Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/DPH/scan_loop.c
Jacob Alexander eabb1c546a Fixing RAM calculator and reduced actual SRAM usage
- Changed static variables to const that should have been const
- Updated CMake files to prepare for MCHCK custom bootloader
- Changed the USB ID numbers and ID number for bootloader
- Only generate DFU or Teensy binary image, not both
- Fixed RAM and FLASH calculator
- Added missing license in delay.c/h (much of it was taken from Teensy source though I've changed a bunch of it)
- Prepared mk20dx.c for upcoming bootloader addition
- mk20dx.h cleanup
- Reduced the MCHCK based flash size for the application image (bootloader changes requires more flash space)
- Fixed bugs in macro.c
- Added keyHold cli command
- Added show pending events debug message for PartialMap macro module
2014-08-15 10:49:44 -07:00

1034 lines
25 KiB
C

/* Copyright (C) 2011-2013 by Joseph Makuch
* Additions by Jacob Alexander (2013-2014)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3.0 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <cli.h>
#include <led.h>
#include <macro.h>
#include <print.h>
// Local Includes
#include "scan_loop.h"
// ----- Defines -----
// TODO dfj defines...needs commenting and maybe some cleaning...
#define MAX_PRESS_DELTA_MV 450 // As measured from the Teensy ADC pin
#define THRESHOLD_MV (MAX_PRESS_DELTA_MV >> 1)
//(2560 / (0x3ff/2)) ~= 5
#define MV_PER_ADC 5
#define THRESHOLD (THRESHOLD_MV / MV_PER_ADC)
#define STROBE_SETTLE 1
#define ADHSM 7
// Right justification of ADLAR
#define ADLAR_BITS 0
// full muxmask
#define FULL_MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2) | (1 << MUX3) | (1 << MUX4))
// F0-f7 pins only muxmask.
#define MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2))
// Strobe Masks
#define D_MASK (0xff)
#define E_MASK (0x03)
#define C_MASK (0xff)
// set ADC clock prescale
#define PRESCALE_MASK ((1 << ADPS0) | (1 << ADPS1) | (1 << ADPS2))
#define PRESCALE_SHIFT (ADPS0)
#define PRESCALE 3
// Max number of strobes supported by the hardware
// Strobe lines are detected at startup, extra strobes cause anomalies like phantom keypresses
#define MAX_STROBES 18
// Number of consecutive samples required to pass debounce
#define DEBOUNCE_THRESHOLD 5
// Scans to remain idle after all keys were release before starting averaging
// XXX So this makes the initial keypresses fast,
// but it's still possible to lose a keypress if you press at the wrong time -HaaTa
#define KEY_IDLE_SCANS 30000
// Total number of muxes/sense lines available
#define MUXES_COUNT 8
#define MUXES_COUNT_XSHIFT 3
// Number of warm-up loops before starting to scan keys
#define WARMUP_LOOPS ( 1024 )
#define WARMUP_STOP (WARMUP_LOOPS - 1)
#define SAMPLE_CONTROL 3
#define KEY_COUNT ((MAX_STROBES) * (MUXES_COUNT))
#define RECOVERY_CONTROL 1
#define RECOVERY_SOURCE 0
#define RECOVERY_SINK 2
#define ON 1
#define OFF 0
// mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
#define MUX_MIX 2
#define IDLE_COUNT_SHIFT 8
// av = (av << shift) - av + sample; av >>= shift
// e.g. 1 -> (av + sample) / 2 simple average of new and old
// 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new.
// 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new.
#define KEYS_AVERAGES_MIX_SHIFT 3
// ----- Macros -----
// Select mux
#define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))
// ----- Function Declarations -----
// CLI Functions
void cliFunc_avgDebug ( char* args );
void cliFunc_echo ( char* args );
void cliFunc_keyDebug ( char* args );
void cliFunc_pressDebug ( char* args );
void cliFunc_problemKeys( char* args );
void cliFunc_senseDebug ( char* args );
// Debug Functions
void dumpSenseTable();
// High-level Capsense Functions
void setup_ADC();
void capsense_scan();
// Capsense Sense Functions
void testColumn ( uint8_t strobe );
void sampleColumn( uint8_t column );
// Low-level Capsense Functions
void strobe_w( uint8_t strobe_num );
void recovery( uint8_t on );
// ----- Variables -----
// Buffer used to inform the macro processing module which keys have been detected as pressed
volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
volatile uint8_t KeyIndex_BufferUsed;
// Scan Module command dictionary
const char scanCLIDictName[] = "DPH Module Commands";
const CLIDictItem scanCLIDict[] = {
{ "echo", "Example command, echos the arguments.", cliFunc_echo },
{ "avgDebug", "Enables/Disables averaging results." NL "\t\tDisplays each average, starting from Key 0x00, ignoring 0 valued averages.", cliFunc_avgDebug },
{ "keyDebug", "Enables/Disables long debug for each keypress." NL "\t\tkeycode - [strobe:mux] : sense val : threshold+delta=total : margin", cliFunc_keyDebug },
{ "pressDebug", "Enables/Disables short debug for each keypress.", cliFunc_pressDebug },
{ "problemKeys", "Display current list of problem keys,", cliFunc_problemKeys },
{ "senseDebug", "Prints out the current sense table N times." NL "\t\tsense:max sense:delta", cliFunc_senseDebug },
{ 0, 0, 0 } // Null entry for dictionary end
};
// CLI Control Variables
uint8_t enableAvgDebug = 0;
uint8_t enableKeyDebug = 0;
uint8_t enablePressDebug = 1;
uint8_t senseDebugCount = 3; // In order to get boot-time oddities
// Variables used to calculate the starting sense value (averaging)
uint32_t full_avg = 0;
uint32_t high_avg = 0;
uint32_t low_avg = 0;
uint8_t high_count = 0;
uint8_t low_count = 0;
uint16_t samples[MAX_STROBES][MUXES_COUNT]; // Overall table of cap sense ADC values
uint16_t sampleMax[MAX_STROBES][MUXES_COUNT]; // Records the max seen ADC value
uint8_t key_activity = 0; // Increments for each detected key per each full scan of the keyboard, it is reset before each full scan
uint16_t key_idle = 0; // Defines how scans after all keys were released before starting averaging again
uint8_t key_release = 0; // Indicates if going from key press state to release state (some keys pressed to no keys pressed)
uint16_t threshold = THRESHOLD;
uint16_t keys_averages_acc[KEY_COUNT];
uint16_t keys_averages [KEY_COUNT];
uint8_t keys_debounce [KEY_COUNT]; // Contains debounce statistics
uint8_t keys_problem [KEY_COUNT]; // Marks keys that should be ignored (determined by averaging at startup)
// TODO: change this to 'booting', then count down.
uint16_t boot_count = 0;
uint8_t total_strobes = MAX_STROBES;
uint8_t strobe_map[MAX_STROBES];
// ----- Functions -----
// Initial setup for cap sense controller
inline void Scan_setup()
{
// Register Scan CLI dictionary
CLI_registerDictionary( scanCLIDict, scanCLIDictName );
// Scan for active strobes
// NOTE1: On IBM PCBs, each strobe line that is *NOT* used is connected to GND.
// This means, the strobe GPIO can be set to Tri-State pull-up to detect which strobe lines are not used.
// NOTE2: This will *NOT* detect floating strobes.
// NOTE3: Rev 0.4, the strobe numbers are reversed, so D0 is actually strobe 0 and C7 is strobe 17
info_msg("Detecting Strobes...");
DDRC = 0;
PORTC = C_MASK;
DDRD = 0;
PORTD = D_MASK;
DDRE = 0;
PORTE = E_MASK;
// Initially there are 0 strobes
total_strobes = 0;
// Iterate over each the strobes
for ( uint8_t strobe = 0; strobe < MAX_STROBES; strobe++ )
{
uint8_t detected = 0;
// If PIN is high, then strobe is *NOT* connected to GND and may be a strobe
switch ( strobe )
{
// Strobe Mappings
// Rev Rev
// 0.2 0.4
#ifndef REV0_4_DEBUG // XXX These pins should be reworked, and connect to GND on Rev 0.4
case 0: // D0 0 n/c
case 1: // D1 1 n/c
#endif
case 2: // D2 2 15
case 3: // D3 3 14
case 4: // D4 4 13
case 5: // D5 5 12
case 6: // D6 6 11
case 7: // D7 7 10
detected = PIND & (1 << strobe);
break;
case 8: // E0 8 9
case 9: // E1 9 8
detected = PINE & (1 << (strobe - 8));
break;
case 10: // C0 10 7
case 11: // C1 11 6
case 12: // C2 12 5
case 13: // C3 13 4
case 14: // C4 14 3
case 15: // C5 15 2
#ifndef REV0_2_DEBUG // XXX If not using the 18 pin connector on Rev 0.2, rework these pins to GND
case 16: // C6 16 1
case 17: // C7 17 0
#endif
detected = PINC & (1 << (strobe - 10));
break;
default:
break;
}
// Potential strobe line detected
if ( detected )
{
strobe_map[total_strobes] = strobe;
total_strobes++;
}
}
printInt8( total_strobes );
print( " strobes found." NL );
// Setup Pins for Strobing
DDRC = C_MASK;
PORTC = 0;
DDRD = D_MASK;
PORTD = 0;
DDRE = E_MASK;
PORTE = 0 ;
// Initialize ADC
setup_ADC();
// Reset debounce table
for ( int i = 0; i < KEY_COUNT; ++i )
{
keys_debounce[i] = 0;
}
// Warm things up a bit before we start collecting data, taking real samples.
for ( uint8_t i = 0; i < total_strobes; ++i )
{
sampleColumn( strobe_map[i] );
}
}
// Main Detection Loop
// This is where the important stuff happens
inline uint8_t Scan_loop()
{
capsense_scan();
// Return non-zero if macro and USB processing should be delayed
// Macro processing will always run if returning 0
// USB processing only happens once the USB send timer expires, if it has not, Scan_loop will be called
// after the macro processing has been completed
return 0;
}
// Signal KeyIndex_Buffer that it has been properly read
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
void Scan_finishedWithBuffer( uint8_t sentKeys )
{
return;
}
// Signal KeyIndex_Buffer that it has been properly read and sent out by the USB module
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
void Scan_finishedWithUSBBuffer( uint8_t sentKeys )
{
return;
}
inline void capsense_scan()
{
// Accumulated average used for the next scan
uint32_t cur_full_avg = 0;
uint32_t cur_high_avg = 0;
// Reset average counters
low_avg = 0;
low_count = 0;
high_count = 0;
// Reset key activity, if there is no key activity, averages will accumulate for sense deltas, otherwise they will be reset
key_activity = 0;
// Scan each of the mapped strobes in the matrix
for ( uint8_t strober = 0; strober < total_strobes; ++strober )
{
uint8_t map_strobe = strobe_map[strober];
// Sample the ADCs for the given column/strobe
sampleColumn( map_strobe );
// Only process sense data if warmup is finished
if ( boot_count >= WARMUP_LOOPS )
{
testColumn( map_strobe );
}
uint8_t strobe_line = map_strobe << MUXES_COUNT_XSHIFT;
for ( int mux = 0; mux < MUXES_COUNT; ++mux )
{
// discard sketchy low bit, and meaningless high bits.
uint8_t sample = samples[map_strobe][mux] >> 1;
keys_averages_acc[strobe_line + mux] += sample;
}
// Accumulate 3 total averages (used for determining starting average during warmup)
// full_avg - Average of all sampled lines on the previous scan set
// cur_full_avg - Average of all sampled lines for this scan set
// high_avg - Average of all sampled lines above full_avg on the previous scan set
// cur_high_avg - Average of all sampled lines above full_avg
// low_avg - Average of all sampled lines below or equal to full_avg
if ( boot_count < WARMUP_LOOPS )
{
for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
{
uint8_t sample = samples[map_strobe][mux] >> 1;
// Sample is high, add it to high avg
if ( sample > full_avg )
{
high_count++;
cur_high_avg += sample;
}
// Sample is low, add it to low avg
else
{
low_count++;
low_avg += sample;
}
// If sample is higher than previous high_avg, then mark as "problem key"
// XXX Giving a bit more margin to pass (high_avg vs. high_avg + high_avg - full_avg) -HaaTa
keys_problem[strobe_line + mux] = sample > high_avg + (high_avg - full_avg) ? sample : 0;
// Prepare for next average
cur_full_avg += sample;
}
}
} // for strober
// Update total sense average (only during warm-up)
if ( boot_count < WARMUP_LOOPS )
{
full_avg = cur_full_avg / (total_strobes * MUXES_COUNT);
high_avg = cur_high_avg / high_count;
low_avg /= low_count;
// Update the base average value using the low_avg (best chance of not ignoring a keypress)
for ( int i = 0; i < KEY_COUNT; ++i )
{
keys_averages[i] = low_avg;
keys_averages_acc[i] = low_avg;
}
}
// Warm up voltage references
if ( boot_count < WARMUP_LOOPS )
{
boot_count++;
switch ( boot_count )
{
// First loop
case 1:
// Show msg at first iteration only
info_msg("Warming up the voltage references");
break;
// Middle iterations
case 300:
case 600:
case 900:
case 1200:
print(".");
break;
// Last loop
case WARMUP_STOP:
print( NL );
info_msg("Warmup finished using ");
printInt16( WARMUP_LOOPS );
print(" iterations" NL );
// Display the final calculated averages of all the sensed strobes
info_msg("Full average (");
printInt8( total_strobes * MUXES_COUNT );
print("): ");
printHex( full_avg );
print(" High average (");
printInt8( high_count );
print("): ");
printHex( high_avg );
print(" Low average (");
printInt8( low_count );
print("): ");
printHex( low_avg );
print(" Rejection threshold: ");
printHex( high_avg + (high_avg - full_avg) );
print( NL );
// Display problem keys, and the sense value at the time
for ( uint8_t key = 0; key < KEY_COUNT; key++ )
{
if ( keys_problem[key] )
{
warn_msg("Problem key detected: ");
printHex( key );
print(" (");
printHex( keys_problem[key] );
print(")" NL );
}
}
info_print("If problem keys were detected, and were being held down, they will be reset as soon as let go.");
info_print("Some keys have unusually high sense values, on the first press they should be re-enabled.");
break;
}
}
else
{
// No keypress, accumulate averages
if( !key_activity )
{
// Only start averaging once the idle counter has counted down to 0
if ( key_idle == 0 )
{
// Average Debugging
if ( enableAvgDebug )
{
print("\033[1mAvg\033[0m: ");
}
// aggregate
for ( uint8_t i = 0; i < KEY_COUNT; ++i )
{
uint16_t acc = keys_averages_acc[i];
//uint16_t acc = keys_averages_acc[i] >> IDLE_COUNT_SHIFT; // XXX This fixes things... -HaaTa
uint32_t av = keys_averages[i];
av = (av << KEYS_AVERAGES_MIX_SHIFT) - av + acc;
av >>= KEYS_AVERAGES_MIX_SHIFT;
keys_averages[i] = av;
keys_averages_acc[i] = 0;
// Average Debugging
if ( enableAvgDebug && av > 0 )
{
printHex( av );
print(" ");
}
}
// Average Debugging
if ( enableAvgDebug )
{
print( NL );
}
// No key presses detected, set key_release indicator
key_release = 1;
}
// Otherwise decrement the idle counter
else
{
key_idle--;
}
}
// Keypresses, reset accumulators
else if ( key_release )
{
for ( uint8_t c = 0; c < KEY_COUNT; ++c ) { keys_averages_acc[c] = 0; }
key_release = 0;
}
// If the debugging sense table is non-zero, display
if ( senseDebugCount > 0 )
{
senseDebugCount--;
print( NL );
dumpSenseTable();
}
}
}
void setup_ADC()
{
// disable adc digital pins.
DIDR1 |= (1 << AIN0D) | (1<<AIN1D); // set disable on pins 1,0.
DDRF = 0x0;
PORTF = 0x0;
uint8_t mux = 0 & 0x1f; // 0 == first. // 0x1e = 1.1V ref.
// 0 = external aref 1,1 = 2.56V internal ref
uint8_t aref = ((1 << REFS1) | (1 << REFS0)) & ((1 << REFS1) | (1 << REFS0));
uint8_t adate = (1 << ADATE) & (1 << ADATE); // trigger enable
uint8_t trig = 0 & ((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2)); // 0 = free running
// ps2, ps1 := /64 ( 2^6 ) ps2 := /16 (2^4), ps1 := 4, ps0 :=2, PS1,PS0 := 8 (2^8)
uint8_t prescale = ( ((PRESCALE) << PRESCALE_SHIFT) & PRESCALE_MASK ); // 001 == 2^1 == 2
uint8_t hispeed = (1 << ADHSM);
uint8_t en_mux = (1 << ACME);
ADCSRA = (1 << ADEN) | prescale; // ADC enable
// select ref.
//ADMUX |= ((1 << REFS1) | (1 << REFS0)); // 2.56 V internal.
//ADMUX |= ((1 << REFS0) ); // Vcc with external cap.
//ADMUX &= ~((1 << REFS1) | (1 << REFS0)); // 0,0 : aref.
ADMUX = aref | mux | ADLAR_BITS;
// set free-running
ADCSRA |= adate; // trigger enable
ADCSRB = en_mux | hispeed | trig | (ADCSRB & ~((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2))); // trigger select free running
ADCSRA |= (1 << ADEN); // ADC enable
ADCSRA |= (1 << ADSC); // start conversions q
}
void recovery( uint8_t on )
{
DDRB |= (1 << RECOVERY_CONTROL);
PORTB &= ~(1 << RECOVERY_SINK); // SINK always zero
DDRB &= ~(1 << RECOVERY_SOURCE); // SOURCE high imp
if ( on )
{
// set strobes to sink to gnd.
DDRC |= C_MASK;
DDRD |= D_MASK;
DDRE |= E_MASK;
PORTC &= ~C_MASK;
PORTD &= ~D_MASK;
PORTE &= ~E_MASK;
DDRB |= (1 << RECOVERY_SINK); // SINK pull
PORTB |= (1 << RECOVERY_CONTROL);
PORTB |= (1 << RECOVERY_SOURCE); // SOURCE high
DDRB |= (1 << RECOVERY_SOURCE);
}
else
{
PORTB &= ~(1 << RECOVERY_CONTROL);
DDRB &= ~(1 << RECOVERY_SOURCE);
PORTB &= ~(1 << RECOVERY_SOURCE); // SOURCE low
DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp
}
}
void hold_sample( uint8_t on )
{
if ( !on )
{
PORTB |= (1 << SAMPLE_CONTROL);
DDRB |= (1 << SAMPLE_CONTROL);
}
else
{
DDRB |= (1 << SAMPLE_CONTROL);
PORTB &= ~(1 << SAMPLE_CONTROL);
}
}
void strobe_w( uint8_t strobe_num )
{
PORTC &= ~(C_MASK);
PORTD &= ~(D_MASK);
PORTE &= ~(E_MASK);
// Strobe table
// Not all strobes are used depending on which are detected
switch ( strobe_num )
{
case 0: PORTD |= (1 << 0); break;
case 1: PORTD |= (1 << 1); break;
case 2: PORTD |= (1 << 2); break;
case 3: PORTD |= (1 << 3); break;
case 4: PORTD |= (1 << 4); break;
case 5: PORTD |= (1 << 5); break;
case 6: PORTD |= (1 << 6); break;
case 7: PORTD |= (1 << 7); break;
case 8: PORTE |= (1 << 0); break;
case 9: PORTE |= (1 << 1); break;
case 10: PORTC |= (1 << 0); break;
case 11: PORTC |= (1 << 1); break;
case 12: PORTC |= (1 << 2); break;
case 13: PORTC |= (1 << 3); break;
case 14: PORTC |= (1 << 4); break;
case 15: PORTC |= (1 << 5); break;
case 16: PORTC |= (1 << 6); break;
case 17: PORTC |= (1 << 7); break;
default:
break;
}
}
inline uint16_t getADC(void)
{
ADCSRA |= (1 << ADIF); // clear int flag by writing 1.
//wait for last read to complete.
while ( !( ADCSRA & (1 << ADIF) ) );
return ADC; // return sample
}
void sampleColumn( uint8_t column )
{
// ensure all probe lines are driven low, and chill for recovery delay.
ADCSRA |= (1 << ADEN) | (1 << ADSC); // enable and start conversions
PORTC &= ~C_MASK;
PORTD &= ~D_MASK;
PORTE &= ~E_MASK;
PORTF = 0;
DDRF = 0;
recovery( OFF );
strobe_w( column );
hold_sample( OFF );
SET_FULL_MUX( 0 );
// Allow strobes to settle
for ( uint8_t i = 0; i < STROBE_SETTLE; ++i ) { getADC(); }
hold_sample( ON );
uint8_t mux = 0;
SET_FULL_MUX( mux );
getADC(); // throw away; unknown mux.
do {
SET_FULL_MUX( mux + 1 ); // our *next* sample will use this
// retrieve current read.
uint16_t readVal = getADC();
samples[column][mux] = readVal;
// Update max sense sample table
if ( readVal > sampleMax[column][mux] )
{
sampleMax[column][mux] = readVal;
}
mux++;
} while ( mux < 8 );
hold_sample( OFF );
recovery( ON );
// turn off adc.
ADCSRA &= ~(1 << ADEN);
// pull all columns' strobe-lines low.
DDRC |= C_MASK;
DDRD |= D_MASK;
DDRE |= E_MASK;
PORTC &= ~C_MASK;
PORTD &= ~D_MASK;
PORTE &= ~E_MASK;
}
void testColumn( uint8_t strobe )
{
uint16_t db_delta = 0;
uint8_t db_sample = 0;
uint16_t db_threshold = 0;
uint8_t column = 0;
uint8_t bit = 1;
for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
{
uint16_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + mux];
uint8_t key = (strobe << MUXES_COUNT_XSHIFT) + mux;
// Check if this is a bad key (e.g. test point, or non-existent key)
if ( keys_problem[key] )
{
// If the sample value of the problem key goes above initally recorded result + threshold
// re-enable the key
if ( (db_sample = samples[strobe][mux] >> 1) > keys_problem[key] + threshold )
//if ( (db_sample = samples[strobe][mux] >> 1) < high_avg )
{
info_msg("Re-enabling problem key: ");
printHex( key );
print( NL );
keys_problem[key] = 0;
}
// Do not waste any more cycles processing, regardless, a keypress cannot be detected
continue;
}
// Keypress detected
// db_sample (uint8_t), discard meaningless high bit, and garbage low bit
if ( (db_sample = samples[strobe][mux] >> 1) > (db_threshold = threshold) + (db_delta = delta) )
{
column |= bit;
key_activity++; // No longer idle, stop averaging ADC data
key_idle = KEY_IDLE_SCANS; // Reset idle count-down
// Only register keypresses once the warmup is complete, or not enough debounce info
if ( keys_debounce[key] <= DEBOUNCE_THRESHOLD )
{
// Add to the Macro processing buffer if debounce criteria met
// Automatically handles converting to a USB code and sending off to the PC
if ( keys_debounce[key] == DEBOUNCE_THRESHOLD )
{
// Debug message, pressDebug CLI
if ( enablePressDebug )
{
print("0x");
printHex_op( key, 2 );
print(" ");
}
// Initial Keypress
Macro_keyState( key, 0x01 );
}
else if ( keys_debounce[key] >= DEBOUNCE_THRESHOLD )
{
// Held Key
Macro_keyState( key, 0x02 );
}
keys_debounce[key]++;
}
// Long form key debugging
if ( enableKeyDebug )
{
// Debug message
// <key> [<strobe>:<mux>] : <sense val> : <delta + threshold> : <margin>
dbug_msg("0x");
printHex_op( key, 1 );
print(" [");
printInt8( strobe );
print(":");
printInt8( mux );
print("] : ");
printHex( db_sample ); // Sense
print(" : ");
printHex( db_threshold );
print("+");
printHex( db_delta );
print("=");
printHex( db_threshold + db_delta ); // Sense compare
print(" : ");
printHex( db_sample - ( db_threshold + db_delta ) ); // Margin
print( NL );
}
}
// Clear debounce entry if no keypress detected
else
{
// Release Key
if ( KeyIndex_BufferUsed > 0 && keys_debounce[key] >= DEBOUNCE_THRESHOLD )
{
Macro_keyState( key, 0x03 );
}
// Clear debounce entry
keys_debounce[key] = 0;
}
bit <<= 1;
}
}
void dumpSenseTable()
{
// Initial table alignment, with base threshold used for every key
print("\033[1m");
printHex( threshold );
print("\033[0m ");
// Print out headers first
for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
{
print(" Mux \033[1m");
printInt8( mux );
print("\033[0m ");
}
print( NL );
// Display the full strobe/sense table
for ( uint8_t strober = 0; strober < total_strobes; ++strober )
{
uint8_t strobe = strobe_map[strober];
// Display the strobe
print("Strobe \033[1m");
printHex( strobe );
print("\033[0m ");
// For each mux, display sense:threshold:delta
for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
{
uint8_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + mux];
uint8_t sample = samples[strobe][mux] >> 1;
uint8_t max = sampleMax[strobe][mux] >> 1;
// Indicate if the key is being pressed by displaying green
if ( sample > delta + threshold )
{
print("\033[1;32m");
}
printHex_op( sample, 2 );
print(":");
printHex_op( max, 2 );
print(":");
printHex_op( delta, 2 );
print("\033[0m ");
}
// New line for each strobe
print( NL );
}
}
// ----- CLI Command Functions -----
// XXX Just an example command showing how to parse arguments (more complex than generally needed)
void cliFunc_echo( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Parse args until a \0 is found
while ( 1 )
{
print( NL ); // No \r\n by default after the command is entered
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Print out the arg
dPrint( arg1Ptr );
}
}
void cliFunc_avgDebug( char* args )
{
print( NL );
// Args ignored, just toggling
if ( enableAvgDebug )
{
info_print("Cap Sense averaging debug disabled.");
enableAvgDebug = 0;
}
else
{
info_print("Cap Sense averaging debug enabled.");
enableAvgDebug = 1;
}
}
void cliFunc_keyDebug( char* args )
{
print( NL );
// Args ignored, just toggling
if ( enableKeyDebug )
{
info_print("Cap Sense key long debug disabled - pre debounce.");
enableKeyDebug = 0;
}
else
{
info_print("Cap Sense key long debug enabled - pre debounce.");
enableKeyDebug = 1;
}
}
void cliFunc_pressDebug( char* args )
{
print( NL );
// Args ignored, just toggling
if ( enablePressDebug )
{
info_print("Cap Sense key debug disabled - post debounce.");
enablePressDebug = 0;
}
else
{
info_print("Cap Sense key debug enabled - post debounce.");
enablePressDebug = 1;
}
}
void cliFunc_problemKeys( char* args )
{
print( NL );
uint8_t count = 0;
// Args ignored, just displaying
// Display problem keys, and the sense value at the time
for ( uint8_t key = 0; key < KEY_COUNT; key++ )
{
if ( keys_problem[key] )
{
if ( count++ == 0 )
{
warn_msg("Problem keys: ");
}
printHex( key );
print(" (");
printHex( keys_problem[key] );
print(") " );
}
}
}
void cliFunc_senseDebug( char* args )
{
// Parse code from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// Default to a single print
senseDebugCount = 1;
// If there was an argument, use that instead
if ( *arg1Ptr != '\0' )
{
senseDebugCount = decToInt( arg1Ptr );
}
}