Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/MatrixARM/matrix_scan.c

652 lines
17 KiB
C

/* Copyright (C) 2014-2016 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <cli.h>
#include <kll_defs.h>
#include <led.h>
#include <print.h>
#include <macro.h>
#include <Lib/delay.h>
// Local Includes
#include "matrix_scan.h"
// Matrix Configuration
#include <matrix.h>
// ----- Defines -----
#if ( DebounceThrottleDiv_define > 0 )
nat_ptr_t Matrix_divCounter = 0;
#endif
// ----- Function Declarations -----
// CLI Functions
void cliFunc_matrixDebug( char* args );
void cliFunc_matrixState( char* args );
// ----- Variables -----
// Scan Module command dictionary
CLIDict_Entry( matrixDebug, "Enables matrix debug mode, prints out each scan code." NL "\t\tIf argument \033[35mT\033[0m is given, prints out each scan code state transition." );
CLIDict_Entry( matrixState, "Prints out the current scan table N times." NL "\t\t \033[1mO\033[0m - Off, \033[1;33mP\033[0m - Press, \033[1;32mH\033[0m - Hold, \033[1;35mR\033[0m - Release, \033[1;31mI\033[0m - Invalid" );
CLIDict_Def( matrixCLIDict, "Matrix Module Commands" ) = {
CLIDict_Item( matrixDebug ),
CLIDict_Item( matrixState ),
{ 0, 0, 0 } // Null entry for dictionary end
};
// Debounce Array
KeyState Matrix_scanArray[ Matrix_colsNum * Matrix_rowsNum ];
// Ghost Arrays
#ifdef GHOSTING_MATRIX
KeyGhost Matrix_ghostArray[ Matrix_colsNum * Matrix_rowsNum ];
uint8_t col_use[Matrix_colsNum], row_use[Matrix_rowsNum]; // used count
uint8_t col_ghost[Matrix_colsNum], row_ghost[Matrix_rowsNum]; // marked as having ghost if 1
#endif
// Matrix debug flag - If set to 1, for each keypress the scan code is displayed in hex
// If set to 2, for each key state change, the scan code is displayed along with the state
uint8_t matrixDebugMode = 0;
// Matrix State Table Debug Counter - If non-zero display state table after every matrix scan
uint16_t matrixDebugStateCounter = 0;
// Matrix Scan Counters
uint16_t matrixMaxScans = 0;
uint16_t matrixCurScans = 0;
uint16_t matrixPrevScans = 0;
// System Timer used for delaying debounce decisions
extern volatile uint32_t systick_millis_count;
// ----- Functions -----
// Pin action (Strobe, Sense, Strobe Setup, Sense Setup)
// NOTE: This function is highly dependent upon the organization of the register map
// Only guaranteed to work with Freescale MK20 series uCs
uint8_t Matrix_pin( GPIO_Pin gpio, Type type )
{
// Register width is defined as size of a pointer
unsigned int gpio_offset = gpio.port * 0x40 / sizeof(unsigned int*);
unsigned int port_offset = gpio.port * 0x1000 / sizeof(unsigned int*) + gpio.pin;
// Assumes 0x40 between GPIO Port registers and 0x1000 between PORT pin registers
// See Lib/mk20dx.h
volatile unsigned int *GPIO_PDDR = (unsigned int*)(&GPIOA_PDDR) + gpio_offset;
#ifndef GHOSTING_MATRIX
volatile unsigned int *GPIO_PSOR = (unsigned int*)(&GPIOA_PSOR) + gpio_offset;
#endif
volatile unsigned int *GPIO_PCOR = (unsigned int*)(&GPIOA_PCOR) + gpio_offset;
volatile unsigned int *GPIO_PDIR = (unsigned int*)(&GPIOA_PDIR) + gpio_offset;
volatile unsigned int *PORT_PCR = (unsigned int*)(&PORTA_PCR0) + port_offset;
// Operation depends on Type
switch ( type )
{
case Type_StrobeOn:
#ifdef GHOSTING_MATRIX
*GPIO_PCOR |= (1 << gpio.pin);
*GPIO_PDDR |= (1 << gpio.pin); // output, low
#else
*GPIO_PSOR |= (1 << gpio.pin);
#endif
break;
case Type_StrobeOff:
#ifdef GHOSTING_MATRIX
// Ghosting martix needs to put not used (off) strobes in high impedance state
*GPIO_PDDR &= ~(1 << gpio.pin); // input, high Z state
#endif
*GPIO_PCOR |= (1 << gpio.pin);
break;
case Type_StrobeSetup:
#ifdef GHOSTING_MATRIX
*GPIO_PDDR &= ~(1 << gpio.pin); // input, high Z state
*GPIO_PCOR |= (1 << gpio.pin);
#else
// Set as output pin
*GPIO_PDDR |= (1 << gpio.pin);
#endif
// Configure pin with slow slew, high drive strength and GPIO mux
*PORT_PCR = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
// Enabling open-drain if specified
switch ( Matrix_type )
{
case Config_Opendrain:
*PORT_PCR |= PORT_PCR_ODE;
break;
// Do nothing otherwise
default:
break;
}
break;
case Type_Sense:
#ifdef GHOSTING_MATRIX // inverted
return *GPIO_PDIR & (1 << gpio.pin) ? 0 : 1;
#else
return *GPIO_PDIR & (1 << gpio.pin) ? 1 : 0;
#endif
case Type_SenseSetup:
// Set as input pin
*GPIO_PDDR &= ~(1 << gpio.pin);
// Configure pin with passive filter and GPIO mux
*PORT_PCR = PORT_PCR_PFE | PORT_PCR_MUX(1);
// Pull resistor config
switch ( Matrix_type )
{
case Config_Pullup:
*PORT_PCR |= PORT_PCR_PE | PORT_PCR_PS;
break;
case Config_Pulldown:
*PORT_PCR |= PORT_PCR_PE;
break;
// Do nothing otherwise
default:
break;
}
break;
}
return 0;
}
// Setup GPIO pins for matrix scanning
void Matrix_setup()
{
// Register Matrix CLI dictionary
CLI_registerDictionary( matrixCLIDict, matrixCLIDictName );
info_msg("Columns: ");
printHex( Matrix_colsNum );
// Setup Strobe Pins
for ( uint8_t pin = 0; pin < Matrix_colsNum; pin++ )
{
Matrix_pin( Matrix_cols[ pin ], Type_StrobeSetup );
}
print( NL );
info_msg("Rows: ");
printHex( Matrix_rowsNum );
// Setup Sense Pins
for ( uint8_t pin = 0; pin < Matrix_rowsNum; pin++ )
{
Matrix_pin( Matrix_rows[ pin ], Type_SenseSetup );
}
print( NL );
info_msg("Max Keys: ");
printHex( Matrix_maxKeys );
print( NL );
// Clear out Debounce Array
for ( uint8_t item = 0; item < Matrix_maxKeys; item++ )
{
Matrix_scanArray[ item ].prevState = KeyState_Off;
Matrix_scanArray[ item ].curState = KeyState_Off;
Matrix_scanArray[ item ].activeCount = 0;
Matrix_scanArray[ item ].inactiveCount = DebounceDivThreshold_define; // Start at 'off' steady state
Matrix_scanArray[ item ].prevDecisionTime = 0;
#ifdef GHOSTING_MATRIX
Matrix_ghostArray[ item ].prev = KeyState_Off;
Matrix_ghostArray[ item ].cur = KeyState_Off;
Matrix_ghostArray[ item ].saved = KeyState_Off;
#endif
}
// Clear scan stats counters
matrixMaxScans = 0;
matrixPrevScans = 0;
}
void Matrix_keyPositionDebug( KeyPosition pos )
{
// Depending on the state, use a different flag + color
switch ( pos )
{
case KeyState_Off:
print("\033[1mO\033[0m");
break;
case KeyState_Press:
print("\033[1;33mP\033[0m");
break;
case KeyState_Hold:
print("\033[1;32mH\033[0m");
break;
case KeyState_Release:
print("\033[1;35mR\033[0m");
break;
case KeyState_Invalid:
default:
print("\033[1;31mI\033[0m");
break;
}
}
// Scan the matrix for keypresses
// NOTE: scanNum should be reset to 0 after a USB send (to reset all the counters)
void Matrix_scan( uint16_t scanNum )
{
#if ( DebounceThrottleDiv_define > 0 )
// Scan-rate throttling
// By scanning using a divider, the scan rate slowed down
// DebounceThrottleDiv_define == 1 means -> /2 or half scan rate
// This helps with bouncy switches on fast uCs
if ( !( Matrix_divCounter++ & (1 << ( DebounceThrottleDiv_define - 1 )) ) )
return;
#endif
// Increment stats counters
if ( scanNum > matrixMaxScans ) matrixMaxScans = scanNum;
if ( scanNum == 0 )
{
matrixPrevScans = matrixCurScans;
matrixCurScans = 0;
}
else
{
matrixCurScans++;
}
// Read systick for event scheduling
uint8_t currentTime = (uint8_t)systick_millis_count;
// For each strobe, scan each of the sense pins
for ( uint8_t strobe = 0; strobe < Matrix_colsNum; strobe++ )
{
#ifdef STROBE_DELAY
uint32_t start = micros();
while ((micros() - start) < STROBE_DELAY);
#endif
// Strobe Pin
Matrix_pin( Matrix_cols[ strobe ], Type_StrobeOn );
#ifdef STROBE_DELAY
start = micros();
while ((micros() - start) < STROBE_DELAY);
#endif
// Scan each of the sense pins
for ( uint8_t sense = 0; sense < Matrix_rowsNum; sense++ )
{
// Key position
uint8_t key = Matrix_colsNum * sense + strobe;
KeyState *state = &Matrix_scanArray[ key ];
// If first scan, reset state
if ( scanNum == 0 )
{
// Set previous state, and reset current state
state->prevState = state->curState;
state->curState = KeyState_Invalid;
}
// Signal Detected
// Increment count and right shift opposing count
// This means there is a maximum of scan 13 cycles on a perfect off to on transition
// (coming from a steady state 0xFFFF off scans)
// Somewhat longer with switch bounciness
// The advantage of this is that the count is ongoing and never needs to be reset
// State still needs to be kept track of to deal with what to send to the Macro module
if ( Matrix_pin( Matrix_rows[ sense ], Type_Sense ) )
{
// Only update if not going to wrap around
if ( state->activeCount < DebounceDivThreshold_define ) state->activeCount += 1;
state->inactiveCount >>= 1;
}
// Signal Not Detected
else
{
// Only update if not going to wrap around
if ( state->inactiveCount < DebounceDivThreshold_define ) state->inactiveCount += 1;
state->activeCount >>= 1;
}
// Check for state change if it hasn't been set
// But only if enough time has passed since last state change
// Only check if the minimum number of scans has been met
// the current state is invalid
// and either active or inactive count is over the debounce threshold
if ( state->curState == KeyState_Invalid )
{
// Determine time since last decision
uint8_t lastTransition = currentTime - state->prevDecisionTime;
// Attempt state transition
switch ( state->prevState )
{
case KeyState_Press:
case KeyState_Hold:
if ( state->activeCount > state->inactiveCount )
{
state->curState = KeyState_Hold;
}
else
{
// If not enough time has passed since Hold
// Keep previous state
if ( lastTransition < MinDebounceTime_define )
{
//warn_print("FAST Release stopped");
state->curState = state->prevState;
continue;
}
state->curState = KeyState_Release;
}
break;
case KeyState_Release:
case KeyState_Off:
if ( state->activeCount > state->inactiveCount )
{
// If not enough time has passed since Hold
// Keep previous state
if ( lastTransition < MinDebounceTime_define )
{
//warn_print("FAST Press stopped");
state->curState = state->prevState;
continue;
}
state->curState = KeyState_Press;
}
else
{
state->curState = KeyState_Off;
}
break;
case KeyState_Invalid:
default:
erro_print("Matrix scan bug!! Report me!");
break;
}
// Update decision time
state->prevDecisionTime = currentTime;
// Send keystate to macro module
#ifndef GHOSTING_MATRIX
Macro_keyState( key, state->curState );
#endif
// Matrix Debug, only if there is a state change
if ( matrixDebugMode && state->curState != state->prevState )
{
// Basic debug output
if ( matrixDebugMode == 1 && state->curState == KeyState_Press )
{
printHex( key );
print(" ");
}
// State transition debug output
else if ( matrixDebugMode == 2 )
{
printHex( key );
Matrix_keyPositionDebug( state->curState );
print(" ");
}
}
}
}
// Unstrobe Pin
Matrix_pin( Matrix_cols[ strobe ], Type_StrobeOff );
}
// Matrix ghosting check and elimination
// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#ifdef GHOSTING_MATRIX
// strobe = column, sense = row
// Count (rows) use for columns
//print("C ");
for ( uint8_t col = 0; col < Matrix_colsNum; col++ )
{
uint8_t used = 0;
for ( uint8_t row = 0; row < Matrix_rowsNum; row++ )
{
uint8_t key = Matrix_colsNum * row + col;
KeyState *state = &Matrix_scanArray[ key ];
if ( keyOn(state->curState) )
used++;
}
//printInt8(used);
col_use[col] = used;
col_ghost[col] = 0; // clear
}
// Count (columns) use for rows
//print(" R ");
for ( uint8_t row = 0; row < Matrix_rowsNum; row++ )
{
uint8_t used = 0;
for ( uint8_t col = 0; col < Matrix_colsNum; col++ )
{
uint8_t key = Matrix_colsNum * row + col;
KeyState *state = &Matrix_scanArray[ key ];
if ( keyOn(state->curState) )
used++;
}
//printInt8(used);
row_use[row] = used;
row_ghost[row] = 0; // clear
}
// Check if matrix has ghost
// Happens when key is pressed and some other key is pressed in same row and another in same column
//print(" G ");
for ( uint8_t col = 0; col < Matrix_colsNum; col++ )
{
for ( uint8_t row = 0; row < Matrix_rowsNum; row++ )
{
uint8_t key = Matrix_colsNum * row + col;
KeyState *state = &Matrix_scanArray[ key ];
if ( keyOn(state->curState) && col_use[col] >= 2 && row_use[row] >= 2 )
{
// mark col and row as having ghost
col_ghost[col] = 1;
row_ghost[row] = 1;
//print(" "); printInt8(col); print(","); printInt8(row);
}
}
}
//print( NL );
// Send keys
for ( uint8_t col = 0; col < Matrix_colsNum; col++ )
{
for ( uint8_t row = 0; row < Matrix_rowsNum; row++ )
{
uint8_t key = Matrix_colsNum * row + col;
KeyState *state = &Matrix_scanArray[ key ];
KeyGhost *st = &Matrix_ghostArray[ key ];
// col or row is ghosting (crossed)
uint8_t ghost = (col_ghost[col] > 0 || row_ghost[row] > 0) ? 1 : 0;
st->prev = st->cur; // previous
// save state if no ghost or outside ghosted area
if ( ghost == 0 )
st->saved = state->curState; // save state if no ghost
// final
// use saved state if ghosting, or current if not
st->cur = ghost > 0 ? st->saved : state->curState;
// Send keystate to macro module
KeyPosition k = !st->cur
? (!st->prev ? KeyState_Off : KeyState_Release)
: ( st->prev ? KeyState_Hold : KeyState_Press);
Macro_keyState( key, k );
}
}
#endif
// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
// State Table Output Debug
if ( matrixDebugStateCounter > 0 )
{
// Decrement counter
matrixDebugStateCounter--;
// Output stats on number of scans being done per USB send
print( NL );
info_msg("Max scans: ");
printHex( matrixMaxScans );
print( NL );
info_msg("Previous scans: ");
printHex( matrixPrevScans );
print( NL );
// Output current scan number
info_msg("Scan Number: ");
printHex( scanNum );
print( NL );
// Display the state info for each key
print("<key>:<previous state><current state> <active count> <inactive count>");
for ( uint8_t key = 0; key < Matrix_maxKeys; key++ )
{
// Every 4 keys, put a newline
if ( key % 4 == 0 )
print( NL );
print("\033[1m0x");
printHex_op( key, 2 );
print("\033[0m");
print(":");
Matrix_keyPositionDebug( Matrix_scanArray[ key ].prevState );
Matrix_keyPositionDebug( Matrix_scanArray[ key ].curState );
print(" 0x");
printHex_op( Matrix_scanArray[ key ].activeCount, 4 );
print(" 0x");
printHex_op( Matrix_scanArray[ key ].inactiveCount, 4 );
print(" ");
}
print( NL );
}
}
// Called by parent scan module whenever the available current changes
// current - mA
void Matrix_currentChange( unsigned int current )
{
// TODO - Any potential power savings?
}
// ----- CLI Command Functions -----
void cliFunc_matrixDebug ( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// Set the matrix debug flag depending on the argument
// If no argument, set to scan code only
// If set to T, set to state transition
switch ( arg1Ptr[0] )
{
// T as argument
case 'T':
case 't':
matrixDebugMode = matrixDebugMode != 2 ? 2 : 0;
break;
// No argument
case '\0':
matrixDebugMode = matrixDebugMode != 1 ? 1 : 0;
break;
// Invalid argument
default:
return;
}
print( NL );
info_msg("Matrix Debug Mode: ");
printInt8( matrixDebugMode );
}
void cliFunc_matrixState ( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// Default to 1 if no argument is given
matrixDebugStateCounter = 1;
if ( arg1Ptr[0] != '\0' )
{
matrixDebugStateCounter = (uint16_t)numToInt( arg1Ptr );
}
}