Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Output/pjrcUSB/arm/usb_dev.c
Jacob Alexander 4255a99fcc More preparation for NKRO USB for arm
- Added NKRO descriptor
- Added NKRO HID descriptor
- Updated boot HID descriptor
- Fixed many bugs with the pjrc ARM usb stack (with USB HID)
2014-09-28 16:44:57 -07:00

1157 lines
27 KiB
C

/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
* Modifications by Jacob Alexander (2013-2014)
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* 1. The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* 2. If the Software is incorporated into a build system that allows
* selection among a list of target devices, then similar target
* devices manufactured by PJRC.COM must be included in the list of
* target devices and selectable in the same manner.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
// ----- Includes -----
// Project Includes
#include <Lib/OutputLib.h>
#include <print.h>
// Local Includes
#include "usb_dev.h"
#include "usb_mem.h"
// ----- Defines -----
// DEBUG Mode
// XXX - Only use when using usbMuxUart Module
// Delay causes issues initializing more than 1 hid device (i.e. NKRO keyboard)
//#define UART_DEBUG 1
// Debug Unknown USB requests, usually what you want to debug USB issues
//#define UART_DEBUG_UNKNOWN 1
#define TX_STATE_BOTH_FREE_EVEN_FIRST 0
#define TX_STATE_BOTH_FREE_ODD_FIRST 1
#define TX_STATE_EVEN_FREE 2
#define TX_STATE_ODD_FREE 3
#define TX_STATE_NONE_FREE_EVEN_FIRST 4
#define TX_STATE_NONE_FREE_ODD_FIRST 5
#define BDT_OWN 0x80
#define BDT_DATA1 0x40
#define BDT_DATA0 0x00
#define BDT_DTS 0x08
#define BDT_STALL 0x04
#define TX 1
#define RX 0
#define ODD 1
#define EVEN 0
#define DATA0 0
#define DATA1 1
#define GET_STATUS 0
#define CLEAR_FEATURE 1
#define SET_FEATURE 3
#define SET_ADDRESS 5
#define GET_DESCRIPTOR 6
#define SET_DESCRIPTOR 7
#define GET_CONFIGURATION 8
#define SET_CONFIGURATION 9
#define GET_INTERFACE 10
#define SET_INTERFACE 11
#define SYNCH_FRAME 12
#define TX_STATE_BOTH_FREE_EVEN_FIRST 0
#define TX_STATE_BOTH_FREE_ODD_FIRST 1
#define TX_STATE_EVEN_FREE 2
#define TX_STATE_ODD_FREE 3
#define TX_STATE_NONE_FREE 4
// ----- Macros -----
#define BDT_PID(n) (((n) >> 2) & 15)
#define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \
| ((data) ? BDT_DATA1 : BDT_DATA0) \
| ((count) << 16))
#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
// ----- Structs -----
// buffer descriptor table
typedef struct {
uint32_t desc;
void * addr;
} bdt_t;
static union {
struct {
union {
struct {
uint8_t bmRequestType;
uint8_t bRequest;
};
uint16_t wRequestAndType;
};
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;
};
struct {
uint32_t word1;
uint32_t word2;
};
} setup;
// ----- Variables -----
__attribute__ ((section(".usbdescriptortable"), used))
static bdt_t table[ (NUM_ENDPOINTS + 1) * 4 ];
static usb_packet_t *rx_first [ NUM_ENDPOINTS ];
static usb_packet_t *rx_last [ NUM_ENDPOINTS ];
static usb_packet_t *tx_first [ NUM_ENDPOINTS ];
static usb_packet_t *tx_last [ NUM_ENDPOINTS ];
uint16_t usb_rx_byte_count_data[ NUM_ENDPOINTS ];
static uint8_t tx_state[NUM_ENDPOINTS];
// SETUP always uses a DATA0 PID for the data field of the SETUP transaction.
// transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1)
// Status stage uses a DATA1 PID.
static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
static const uint8_t *ep0_tx_ptr = NULL;
static uint16_t ep0_tx_len;
static uint8_t ep0_tx_bdt_bank = 0;
static uint8_t ep0_tx_data_toggle = 0;
uint8_t usb_rx_memory_needed = 0;
volatile uint8_t usb_configuration = 0;
volatile uint8_t usb_reboot_timer = 0;
static uint8_t reply_buffer[8];
// ----- Functions -----
static void endpoint0_stall()
{
USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
}
static void endpoint0_transmit( const void *data, uint32_t len )
{
table[index(0, TX, ep0_tx_bdt_bank)].addr = (void *)data;
table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle);
ep0_tx_data_toggle ^= 1;
ep0_tx_bdt_bank ^= 1;
}
static void usb_setup()
{
const uint8_t *data = NULL;
uint32_t datalen = 0;
const usb_descriptor_list_t *list;
uint32_t size;
volatile uint8_t *reg;
uint8_t epconf;
const uint8_t *cfg;
int i;
switch ( setup.wRequestAndType )
{
case 0x0500: // SET_ADDRESS
break;
case 0x0900: // SET_CONFIGURATION
#ifdef UART_DEBUG
print("CONFIGURE - ");
#endif
usb_configuration = setup.wValue;
reg = &USB0_ENDPT1;
cfg = usb_endpoint_config_table;
// clear all BDT entries, free any allocated memory...
for ( i = 4; i < ( NUM_ENDPOINTS + 1) * 4; i++ )
{
if ( table[i].desc & BDT_OWN )
{
usb_free( (usb_packet_t *)((uint8_t *)(table[ i ].addr) - 8) );
}
}
// free all queued packets
for ( i = 0; i < NUM_ENDPOINTS; i++ )
{
usb_packet_t *p, *n;
p = rx_first[i];
while ( p )
{
n = p->next;
usb_free(p);
p = n;
}
rx_first[i] = NULL;
rx_last[i] = NULL;
p = tx_first[i];
while (p)
{
n = p->next;
usb_free(p);
p = n;
}
tx_first[i] = NULL;
tx_last[i] = NULL;
usb_rx_byte_count_data[i] = 0;
switch (tx_state[i]) {
case TX_STATE_EVEN_FREE:
case TX_STATE_NONE_FREE_EVEN_FIRST:
tx_state[i] = TX_STATE_BOTH_FREE_EVEN_FIRST;
break;
case TX_STATE_ODD_FREE:
case TX_STATE_NONE_FREE_ODD_FIRST:
tx_state[i] = TX_STATE_BOTH_FREE_ODD_FIRST;
break;
default:
break;
}
}
usb_rx_memory_needed = 0;
for ( i = 1; i <= NUM_ENDPOINTS; i++ )
{
epconf = *cfg++;
*reg = epconf;
reg += 4;
if ( epconf & USB_ENDPT_EPRXEN )
{
usb_packet_t *p;
p = usb_malloc();
if ( p )
{
table[index(i, RX, EVEN)].addr = p->buf;
table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
}
else
{
table[index(i, RX, EVEN)].desc = 0;
usb_rx_memory_needed++;
}
p = usb_malloc();
if ( p )
{
table[index(i, RX, ODD)].addr = p->buf;
table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
}
else
{
table[index(i, RX, ODD)].desc = 0;
usb_rx_memory_needed++;
}
}
table[index(i, TX, EVEN)].desc = 0;
table[index(i, TX, ODD)].desc = 0;
}
break;
case 0x0880: // GET_CONFIGURATION
reply_buffer[0] = usb_configuration;
datalen = 1;
data = reply_buffer;
break;
case 0x0080: // GET_STATUS (device)
reply_buffer[0] = 0;
reply_buffer[1] = 0;
datalen = 2;
data = reply_buffer;
break;
case 0x0082: // GET_STATUS (endpoint)
if (setup.wIndex > NUM_ENDPOINTS)
{
// TODO: do we need to handle IN vs OUT here?
endpoint0_stall();
return;
}
reply_buffer[0] = 0;
reply_buffer[1] = 0;
if ( *(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02 )
reply_buffer[0] = 1;
data = reply_buffer;
datalen = 2;
break;
case 0x0102: // CLEAR_FEATURE (endpoint)
i = setup.wIndex & 0x7F;
if ( i > NUM_ENDPOINTS || setup.wValue != 0 )
{
// TODO: do we need to handle IN vs OUT here?
endpoint0_stall();
return;
}
(*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) &= ~0x02;
// TODO: do we need to clear the data toggle here?
break;
case 0x0302: // SET_FEATURE (endpoint)
i = setup.wIndex & 0x7F;
if ( i > NUM_ENDPOINTS || setup.wValue != 0 )
{
// TODO: do we need to handle IN vs OUT here?
endpoint0_stall();
return;
}
(*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) |= 0x02;
// TODO: do we need to clear the data toggle here?
break;
case 0x0680: // GET_DESCRIPTOR
case 0x0681:
#ifdef UART_DEBUG
print("desc:");
printHex(setup.wValue);
print(NL);
#endif
for ( list = usb_descriptor_list; 1; list++ )
{
if ( list->addr == NULL )
break;
//if (setup.wValue == list->wValue &&
//(setup.wIndex == list->wIndex) || ((setup.wValue >> 8) == 3)) {
if ( setup.wValue == list->wValue && setup.wIndex == list->wIndex )
{
data = list->addr;
if ( (setup.wValue >> 8) == 3 )
{
// for string descriptors, use the descriptor's
// length field, allowing runtime configured
// length.
datalen = *(list->addr);
}
else
{
datalen = list->length;
}
#if UART_DEBUG
print("Desc found, ");
printHex32((uint32_t)data);
print(",");
printHex(datalen);
print(",");
printHex_op(data[0], 2);
printHex_op(data[1], 2);
printHex_op(data[2], 2);
printHex_op(data[3], 2);
printHex_op(data[4], 2);
printHex_op(data[5], 2);
print(NL);
#endif
goto send;
}
}
#ifdef UART_DEBUG
print("desc: not found"NL);
#endif
endpoint0_stall();
return;
case 0x2221: // CDC_SET_CONTROL_LINE_STATE
usb_cdc_line_rtsdtr = setup.wValue;
//serial_print("set control line state\n");
endpoint0_stall();
return;
case 0x21A1: // CDC_GET_LINE_CODING
data = (uint8_t*)usb_cdc_line_coding;
datalen = sizeof( usb_cdc_line_coding );
goto send;
case 0x2021: // CDC_SET_LINE_CODING
// XXX Needed?
//serial_print("set coding, waiting...\n");
return; // Cannot stall here (causes issues)
case 0x0921: // HID SET_REPORT
#ifdef UART_DEBUG
print("SET_REPORT - ");
printHex( setup.wValue );
print(" - ");
printHex( setup.wValue & 0xFF );
print(NL);
#endif
USBKeys_LEDs = setup.wValue & 0xFF;
endpoint0_stall();
return;
case 0x01A1: // HID GET_REPORT
#ifdef UART_DEBUG
print("GET_REPORT - ");
printHex( USBKeys_LEDs );
print(NL);
#endif
data = (uint8_t*)&USBKeys_LEDs;
datalen = 1;
goto send;
case 0x0A21: // HID SET_IDLE
#ifdef UART_DEBUG
print("SET_IDLE - ");
printHex( setup.wValue );
print(NL);
#endif
USBKeys_Idle_Config = (setup.wValue >> 8);
USBKeys_Idle_Count = 0;
endpoint0_stall();
return;
case 0x0B21: // HID SET_PROTOCOL
#ifdef UART_DEBUG
print("SET_PROTOCOL - ");
printHex( setup.wValue );
print(" - ");
printHex( setup.wValue & 0xFF );
print(NL);
#endif
USBKeys_Protocol = setup.wValue & 0xFF; // 0 - Boot Mode, 1 - NKRO Mode
endpoint0_stall();
return;
// case 0xC940:
default:
#ifdef UART_DEBUG_UNKNOWN
print("UNKNOWN");
#endif
endpoint0_stall();
return;
}
send:
#ifdef UART_DEBUG
print("setup send ");
printHex32((uint32_t)data);
print(",");
printHex(datalen);
print(NL);
#endif
if ( datalen > setup.wLength )
datalen = setup.wLength;
size = datalen;
if ( size > EP0_SIZE )
size = EP0_SIZE;
endpoint0_transmit(data, size);
data += size;
datalen -= size;
// See if transmit has finished
if ( datalen == 0 && size < EP0_SIZE )
return;
size = datalen;
if ( size > EP0_SIZE )
size = EP0_SIZE;
endpoint0_transmit(data, size);
data += size;
datalen -= size;
// See if transmit has finished
if ( datalen == 0 && size < EP0_SIZE )
return;
// Save rest of transfer for later? XXX
ep0_tx_ptr = data;
ep0_tx_len = datalen;
}
//A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint
//experiences any configuration event (configuration events are explained in
//Sections 9.1.1.5 and 9.4.5).
//Configuring a device or changing an alternate setting causes all of the status
//and configuration values associated with endpoints in the affected interfaces
//to be set to their default values. This includes setting the data toggle of
//any endpoint using data toggles to the value DATA0.
//For endpoints using data toggle, regardless of whether an endpoint has the
//Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the
//data toggle being reinitialized to DATA0.
static void usb_control( uint32_t stat )
{
#ifdef UART_DEBUG
print("CONTROL - ");
#endif
bdt_t *b;
uint32_t pid, size;
uint8_t *buf;
const uint8_t *data;
b = stat2bufferdescriptor( stat );
pid = BDT_PID( b->desc );
buf = b->addr;
#ifdef UART_DEBUG
print("pid:");
printHex(pid);
print(", count:");
printHex32(b->desc);
print(" - ");
#endif
switch (pid)
{
case 0x0D: // Setup received from host
//serial_print("PID=Setup\n");
//if (count != 8) ; // panic?
// grab the 8 byte setup info
setup.word1 = *(uint32_t *)(buf);
setup.word2 = *(uint32_t *)(buf + 4);
// give the buffer back
b->desc = BDT_DESC( EP0_SIZE, DATA1 );
//table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 1);
//table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 1);
// clear any leftover pending IN transactions
ep0_tx_ptr = NULL;
if ( ep0_tx_data_toggle )
{
}
//if (table[index(0, TX, EVEN)].desc & 0x80) {
//serial_print("leftover tx even\n");
//}
//if (table[index(0, TX, ODD)].desc & 0x80) {
//serial_print("leftover tx odd\n");
//}
table[index(0, TX, EVEN)].desc = 0;
table[index(0, TX, ODD)].desc = 0;
// first IN after Setup is always DATA1
ep0_tx_data_toggle = 1;
#ifdef UART_DEBUG_UNKNOWN
print("bmRequestType:");
printHex(setup.bmRequestType);
print(", bRequest:");
printHex(setup.bRequest);
print(", wValue:");
printHex(setup.wValue);
print(", wIndex:");
printHex(setup.wIndex);
print(", len:");
printHex(setup.wLength);
print(NL);
#endif
// actually "do" the setup request
usb_setup();
// unfreeze the USB, now that we're ready
USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
break;
case 0x01: // OUT transaction received from host
case 0x02:
#ifdef UART_DEBUG
print("PID=OUT"NL);
#endif
// CDC Interface
if ( setup.wRequestAndType == 0x2021 /*CDC_SET_LINE_CODING*/ )
{
int i;
uint8_t *dst = (uint8_t *)usb_cdc_line_coding;
//serial_print("set line coding ");
for ( i = 0; i < 7; i++ )
{
//serial_phex(*buf);
*dst++ = *buf++;
}
//serial_phex32(usb_cdc_line_coding[0]);
//serial_print("\n");
if ( usb_cdc_line_coding[0] == 134 )
usb_reboot_timer = 15;
endpoint0_transmit( NULL, 0 );
}
// Keyboard Interface
if ( setup.word1 == 0x02000921 && setup.word2 == ( (1<<16) | KEYBOARD_INTERFACE ) )
{
USBKeys_LEDs = buf[0];
endpoint0_transmit( NULL, 0 );
}
// NKRO Keyboard Interface
if ( setup.word1 == 0x02000921 && setup.word2 == ( (1<<16) | NKRO_KEYBOARD_INTERFACE ) )
{
USBKeys_LEDs = buf[0];
endpoint0_transmit( NULL, 0 );
}
// give the buffer back
b->desc = BDT_DESC( EP0_SIZE, DATA1 );
break;
case 0x09: // IN transaction completed to host
#ifdef UART_DEBUG
print("PID=IN:");
printHex(stat);
print(NL);
#endif
// send remaining data, if any...
data = ep0_tx_ptr;
if ( data )
{
size = ep0_tx_len;
if (size > EP0_SIZE) size = EP0_SIZE;
endpoint0_transmit(data, size);
data += size;
ep0_tx_len -= size;
ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL;
}
if ( setup.bRequest == 5 && setup.bmRequestType == 0 )
{
setup.bRequest = 0;
#ifdef UART_DEBUG
print("set address: ");
printHex(setup.wValue);
print(NL);
#endif
USB0_ADDR = setup.wValue;
}
break;
default:
#ifdef UART_DEBUG
print("PID=unknown:");
printHex(pid);
print(NL);
#endif
break;
}
USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
}
usb_packet_t *usb_rx( uint32_t endpoint )
{
//print("USB RX");
usb_packet_t *ret;
endpoint--;
if ( endpoint >= NUM_ENDPOINTS )
return NULL;
__disable_irq();
ret = rx_first[endpoint];
if ( ret )
rx_first[ endpoint ] = ret->next;
usb_rx_byte_count_data[ endpoint ] -= ret->len;
__enable_irq();
//serial_print("rx, epidx=");
//serial_phex(endpoint);
//serial_print(", packet=");
//serial_phex32(ret);
//serial_print("\n");
return ret;
}
static uint32_t usb_queue_byte_count( const usb_packet_t *p )
{
uint32_t count=0;
__disable_irq();
for ( ; p; p = p->next )
{
count += p->len;
}
__enable_irq();
return count;
}
uint32_t usb_tx_byte_count( uint32_t endpoint )
{
endpoint--;
if ( endpoint >= NUM_ENDPOINTS )
return 0;
return usb_queue_byte_count( tx_first[ endpoint ] );
}
uint32_t usb_tx_packet_count( uint32_t endpoint )
{
const usb_packet_t *p;
uint32_t count=0;
endpoint--;
if ( endpoint >= NUM_ENDPOINTS )
return 0;
__disable_irq();
for ( p = tx_first[ endpoint ]; p; p = p->next )
count++;
__enable_irq();
return count;
}
// Called from usb_free, but only when usb_rx_memory_needed > 0, indicating
// receive endpoints are starving for memory. The intention is to give
// endpoints needing receive memory priority over the user's code, which is
// likely calling usb_malloc to obtain memory for transmitting. When the
// user is creating data very quickly, their consumption could starve reception
// without this prioritization. The packet buffer (input) is assigned to the
// first endpoint needing memory.
//
void usb_rx_memory( usb_packet_t *packet )
{
//print("USB RX MEMORY");
unsigned int i;
const uint8_t *cfg;
cfg = usb_endpoint_config_table;
//serial_print("rx_mem:");
__disable_irq();
for (i=1; i <= NUM_ENDPOINTS; i++) {
if (*cfg++ & USB_ENDPT_EPRXEN) {
if ( table[ index( i, RX, EVEN ) ].desc == 0 )
{
table[index(i, RX, EVEN)].addr = packet->buf;
table[index(i, RX, EVEN)].desc = BDT_DESC( 64, 0 );
usb_rx_memory_needed--;
__enable_irq();
//serial_phex(i);
//serial_print(",even\n");
return;
}
if ( table[ index( i, RX, ODD ) ].desc == 0 )
{
table[ index( i, RX, ODD ) ].addr = packet->buf;
table[ index( i, RX, ODD ) ].desc = BDT_DESC( 64, 1 );
usb_rx_memory_needed--;
__enable_irq();
//serial_phex(i);
//serial_print(",odd\n");
return;
}
}
}
__enable_irq();
// we should never reach this point. If we get here, it means
// usb_rx_memory_needed was set greater than zero, but no memory
// was actually needed.
usb_rx_memory_needed = 0;
usb_free( packet );
return;
}
//#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
//#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
void usb_tx( uint32_t endpoint, usb_packet_t *packet )
{
bdt_t *b = &table[ index( endpoint, TX, EVEN ) ];
uint8_t next;
endpoint--;
if ( endpoint >= NUM_ENDPOINTS )
return;
__disable_irq();
//serial_print("txstate=");
//serial_phex(tx_state[ endpoint ]);
//serial_print("\n");
switch ( tx_state[ endpoint ] )
{
case TX_STATE_BOTH_FREE_EVEN_FIRST:
next = TX_STATE_ODD_FREE;
break;
case TX_STATE_BOTH_FREE_ODD_FIRST:
b++;
next = TX_STATE_EVEN_FREE;
break;
case TX_STATE_EVEN_FREE:
next = TX_STATE_NONE_FREE_ODD_FIRST;
break;
case TX_STATE_ODD_FREE:
b++;
next = TX_STATE_NONE_FREE_EVEN_FIRST;
break;
default:
if (tx_first[ endpoint ] == NULL)
{
tx_first[ endpoint ] = packet;
}
else
{
tx_last[ endpoint ]->next = packet;
}
tx_last[ endpoint ] = packet;
__enable_irq();
return;
}
tx_state[ endpoint ] = next;
b->addr = packet->buf;
b->desc = BDT_DESC( packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0 );
__enable_irq();
}
void usb_device_reload()
{
// MCHCK
#if defined(_mk20dx128vlf5_)
// MCHCK Kiibohd Variant
// Check to see if PTA3 (has a pull-up) is connected to GND (usually via jumper)
// Only allow reload if the jumper is present (security)
GPIOA_PDDR &= ~(1<<3); // Input
PORTA_PCR3 = PORT_PCR_PFE | PORT_PCR_MUX(1); // Internal pull-up
// Check for jumper
if ( GPIOA_PDIR & (1<<3) )
{
print( NL );
warn_print("Security jumper not present, cancelling firmware reload...");
info_msg("Replace jumper on middle 2 pins, or manually press the firmware reload button.");
}
else
{
// Copies variable into the VBAT register, must be identical to the variable in the bootloader to jump to the bootloader flash mode
for ( int pos = 0; pos < sizeof(sys_reset_to_loader_magic); pos++ )
(&VBAT)[ pos ] = sys_reset_to_loader_magic[ pos ];
SOFTWARE_RESET();
}
// Teensy 3.0 and 3.1
#else
asm volatile("bkpt");
#endif
}
void usb_isr()
{
uint8_t status, stat, t;
//serial_print("isr");
//status = USB0_ISTAT;
//serial_phex(status);
//serial_print("\n");
restart:
status = USB0_ISTAT;
/*
print("USB ISR STATUS: ");
printHex( status );
print( NL );
*/
if ( (status & USB_INTEN_SOFTOKEN /* 04 */ ) )
{
if ( usb_configuration )
{
t = usb_reboot_timer;
if ( t )
{
usb_reboot_timer = --t;
if ( !t )
usb_device_reload();
}
// CDC Interface
t = usb_cdc_transmit_flush_timer;
if ( t )
{
usb_cdc_transmit_flush_timer = --t;
if ( t == 0 )
usb_serial_flush_callback();
}
}
USB0_ISTAT = USB_INTEN_SOFTOKEN;
}
if ( (status & USB_ISTAT_TOKDNE /* 08 */ ) )
{
uint8_t endpoint;
stat = USB0_STAT;
//serial_print("token: ep=");
//serial_phex(stat >> 4);
//serial_print(stat & 0x08 ? ",tx" : ",rx");
//serial_print(stat & 0x04 ? ",odd\n" : ",even\n");
endpoint = stat >> 4;
if ( endpoint == 0 )
{
usb_control( stat );
}
else
{
bdt_t *b = stat2bufferdescriptor(stat);
usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8);
#if 0
serial_print("ep:");
serial_phex(endpoint);
serial_print(", pid:");
serial_phex(BDT_PID(b->desc));
serial_print(((uint32_t)b & 8) ? ", odd" : ", even");
serial_print(", count:");
serial_phex(b->desc >> 16);
serial_print("\n");
#endif
endpoint--; // endpoint is index to zero-based arrays
if ( stat & 0x08 )
{ // transmit
usb_free( packet );
packet = tx_first[endpoint];
if ( packet )
{
//serial_print("tx packet\n");
tx_first[endpoint] = packet->next;
b->addr = packet->buf;
switch ( tx_state[ endpoint ] )
{
case TX_STATE_BOTH_FREE_EVEN_FIRST:
tx_state[endpoint] = TX_STATE_ODD_FREE;
break;
case TX_STATE_BOTH_FREE_ODD_FIRST:
tx_state[endpoint] = TX_STATE_EVEN_FREE;
break;
case TX_STATE_EVEN_FREE:
tx_state[endpoint] = TX_STATE_NONE_FREE_ODD_FIRST;
break;
case TX_STATE_ODD_FREE:
tx_state[endpoint] = TX_STATE_NONE_FREE_EVEN_FIRST;
break;
default:
break;
}
b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
} else {
//serial_print("tx no packet\n");
switch ( tx_state[ endpoint ] )
{
case TX_STATE_BOTH_FREE_EVEN_FIRST:
case TX_STATE_BOTH_FREE_ODD_FIRST:
break;
case TX_STATE_EVEN_FREE:
tx_state[endpoint] = TX_STATE_BOTH_FREE_EVEN_FIRST;
break;
case TX_STATE_ODD_FREE:
tx_state[endpoint] = TX_STATE_BOTH_FREE_ODD_FIRST;
break;
default:
tx_state[endpoint] = ((uint32_t)b & 8)
? TX_STATE_ODD_FREE
: TX_STATE_EVEN_FREE;
break;
}
}
}
else
{ // receive
packet->len = b->desc >> 16;
if (packet->len > 0) {
packet->index = 0;
packet->next = NULL;
if (rx_first[endpoint] == NULL)
{
//serial_print("rx 1st, epidx=");
//serial_phex(endpoint);
//serial_print(", packet=");
//serial_phex32((uint32_t)packet);
//serial_print("\n");
rx_first[endpoint] = packet;
}
else
{
//serial_print("rx Nth, epidx=");
//serial_phex(endpoint);
//serial_print(", packet=");
//serial_phex32((uint32_t)packet);
//serial_print("\n");
rx_last[endpoint]->next = packet;
}
rx_last[endpoint] = packet;
usb_rx_byte_count_data[endpoint] += packet->len;
// TODO: implement a per-endpoint maximum # of allocated packets
// so a flood of incoming data on 1 endpoint doesn't starve
// the others if the user isn't reading it regularly
packet = usb_malloc();
if ( packet )
{
b->addr = packet->buf;
b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
}
else
{
//serial_print("starving ");
//serial_phex(endpoint + 1);
//serial_print(((uint32_t)b & 8) ? ",odd\n" : ",even\n");
b->desc = 0;
usb_rx_memory_needed++;
}
}
else
{
b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
}
}
}
USB0_ISTAT = USB_ISTAT_TOKDNE;
goto restart;
}
if ( status & USB_ISTAT_USBRST /* 01 */ )
{
//serial_print("reset\n");
// initialize BDT toggle bits
USB0_CTL = USB_CTL_ODDRST;
ep0_tx_bdt_bank = 0;
// set up buffers to receive Setup and OUT packets
table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 0);
table[index(0, RX, EVEN)].addr = ep0_rx0_buf;
table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 0);
table[index(0, RX, ODD)].addr = ep0_rx1_buf;
table[index(0, TX, EVEN)].desc = 0;
table[index(0, TX, ODD)].desc = 0;
// activate endpoint 0
USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
// clear all ending interrupts
USB0_ERRSTAT = 0xFF;
USB0_ISTAT = 0xFF;
// set the address to zero during enumeration
USB0_ADDR = 0;
// enable other interrupts
USB0_ERREN = 0xFF;
USB0_INTEN = USB_INTEN_TOKDNEEN |
USB_INTEN_SOFTOKEN |
USB_INTEN_STALLEN |
USB_INTEN_ERROREN |
USB_INTEN_USBRSTEN |
USB_INTEN_SLEEPEN;
// is this necessary?
USB0_CTL = USB_CTL_USBENSOFEN;
return;
}
if ( (status & USB_ISTAT_STALL /* 80 */ ) )
{
//serial_print("stall:\n");
USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
USB0_ISTAT = USB_ISTAT_STALL;
}
if ( (status & USB_ISTAT_ERROR /* 02 */ ) )
{
uint8_t err = USB0_ERRSTAT;
USB0_ERRSTAT = err;
//serial_print("err:");
//serial_phex(err);
//serial_print("\n");
USB0_ISTAT = USB_ISTAT_ERROR;
}
if ( (status & USB_ISTAT_SLEEP /* 10 */ ) )
{
//serial_print("sleep\n");
USB0_ISTAT = USB_ISTAT_SLEEP;
}
}
void usb_init()
{
#ifdef UART_DEBUG
print("USB INIT"NL);
#endif
// Clear out endpoints table
for ( int i = 0; i <= NUM_ENDPOINTS * 4; i++ )
{
table[i].desc = 0;
table[i].addr = 0;
}
// this basically follows the flowchart in the Kinetis
// Quick Reference User Guide, Rev. 1, 03/2012, page 141
// assume 48 MHz clock already running
// SIM - enable clock
SIM_SCGC4 |= SIM_SCGC4_USBOTG;
// reset USB module
USB0_USBTRC0 = USB_USBTRC_USBRESET;
while ( (USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0 ); // wait for reset to end
// set desc table base addr
USB0_BDTPAGE1 = ((uint32_t)table) >> 8;
USB0_BDTPAGE2 = ((uint32_t)table) >> 16;
USB0_BDTPAGE3 = ((uint32_t)table) >> 24;
// clear all ISR flags
USB0_ISTAT = 0xFF;
USB0_ERRSTAT = 0xFF;
USB0_OTGISTAT = 0xFF;
USB0_USBTRC0 |= 0x40; // undocumented bit
// enable USB
USB0_CTL = USB_CTL_USBENSOFEN;
USB0_USBCTRL = 0;
// enable reset interrupt
USB0_INTEN = USB_INTEN_USBRSTEN;
// enable interrupt in NVIC...
NVIC_SET_PRIORITY( IRQ_USBOTG, 112 );
NVIC_ENABLE_IRQ( IRQ_USBOTG );
// enable d+ pullup
USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG;
}
// return 0 if the USB is not configured, or the configuration
// number selected by the HOST
uint8_t usb_configured()
{
return usb_configuration;
}