8_t scanCode, uint8_t state )
|
|
{
|
|
// Only add to macro trigger list if non-off
|
|
// TODO Handle change for interconnect
|
|
if ( state != 0x00 )
|
|
{
|
|
// Check if ScanCode is out of range
|
|
if ( scanCode > MaxScanCode )
|
|
{
|
|
warn_msg("ScanCode is out of range/not defined: ");
|
|
printHex( scanCode );
|
|
print( NL );
|
|
return;
|
|
}
|
|
|
|
macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = scanCode;
|
|
macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state;
|
|
macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x02; // Analog key
|
|
macroTriggerListBufferSize++;
|
|
}
|
|
}
|
|
|
|
|
|
// Update led state
|
|
// States:
|
|
// * 0x00 - Off
|
|
// * 0x01 - On
|
|
inline void Macro_ledState( uint8_t ledCode, uint8_t state )
|
|
{
|
|
// Only add to macro trigger list if non-off
|
|
// TODO Handle change for interconnect
|
|
if ( state != 0x00 )
|
|
{
|
|
// Check if LedCode is out of range
|
|
// TODO
|
|
|
|
macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = ledCode;
|
|
macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state;
|
|
macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x01; // LED key
|
|
macroTriggerListBufferSize++;
|
|
}
|
|
}
|
|
|
|
|
|
// Append result macro to pending list, checking for duplicates
|
|
// Do nothing if duplicate
|
|
inline void Macro_appendResultMacroToPendingList( const TriggerMacro *triggerMacro )
|
|
{
|
|
// Lookup result macro index
|
|
var_uint_t resultMacroIndex = triggerMacro->result;
|
|
|
|
// Iterate through result macro pending list, making sure this macro hasn't been added yet
|
|
for ( var_uint_t macro = 0; macro < macroResultMacroPendingListSize; macro++ )
|
|
{
|
|
// If duplicate found, do nothing
|
|
if ( macroResultMacroPendingList[ macro ] == resultMacroIndex )
|
|
return;
|
|
}
|
|
|
|
// No duplicates found, add to pending list
|
|
macroResultMacroPendingList[ macroResultMacroPendingListSize++ ] = resultMacroIndex;
|
|
|
|
// Lookup scanCode of the last key in the last combo
|
|
var_uint_t pos = 0;
|
|
for ( uint8_t comboLength = triggerMacro->guide[0]; comboLength > 0; )
|
|
{
|
|
pos += TriggerGuideSize * comboLength + 1;
|
|
comboLength = triggerMacro->guide[ pos ];
|
|
}
|
|
|
|
uint8_t scanCode = ((TriggerGuide*)&triggerMacro->guide[ pos - TriggerGuideSize ])->scanCode;
|
|
|
|
// Lookup scanCode in buffer list for the current state and stateType
|
|
for ( uint8_t keyIndex = 0; keyIndex < macroTriggerListBufferSize; keyIndex++ )
|
|
{
|
|
if ( macroTriggerListBuffer[ keyIndex ].scanCode == scanCode )
|
|
{
|
|
ResultMacroRecordList[ resultMacroIndex ].state = macroTriggerListBuffer[ keyIndex ].state;
|
|
ResultMacroRecordList[ resultMacroIndex ].stateType = macroTriggerListBuffer[ keyIndex ].type;
|
|
}
|
|
}
|
|
|
|
// Reset the macro position
|
|
ResultMacroRecordList[ resultMacroIndex ].pos = 0;
|
|
}
|
|
|
|
|
|
// Determine if long ResultMacro (more than 1 seqence element)
|
|
inline uint8_t Macro_isLongResultMacro( const ResultMacro *macro )
|
|
{
|
|
// Check the second sequence combo length
|
|
// If non-zero return non-zero (long sequence)
|
|
// 0 otherwise (short sequence)
|
|
var_uint_t position = 1;
|
|
for ( var_uint_t result = 0; result < macro->guide[0]; result++ )
|
|
position += ResultGuideSize( (ResultGuide*)¯o->guide[ position ] );
|
|
return macro->guide[ position ];
|
|
}
|
|
|
|
|
|
// Determine if long TriggerMacro (more than 1 sequence element)
|
|
inline uint8_t Macro_isLongTriggerMacro( const TriggerMacro *macro )
|
|
{
|
|
// Check the second sequence combo length
|
|
// If non-zero return non-zero (long sequence)
|
|
// 0 otherwise (short sequence)
|
|
return macro->guide[ macro->guide[0] * TriggerGuideSize + 1 ];
|
|
}
|
|
|
|
|
|
// Votes on the given key vs. guide, short macros
|
|
inline TriggerMacroVote Macro_evalShortTriggerMacroVote( TriggerGuide *key, TriggerGuide *guide )
|
|
{
|
|
// Depending on key type
|
|
switch ( guide->type )
|
|
{
|
|
// Normal State Type
|
|
case 0x00:
|
|
// For short TriggerMacros completely ignore incorrect keys
|
|
if ( guide->scanCode == key->scanCode )
|
|
{
|
|
switch ( key->state )
|
|
{
|
|
// Correct key, pressed, possible passing
|
|
case 0x01:
|
|
return TriggerMacroVote_Pass;
|
|
|
|
// Correct key, held, possible passing or release
|
|
case 0x02:
|
|
return TriggerMacroVote_PassRelease;
|
|
|
|
// Correct key, released, possible release
|
|
case 0x03:
|
|
return TriggerMacroVote_Release;
|
|
}
|
|
}
|
|
|
|
return TriggerMacroVote_DoNothing;
|
|
|
|
// LED State Type
|
|
case 0x01:
|
|
erro_print("LED State Type - Not implemented...");
|
|
break;
|
|
|
|
// Analog State Type
|
|
case 0x02:
|
|
erro_print("Analog State Type - Not implemented...");
|
|
break;
|
|
|
|
// Invalid State Type
|
|
default:
|
|
erro_print("Invalid State Type. This is a bug.");
|
|
break;
|
|
}
|
|
|
|
// XXX Shouldn't reach here
|
|
return TriggerMacroVote_Invalid;
|
|
}
|
|
|
|
|
|
// Votes on the given key vs. guide, long macros
|
|
// A long macro is defined as a guide with more than 1 combo
|
|
inline TriggerMacroVote Macro_evalLongTriggerMacroVote( TriggerGuide *key, TriggerGuide *guide )
|
|
{
|
|
// Depending on key type
|
|
switch ( guide->type )
|
|
{
|
|
// Normal State Type
|
|
case 0x00:
|
|
// Depending on the state of the buffered key, make voting decision
|
|
// Incorrect key
|
|
if ( guide->scanCode != key->scanCode )
|
|
{
|
|
switch ( key->state )
|
|
{
|
|
// Wrong key, pressed, fail
|
|
case 0x01:
|
|
return TriggerMacroVote_Fail;
|
|
|
|
// Wrong key, held, do not pass (no effect)
|
|
case 0x02:
|
|
return TriggerMacroVote_DoNothing;
|
|
|
|
// Wrong key released, fail out if pos == 0
|
|
case 0x03:
|
|
return TriggerMacroVote_DoNothing | TriggerMacroVote_DoNothingRelease;
|
|
}
|
|
}
|
|
|
|
// Correct key
|
|
else
|
|
{
|
|
switch ( key->state )
|
|
{
|
|
// Correct key, pressed, possible passing
|
|
case 0x01:
|
|
return TriggerMacroVote_Pass;
|
|
|
|
// Correct key, held, possible passing or release
|
|
case 0x02:
|
|
return TriggerMacroVote_PassRelease;
|
|
|
|
// Correct key, released, possible release
|
|
case 0x03:
|
|
return TriggerMacroVote_Release;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
// LED State Type
|
|
case 0x01:
|
|
erro_print("LED State Type - Not implemented...");
|
|
break;
|
|
|
|
// Analog State Type
|
|
case 0x02:
|
|
erro_print("Analog State Type - Not implemented...");
|
|
break;
|
|
|
|
// Invalid State Type
|
|
default:
|
|
erro_print("Invalid State Type. This is a bug.");
|
|
break;
|
|
}
|
|
|
|
// XXX Shouldn't reach here
|
|
return TriggerMacroVote_Invalid;
|
|
}
|
|
|
|
|
|
// Evaluate/Update TriggerMacro
|
|
TriggerMacroEval Macro_evalTriggerMacro( var_uint_t triggerMacroIndex )
|
|
{
|
|
// Lookup TriggerMacro
|
|
const TriggerMacro *macro = &TriggerMacroList[ triggerMacroIndex ];
|
|
TriggerMacroRecord *record = &TriggerMacroRecordList[ triggerMacroIndex ];
|
|
|
|
// Check if macro has finished and should be incremented sequence elements
|
|
if ( record->state == TriggerMacro_Release )
|
|
{
|
|
record->state = TriggerMacro_Waiting;
|
|
record->pos = record->pos + macro->guide[ record->pos ] * TriggerGuideSize + 1;
|
|
}
|
|
|
|
// Current Macro position
|
|
var_uint_t pos = record->pos;
|
|
|
|
// Length of the combo being processed
|
|
uint8_t comboLength = macro->guide[ pos ] * TriggerGuideSize;
|
|
|
|
// If no combo items are left, remove the TriggerMacro from the pending list
|
|
if ( comboLength == 0 )
|
|
{
|
|
return TriggerMacroEval_Remove;
|
|
}
|
|
|
|
// Check if this is a long Trigger Macro
|
|
uint8_t longMacro = Macro_isLongTriggerMacro( macro );
|
|
|
|
// Iterate through the items in the combo, voting the on the key state
|
|
// If any of the pressed keys do not match, fail the macro
|
|
//
|
|
// The macro is waiting for input when in the TriggerMacro_Waiting state
|
|
// Once all keys have been pressed/held (only those keys), entered TriggerMacro_Press state (passing)
|
|
// Transition to the next combo (if it exists) when a single key is released (TriggerMacro_Release state)
|
|
// On scan after position increment, change to TriggerMacro_Waiting state
|
|
// TODO Add support for system LED states (NumLock, CapsLock, etc.)
|
|
// TODO Add support for analog key states
|
|
// TODO Add support for 0x00 Key state (not pressing a key, not all that useful in general)
|
|
// TODO Add support for Press/Hold/Release differentiation when evaluating (not sure if useful)
|
|
TriggerMacroVote overallVote = TriggerMacroVote_Invalid;
|
|
for ( uint8_t comboItem = pos + 1; comboItem < pos + comboLength + 1; comboItem += TriggerGuideSize )
|
|
{
|
|
// Assign TriggerGuide element (key type, state and scancode)
|
|
TriggerGuide *guide = (TriggerGuide*)(¯o->guide[ comboItem ]);
|
|
|
|
TriggerMacroVote vote = TriggerMacroVote_Invalid;
|
|
// Iterate through the key buffer, comparing to each key in the combo
|
|
for ( uint8_t key = 0; key < macroTriggerListBufferSize; key++ )
|
|
{
|
|
// Lookup key information
|
|
TriggerGuide *keyInfo = ¯oTriggerListBuffer[ key ];
|
|
|
|
// If vote is a pass (>= 0x08, no more keys in the combo need to be looked at)
|
|
// Also mask all of the non-passing votes
|
|
vote |= longMacro
|
|
? Macro_evalLongTriggerMacroVote( keyInfo, guide )
|
|
: Macro_evalShortTriggerMacroVote( keyInfo, guide );
|
|
if ( vote >= TriggerMacroVote_Pass )
|
|
{
|
|
vote &= TriggerMacroVote_Release | TriggerMacroVote_PassRelease | TriggerMacroVote_Pass;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If no pass vote was found after scanning all of the keys
|
|
// Fail the combo, if this is a short macro (long macros already will have a fail vote)
|
|
if ( !longMacro && vote < TriggerMacroVote_Pass )
|
|
vote |= TriggerMacroVote_Fail;
|
|
|
|
// After voting, append to overall vote
|
|
overallVote |= vote;
|
|
}
|
|
|
|
// If no pass vote was found after scanning the entire combo
|
|
// And this is the first position in the combo, just remove it (nothing important happened)
|
|
if ( longMacro && overallVote & TriggerMacroVote_DoNothingRelease && pos == 0 )
|
|
overallVote |= TriggerMacroVote_Fail;
|
|
|
|
// Decide new state of macro after voting
|
|
// Fail macro, remove from pending list
|
|
if ( overallVote & TriggerMacroVote_Fail )
|
|
{
|
|
return TriggerMacroEval_Remove;
|
|
}
|
|
// Do nothing, incorrect key is being held or released
|
|
else if ( overallVote & TriggerMacroVote_DoNothing && longMacro )
|
|
{
|
|
// Just doing nothing :)
|
|
}
|
|
// If ready for transition and in Press state, set to Waiting and increment combo position
|
|
// Position is incremented (and possibly remove the macro from the pending list) on the next iteration
|
|
else if ( overallVote & TriggerMacroVote_Release && record->state == TriggerMacro_Press )
|
|
{
|
|
record->state = TriggerMacro_Release;
|
|
|
|
// If this is the last combo in the sequence, remove from the pending list
|
|
if ( macro->guide[ record->pos + macro->guide[ record->pos ] * TriggerGuideSize + 1 ] == 0 )
|
|
return TriggerMacroEval_DoResultAndRemove;
|
|
}
|
|
// If passing and in Waiting state, set macro state to Press
|
|
else if ( overallVote & TriggerMacroVote_Pass
|
|
&& ( record->state == TriggerMacro_Waiting || record->state == TriggerMacro_Press ) )
|
|
{
|
|
record->state = TriggerMacro_Press;
|
|
|
|
// If in press state, and this is the final combo, send request for ResultMacro
|
|
// Check to see if the result macro only has a single element
|
|
// If this result macro has more than 1 key, only send once
|
|
// TODO Add option to have long macro repeat rate
|
|
if ( macro->guide[ pos + comboLength + 1 ] == 0 )
|
|
{
|
|
// Long result macro (more than 1 combo)
|
|
if ( Macro_isLongResultMacro( &ResultMacroList[ macro->result ] ) )
|
|
{
|
|
// Only ever trigger result once, on press
|
|
if ( overallVote == TriggerMacroVote_Pass )
|
|
{
|
|
return TriggerMacroEval_DoResultAndRemove;
|
|
}
|
|
}
|
|
// Short result macro
|
|
else
|
|
{
|
|
// Only trigger result once, on press, if long trigger (more than 1 combo)
|
|
if ( Macro_isLongTriggerMacro( macro ) )
|
|
{
|
|
return TriggerMacroEval_DoResultAndRemove;
|
|
}
|
|
// Otherwise, trigger result continuously
|
|
else
|
|
{
|
|
return TriggerMacroEval_DoResult;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Otherwise, just remove the macro on key release
|
|
// One more result has to be called to indicate to the ResultMacro that the key transitioned to the release state
|
|
else if ( overallVote & TriggerMacroVote_Release )
|
|
{
|
|
return TriggerMacroEval_DoResultAndRemove;
|
|
}
|
|
|
|
// If this is a short macro, just remove it
|
|
// The state can be rebuilt on the next iteration
|
|
if ( !longMacro )
|
|
return TriggerMacroEval_Remove;
|
|
|
|
return TriggerMacroEval_DoNothing;
|
|
}
|
|
|
|
|
|
// Evaluate/Update ResultMacro
|
|
inline ResultMacroEval Macro_evalResultMacro( var_uint_t resultMacroIndex )
|
|
{
|
|
// Lookup ResultMacro
|
|
const ResultMacro *macro = &ResultMacroList[ resultMacroIndex ];
|
|
ResultMacroRecord *record = &ResultMacroRecordList[ resultMacroIndex ];
|
|
|
|
// Current Macro position
|
|
var_uint_t pos = record->pos;
|
|
|
|
// Length of combo being processed
|
|
uint8_t comboLength = macro->guide[ pos ];
|
|
|
|
// Function Counter, used to keep track of the combo items processed
|
|
var_uint_t funcCount = 0;
|
|
|
|
// Combo Item Position within the guide
|
|
var_uint_t comboItem = pos + 1;
|
|
|
|
// Iterate through the Result Combo
|
|
while ( funcCount < comboLength )
|
|
{
|
|
// Assign TriggerGuide element (key type, state and scancode)
|
|
ResultGuide *guide = (ResultGuide*)(¯o->guide[ comboItem ]);
|
|
|
|
// Do lookup on capability function
|
|
void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ guide->index ].func);
|
|
|
|
// Call capability
|
|
capability( record->state, record->stateType, &guide->args );
|
|
|
|
// Increment counters
|
|
funcCount++;
|
|
comboItem += ResultGuideSize( (ResultGuide*)(¯o->guide[ comboItem ]) );
|
|
}
|
|
|
|
// Move to next item in the sequence
|
|
record->pos = comboItem;
|
|
|
|
// If the ResultMacro is finished, remove
|
|
if ( macro->guide[ comboItem ] == 0 )
|
|
{
|
|
record->pos = 0;
|
|
return ResultMacroEval_Remove;
|
|
}
|
|
|
|
// Otherwise leave the macro in the list
|
|
return ResultMacroEval_DoNothing;
|
|
}
|
|
|
|
|
|
// Update pending trigger list
|
|
inline void Macro_updateTriggerMacroPendingList()
|
|
{
|
|
// Iterate over the macroTriggerListBuffer to add any new Trigger Macros to the pending list
|
|
for ( uint8_t key = 0; key < macroTriggerListBufferSize; key++ )
|
|
{
|
|
// TODO LED States
|
|
// TODO Analog Switches
|
|
// Only add TriggerMacro to pending list if key was pressed (not held, released or off)
|
|
if ( macroTriggerListBuffer[ key ].state == 0x00 && macroTriggerListBuffer[ key ].state != 0x01 )
|
|
continue;
|
|
|
|
// TODO Analog
|
|
// If this is a release case, indicate to layer lookup for possible latch expiry
|
|
uint8_t latch_expire = macroTriggerListBuffer[ key ].state == 0x03;
|
|
|
|
// Lookup Trigger List
|
|
nat_ptr_t *triggerList = Macro_layerLookup( ¯oTriggerListBuffer[ key ], latch_expire );
|
|
|
|
// If there was an error during lookup, skip
|
|
if ( triggerList == 0 )
|
|
continue;
|
|
|
|
// Number of Triggers in list
|
|
nat_ptr_t triggerListSize = triggerList[0];
|
|
|
|
// Iterate over triggerList to see if any TriggerMacros need to be added
|
|
// First item is the number of items in the TriggerList
|
|
for ( var_uint_t macro = 1; macro < triggerListSize + 1; macro++ )
|
|
{
|
|
// Lookup trigger macro index
|
|
var_uint_t triggerMacroIndex = triggerList[ macro ];
|
|
|
|
// Iterate over macroTriggerMacroPendingList to see if any macro in the scancode's
|
|
// triggerList needs to be added
|
|
var_uint_t pending = 0;
|
|
for ( ; pending < macroTriggerMacroPendingListSize; pending++ )
|
|
{
|
|
// Stop scanning if the trigger macro index is found in the pending list
|
|
if ( macroTriggerMacroPendingList[ pending ] == triggerMacroIndex )
|
|
break;
|
|
}
|
|
|
|
// If the triggerMacroIndex (macro) was not found in the macroTriggerMacroPendingList
|
|
// Add it to the list
|
|
if ( pending == macroTriggerMacroPendingListSize )
|
|
{
|
|
macroTriggerMacroPendingList[ macroTriggerMacroPendingListSize++ ] = triggerMacroIndex;
|
|
|
|
// Reset macro position
|
|
TriggerMacroRecordList[ triggerMacroIndex ].pos = 0;
|
|
TriggerMacroRecordList[ triggerMacroIndex ].state = TriggerMacro_Waiting;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Macro Procesing Loop
|
|
// Called once per USB buffer send
|
|
inline void Macro_process()
|
|
{
|
|
#if defined(ConnectEnabled_define)
|
|
// Only compile in if a Connect node module is available
|
|
// If this is a interconnect slave node, send all scancodes to master node
|
|
if ( !Connect_master )
|
|
{
|
|
if ( macroTriggerListBufferSize > 0 )
|
|
{
|
|
Connect_send_ScanCode( Connect_id, macroTriggerListBuffer, macroTriggerListBufferSize );
|
|
macroTriggerListBufferSize = 0;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// Only do one round of macro processing between Output Module timer sends
|
|
if ( USBKeys_Sent != 0 )
|
|
return;
|
|
|
|
#if defined(ConnectEnabled_define)
|
|
// Check if there are any ScanCodes in the interconnect cache to process
|
|
if ( Connect_master && macroInterconnectCacheSize > 0 )
|
|
{
|
|
// Iterate over all the cache ScanCodes
|
|
uint8_t currentInterconnectCacheSize = macroInterconnectCacheSize;
|
|
macroInterconnectCacheSize = 0;
|
|
for ( uint8_t c = 0; c < currentInterconnectCacheSize; c++ )
|
|
{
|
|
// Add to the trigger list
|
|
macroTriggerListBuffer[ macroTriggerListBufferSize++ ] = macroInterconnectCache[ c ];
|
|
|
|
// TODO Handle other TriggerGuide types (e.g. analog)
|
|
switch ( macroInterconnectCache[ c ].type )
|
|
{
|
|
// Normal (Press/Hold/Release)
|
|
case 0x00:
|
|
// Decide what to do based on the current state
|
|
switch ( macroInterconnectCache[ c ].state )
|
|
{
|
|
// Re-add to interconnect cache in hold state
|
|
case 0x01: // Press
|
|
//case 0x02: // Hold // XXX Why does this not work? -HaaTa
|
|
macroInterconnectCache[ c ].state = 0x02;
|
|
macroInterconnectCache[ macroInterconnectCacheSize++ ] = macroInterconnectCache[ c ];
|
|
break;
|
|
case 0x03: // Remove
|
|
break;
|
|
// Otherwise, do not re-add
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// If the pause flag is set, only process if the step counter is non-zero
|
|
if ( macroPauseMode )
|
|
{
|
|
if ( macroStepCounter == 0 )
|
|
return;
|
|
|
|
// Proceed, decrementing the step counter
|
|
macroStepCounter--;
|
|
dbug_print("Macro Step");
|
|
}
|
|
|
|
// Update pending trigger list, before processing TriggerMacros
|
|
Macro_updateTriggerMacroPendingList();
|
|
|
|
// Tail pointer for macroTriggerMacroPendingList
|
|
// Macros must be explicitly re-added
|
|
var_uint_t macroTriggerMacroPendingListTail = 0;
|
|
|
|
// Iterate through the pending TriggerMacros, processing each of them
|
|
for ( var_uint_t macro = 0; macro < macroTriggerMacroPendingListSize; macro++ )
|
|
{
|
|
switch ( Macro_evalTriggerMacro( macroTriggerMacroPendingList[ macro ] ) )
|
|
{
|
|
// Trigger Result Macro (purposely falling through)
|
|
case TriggerMacroEval_DoResult:
|
|
// Append ResultMacro to PendingList
|
|
Macro_appendResultMacroToPendingList( &TriggerMacroList[ macroTriggerMacroPendingList[ macro ] ] );
|
|
|
|
default:
|
|
macroTriggerMacroPendingList[ macroTriggerMacroPendingListTail++ ] = macroTriggerMacroPendingList[ macro ];
|
|
break;
|
|
|
|
// Trigger Result Macro and Remove (purposely falling through)
|
|
case TriggerMacroEval_DoResultAndRemove:
|
|
// Append ResultMacro to PendingList
|
|
Macro_appendResultMacroToPendingList( &TriggerMacroList[ macroTriggerMacroPendingList[ macro ] ] );
|
|
|
|
// Remove Macro from Pending List, nothing to do, removing by default
|
|
case TriggerMacroEval_Remove:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Update the macroTriggerMacroPendingListSize with the tail pointer
|
|
macroTriggerMacroPendingListSize = macroTriggerMacroPendingListTail;
|
|
|
|
|
|
// Tail pointer for macroResultMacroPendingList
|
|
// Macros must be explicitly re-added
|
|
var_uint_t macroResultMacroPendingListTail = 0;
|
|
|
|
// Iterate through the pending ResultMacros, processing each of them
|
|
for ( var_uint_t macro = 0; macro < macroResultMacroPendingListSize; macro++ )
|
|
{
|
|
switch ( Macro_evalResultMacro( macroResultMacroPendingList[ macro ] ) )
|
|
{
|
|
// Re-add macros to pending list
|
|
case ResultMacroEval_DoNothing:
|
|
default:
|
|
macroResultMacroPendingList[ macroResultMacroPendingListTail++ ] = macroResultMacroPendingList[ macro ];
|
|
break;
|
|
|
|
// Remove Macro from Pending List, nothing to do, removing by default
|
|
case ResultMacroEval_Remove:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Update the macroResultMacroPendingListSize with the tail pointer
|
|
macroResultMacroPendingListSize = macroResultMacroPendingListTail;
|
|
|
|
// Signal buffer that we've used it
|
|
Scan_finishedWithMacro( macroTriggerListBufferSize );
|
|
|
|
// Reset TriggerList buffer
|
|
macroTriggerListBufferSize = 0;
|
|
|
|
// If Macro debug mode is set, clear the USB Buffer
|
|
if ( macroDebugMode )
|
|
{
|
|
USBKeys_Modifiers = 0;
|
|
USBKeys_Sent = 0;
|
|
}
|
|
}
|
|
|
|
|
|
inline void Macro_setup()
|
|
{
|
|
// Register Macro CLI dictionary
|
|
CLI_registerDictionary( macroCLIDict, macroCLIDictName );
|
|
|
|
// Disable Macro debug mode
|
|
macroDebugMode = 0;
|
|
|
|
// Disable Macro pause flag
|
|
macroPauseMode = 0;
|
|
|
|
// Set Macro step counter to zero
|
|
macroStepCounter = 0;
|
|
|
|
// Make sure macro trigger buffer is empty
|
|
macroTriggerListBufferSize = 0;
|
|
|
|
// Set the current rotated layer to 0
|
|
Macro_rotationLayer = 0;
|
|
|
|
// Initialize TriggerMacro states
|
|
for ( var_uint_t macro = 0; macro < TriggerMacroNum; macro++ )
|
|
{
|
|
TriggerMacroRecordList[ macro ].pos = 0;
|
|
TriggerMacroRecordList[ macro ].state = TriggerMacro_Waiting;
|
|
}
|
|
|
|
// Initialize ResultMacro states
|
|
for ( var_uint_t macro = 0; macro < ResultMacroNum; macro++ )
|
|
{
|
|
ResultMacroRecordList[ macro ].pos = 0;
|
|
ResultMacroRecordList[ macro ].state = 0;
|
|
ResultMacroRecordList[ macro ].stateType = 0;
|
|
}
|
|
}
|
|
|
|
|
|
// ----- CLI Command Functions -----
|
|
|
|
void cliFunc_capList( char* args )
|
|
{
|
|
print( NL );
|
|
info_msg("Capabilities List ");
|
|
printHex( CapabilitiesNum );
|
|
|
|
// Iterate through all of the capabilities and display them
|
|
for ( var_uint_t cap = 0; cap < CapabilitiesNum; cap++ )
|
|
{
|
|
print( NL "\t" );
|
|
printHex( cap );
|
|
print(" - ");
|
|
|
|
// Display/Lookup Capability Name (utilize debug mode of capability)
|
|
void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ cap ].func);
|
|
capability( 0xFF, 0xFF, 0 );
|
|
}
|
|
}
|
|
|
|
void cliFunc_capSelect( char* args )
|
|
{
|
|
// Parse code from argument
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// Total number of args to scan (must do a lookup if a keyboard capability is selected)
|
|
var_uint_t totalArgs = 2; // Always at least two args
|
|
var_uint_t cap = 0;
|
|
|
|
// Arguments used for keyboard capability function
|
|
var_uint_t argSetCount = 0;
|
|
uint8_t *argSet = (uint8_t*)args;
|
|
|
|
// Process all args
|
|
for ( var_uint_t c = 0; argSetCount < totalArgs; c++ )
|
|
{
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
// Extra arguments are ignored
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
// For the first argument, choose the capability
|
|
if ( c == 0 ) switch ( arg1Ptr[0] )
|
|
{
|
|
// Keyboard Capability
|
|
case 'K':
|
|
// Determine capability index
|
|
cap = numToInt( &arg1Ptr[1] );
|
|
|
|
// Lookup the number of args
|
|
totalArgs += CapabilitiesList[ cap ].argCount;
|
|
continue;
|
|
}
|
|
|
|
// Because allocating memory isn't doable, and the argument count is arbitrary
|
|
// The argument pointer is repurposed as the argument list (much smaller anyways)
|
|
argSet[ argSetCount++ ] = (uint8_t)numToInt( arg1Ptr );
|
|
|
|
// Once all the arguments are prepared, call the keyboard capability function
|
|
if ( argSetCount == totalArgs )
|
|
{
|
|
// Indicate that the capability was called
|
|
print( NL );
|
|
info_msg("K");
|
|
printInt8( cap );
|
|
print(" - ");
|
|
printHex( argSet[0] );
|
|
print(" - ");
|
|
printHex( argSet[1] );
|
|
print(" - ");
|
|
printHex( argSet[2] );
|
|
print( "..." NL );
|
|
|
|
// Make sure this isn't the reload capability
|
|
// If it is, and the remote reflash define is not set, ignore
|
|
if ( flashModeEnabled_define == 0 ) for ( uint32_t cap = 0; cap < CapabilitiesNum; cap++ )
|
|
{
|
|
if ( CapabilitiesList[ cap ].func == (const void*)Output_flashMode_capability )
|
|
{
|
|
print( NL );
|
|
warn_print("flashModeEnabled not set, cancelling firmware reload...");
|
|
info_msg("Set flashModeEnabled to 1 in your kll configuration.");
|
|
return;
|
|
}
|
|
}
|
|
|
|
void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ cap ].func);
|
|
capability( argSet[0], argSet[1], &argSet[2] );
|
|
}
|
|
}
|
|
}
|
|
|
|
void cliFunc_keyHold( char* args )
|
|
{
|
|
// Parse codes from arguments
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// Process all args
|
|
for ( ;; )
|
|
{
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
// Ignore non-Scancode numbers
|
|
switch ( arg1Ptr[0] )
|
|
{
|
|
// Scancode
|
|
case 'S':
|
|
Macro_keyState( (uint8_t)numToInt( &arg1Ptr[1] ), 0x02 ); // Hold scancode
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cliFunc_keyPress( char* args )
|
|
{
|
|
// Parse codes from arguments
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// Process all args
|
|
for ( ;; )
|
|
{
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
// Ignore non-Scancode numbers
|
|
switch ( arg1Ptr[0] )
|
|
{
|
|
// Scancode
|
|
case 'S':
|
|
Macro_keyState( (uint8_t)numToInt( &arg1Ptr[1] ), 0x01 ); // Press scancode
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cliFunc_keyRelease( char* args )
|
|
{
|
|
// Parse codes from arguments
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// Process all args
|
|
for ( ;; )
|
|
{
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
// Ignore non-Scancode numbers
|
|
switch ( arg1Ptr[0] )
|
|
{
|
|
// Scancode
|
|
case 'S':
|
|
Macro_keyState( (uint8_t)numToInt( &arg1Ptr[1] ), 0x03 ); // Release scancode
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cliFunc_layerDebug( char *args )
|
|
{
|
|
// Toggle layer debug mode
|
|
layerDebugMode = layerDebugMode ? 0 : 1;
|
|
|
|
print( NL );
|
|
info_msg("Layer Debug Mode: ");
|
|
printInt8( layerDebugMode );
|
|
}
|
|
|
|
void cliFunc_layerList( char* args )
|
|
{
|
|
print( NL );
|
|
info_msg("Layer List");
|
|
|
|
// Iterate through all of the layers and display them
|
|
for ( uint16_t layer = 0; layer < LayerNum; layer++ )
|
|
{
|
|
print( NL "\t" );
|
|
printHex( layer );
|
|
print(" - ");
|
|
|
|
// Display layer name
|
|
dPrint( (char*)LayerIndex[ layer ].name );
|
|
|
|
// Default map
|
|
if ( layer == 0 )
|
|
print(" \033[1m(default)\033[0m");
|
|
|
|
// Layer State
|
|
print( NL "\t\t Layer State: " );
|
|
printHex( LayerState[ layer ] );
|
|
|
|
// First -> Last Indices
|
|
print(" First -> Last Indices: ");
|
|
printHex( LayerIndex[ layer ].first );
|
|
print(" -> ");
|
|
printHex( LayerIndex[ layer ].last );
|
|
}
|
|
}
|
|
|
|
void cliFunc_layerState( char* args )
|
|
{
|
|
// Parse codes from arguments
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
uint8_t arg1 = 0;
|
|
uint8_t arg2 = 0;
|
|
|
|
// Process first two args
|
|
for ( uint8_t c = 0; c < 2; c++ )
|
|
{
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
switch ( c )
|
|
{
|
|
// First argument (e.g. L1)
|
|
case 0:
|
|
if ( arg1Ptr[0] != 'L' )
|
|
return;
|
|
|
|
arg1 = (uint8_t)numToInt( &arg1Ptr[1] );
|
|
break;
|
|
// Second argument (e.g. 4)
|
|
case 1:
|
|
arg2 = (uint8_t)numToInt( arg1Ptr );
|
|
|
|
// Display operation (to indicate that it worked)
|
|
print( NL );
|
|
info_msg("Setting Layer L");
|
|
printInt8( arg1 );
|
|
print(" to - ");
|
|
printHex( arg2 );
|
|
|
|
// Set the layer state
|
|
LayerState[ arg1 ] = arg2;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cliFunc_macroDebug( char* args )
|
|
{
|
|
// Toggle macro debug mode
|
|
macroDebugMode = macroDebugMode ? 0 : 1;
|
|
|
|
print( NL );
|
|
info_msg("Macro Debug Mode: ");
|
|
printInt8( macroDebugMode );
|
|
}
|
|
|
|
void cliFunc_macroList( char* args )
|
|
{
|
|
// Show pending key events
|
|
print( NL );
|
|
info_msg("Pending Key Events: ");
|
|
printInt16( (uint16_t)macroTriggerListBufferSize );
|
|
print(" : ");
|
|
for ( uint8_t key = 0; key < macroTriggerListBufferSize; key++ )
|
|
{
|
|
printHex( macroTriggerListBuffer[ key ].scanCode );
|
|
print(" ");
|
|
}
|
|
|
|
// Show pending trigger macros
|
|
print( NL );
|
|
info_msg("Pending Trigger Macros: ");
|
|
printInt16( (uint16_t)macroTriggerMacroPendingListSize );
|
|
print(" : ");
|
|
for ( var_uint_t macro = 0; macro < macroTriggerMacroPendingListSize; macro++ )
|
|
{
|
|
printHex( macroTriggerMacroPendingList[ macro ] );
|
|
print(" ");
|
|
}
|
|
|
|
// Show pending result macros
|
|
print( NL );
|
|
info_msg("Pending Result Macros: ");
|
|
printInt16( (uint16_t)macroResultMacroPendingListSize );
|
|
print(" : ");
|
|
for ( var_uint_t macro = 0; macro < macroResultMacroPendingListSize; macro++ )
|
|
{
|
|
printHex( macroResultMacroPendingList[ macro ] );
|
|
print(" ");
|
|
}
|
|
|
|
// Show available trigger macro indices
|
|
print( NL );
|
|
info_msg("Trigger Macros Range: T0 -> T");
|
|
printInt16( (uint16_t)TriggerMacroNum - 1 ); // Hopefully large enough :P (can't assume 32-bit)
|
|
|
|
// Show available result macro indices
|
|
print( NL );
|
|
info_msg("Result Macros Range: R0 -> R");
|
|
printInt16( (uint16_t)ResultMacroNum - 1 ); // Hopefully large enough :P (can't assume 32-bit)
|
|
|
|
// Show Trigger to Result Macro Links
|
|
print( NL );
|
|
info_msg("Trigger : Result Macro Pairs");
|
|
for ( var_uint_t macro = 0; macro < TriggerMacroNum; macro++ )
|
|
{
|
|
print( NL );
|
|
print("\tT");
|
|
printInt16( (uint16_t)macro ); // Hopefully large enough :P (can't assume 32-bit)
|
|
print(" : R");
|
|
printInt16( (uint16_t)TriggerMacroList[ macro ].result ); // Hopefully large enough :P (can't assume 32-bit)
|
|
}
|
|
}
|
|
|
|
void cliFunc_macroProc( char* args )
|
|
{
|
|
// Toggle macro pause mode
|
|
macroPauseMode = macroPauseMode ? 0 : 1;
|
|
|
|
print( NL );
|
|
info_msg("Macro Processing Mode: ");
|
|
printInt8( macroPauseMode );
|
|
}
|
|
|
|
void macroDebugShowTrigger( var_uint_t index )
|
|
{
|
|
// Only proceed if the macro exists
|
|
if ( index >= TriggerMacroNum )
|
|
return;
|
|
|
|
// Trigger Macro Show
|
|
const TriggerMacro *macro = &TriggerMacroList[ index ];
|
|
TriggerMacroRecord *record = &TriggerMacroRecordList[ index ];
|
|
|
|
print( NL );
|
|
info_msg("Trigger Macro Index: ");
|
|
printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit)
|
|
print( NL );
|
|
|
|
// Read the comboLength for combo in the sequence (sequence of combos)
|
|
var_uint_t pos = 0;
|
|
uint8_t comboLength = macro->guide[ pos ];
|
|
|
|
// Iterate through and interpret the guide
|
|
while ( comboLength != 0 )
|
|
{
|
|
// Initial position of the combo
|
|
var_uint_t comboPos = ++pos;
|
|
|
|
// Iterate through the combo
|
|
while ( pos < comboLength * TriggerGuideSize + comboPos )
|
|
{
|
|
// Assign TriggerGuide element (key type, state and scancode)
|
|
TriggerGuide *guide = (TriggerGuide*)(¯o->guide[ pos ]);
|
|
|
|
// Display guide information about trigger key
|
|
printHex( guide->scanCode );
|
|
print("|");
|
|
printHex( guide->type );
|
|
print("|");
|
|
printHex( guide->state );
|
|
|
|
// Increment position
|
|
pos += TriggerGuideSize;
|
|
|
|
// Only show combo separator if there are combos left in the sequence element
|
|
if ( pos < comboLength * TriggerGuideSize + comboPos )
|
|
print("+");
|
|
}
|
|
|
|
// Read the next comboLength
|
|
comboLength = macro->guide[ pos ];
|
|
|
|
// Only show sequence separator if there is another combo to process
|
|
if ( comboLength != 0 )
|
|
print(";");
|
|
}
|
|
|
|
// Display current position
|
|
print( NL "Position: " );
|
|
printInt16( (uint16_t)record->pos ); // Hopefully large enough :P (can't assume 32-bit)
|
|
|
|
// Display result macro index
|
|
print( NL "Result Macro Index: " );
|
|
printInt16( (uint16_t)macro->result ); // Hopefully large enough :P (can't assume 32-bit)
|
|
|
|
// Display trigger macro state
|
|
print( NL "Trigger Macro State: " );
|
|
switch ( record->state )
|
|
{
|
|
case TriggerMacro_Press: print("Press"); break;
|
|
case TriggerMacro_Release: print("Release"); break;
|
|
case TriggerMacro_Waiting: print("Waiting"); break;
|
|
}
|
|
}
|
|
|
|
void macroDebugShowResult( var_uint_t index )
|
|
{
|
|
// Only proceed if the macro exists
|
|
if ( index >= ResultMacroNum )
|
|
return;
|
|
|
|
// Trigger Macro Show
|
|
const ResultMacro *macro = &ResultMacroList[ index ];
|
|
ResultMacroRecord *record = &ResultMacroRecordList[ index ];
|
|
|
|
print( NL );
|
|
info_msg("Result Macro Index: ");
|
|
printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit)
|
|
print( NL );
|
|
|
|
// Read the comboLength for combo in the sequence (sequence of combos)
|
|
var_uint_t pos = 0;
|
|
uint8_t comboLength = macro->guide[ pos++ ];
|
|
|
|
// Iterate through and interpret the guide
|
|
while ( comboLength != 0 )
|
|
{
|
|
// Function Counter, used to keep track of the combos processed
|
|
var_uint_t funcCount = 0;
|
|
|
|
// Iterate through the combo
|
|
while ( funcCount < comboLength )
|
|
{
|
|
// Assign TriggerGuide element (key type, state and scancode)
|
|
ResultGuide *guide = (ResultGuide*)(¯o->guide[ pos ]);
|
|
|
|
// Display Function Index
|
|
printHex( guide->index );
|
|
print("|");
|
|
|
|
// Display Function Ptr Address
|
|
printHex( (nat_ptr_t)CapabilitiesList[ guide->index ].func );
|
|
print("|");
|
|
|
|
// Display/Lookup Capability Name (utilize debug mode of capability)
|
|
void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ guide->index ].func);
|
|
capability( 0xFF, 0xFF, 0 );
|
|
|
|
// Display Argument(s)
|
|
print("(");
|
|
for ( var_uint_t arg = 0; arg < CapabilitiesList[ guide->index ].argCount; arg++ )
|
|
{
|
|
// Arguments are only 8 bit values
|
|
printHex( (&guide->args)[ arg ] );
|
|
|
|
// Only show arg separator if there are args left
|
|
if ( arg + 1 < CapabilitiesList[ guide->index ].argCount )
|
|
print(",");
|
|
}
|
|
print(")");
|
|
|
|
// Increment position
|
|
pos += ResultGuideSize( guide );
|
|
|
|
// Increment function count
|
|
funcCount++;
|
|
|
|
// Only show combo separator if there are combos left in the sequence element
|
|
if ( funcCount < comboLength )
|
|
print("+");
|
|
}
|
|
|
|
// Read the next comboLength
|
|
comboLength = macro->guide[ pos++ ];
|
|
|
|
// Only show sequence separator if there is another combo to process
|
|
if ( comboLength != 0 )
|
|
print(";");
|
|
}
|
|
|
|
// Display current position
|
|
print( NL "Position: " );
|
|
printInt16( (uint16_t)record->pos ); // Hopefully large enough :P (can't assume 32-bit)
|
|
|
|
// Display final trigger state/type
|
|
print( NL "Final Trigger State (State/Type): " );
|
|
printHex( record->state );
|
|
print("/");
|
|
printHex( record->stateType );
|
|
}
|
|
|
|
void cliFunc_macroShow( char* args )
|
|
{
|
|
// Parse codes from arguments
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// Process all args
|
|
for ( ;; )
|
|
{
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
// Ignore invalid codes
|
|
switch ( arg1Ptr[0] )
|
|
{
|
|
// Indexed Trigger Macro
|
|
case 'T':
|
|
macroDebugShowTrigger( numToInt( &arg1Ptr[1] ) );
|
|
break;
|
|
// Indexed Result Macro
|
|
case 'R':
|
|
macroDebugShowResult( numToInt( &arg1Ptr[1] ) );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cliFunc_macroStep( char* args )
|
|
{
|
|
// Parse number from argument
|
|
// NOTE: Only first argument is used
|
|
char* arg1Ptr;
|
|
char* arg2Ptr;
|
|
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Default to 1, if no argument given
|
|
var_uint_t count = (var_uint_t)numToInt( arg1Ptr );
|
|
|
|
if ( count == 0 )
|
|
count = 1;
|
|
|
|
// Set the macro step counter, negative int's are cast to uint
|
|
macroStepCounter = count;
|
|
}
|
|
|