aaae9bc0f2
- Each scan module now has a current change callback which passes the available current as a parameter - No longer attempts to use the max 500 mA immediately, starts with 100 mA then goes to 500 mA after enumeration - If enumeration fails due to bMaxPower of 500 mA, then attempt again at 100 mA (might also be possible to go even lower to 20 mA in certain cases) - Now working with the Apple Ipad (no over-power messages) - Fixed Wake-up behaviour on Apple Ipad (and likely other iOS devices) - More effecient set_feature/clear_feature handling (device handler) - Initial power handling via Interconnect (still needs work to get it more dynamic)
653 lines
16 KiB
C
653 lines
16 KiB
C
/* Copyright (C) 2015-2016 by Jacob Alexander
|
|
*
|
|
* This file is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this file. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// ----- Includes -----
|
|
|
|
// Compiler Includes
|
|
#include <Lib/ScanLib.h>
|
|
|
|
// Project Includes
|
|
#include <cli.h>
|
|
#include <kll_defs.h>
|
|
#include <led.h>
|
|
#include <print.h>
|
|
|
|
// Interconnect module if compiled in
|
|
#if defined(ConnectEnabled_define)
|
|
#include <connect_scan.h>
|
|
#endif
|
|
|
|
// Local Includes
|
|
#include "lcd_scan.h"
|
|
|
|
|
|
|
|
// ----- Defines -----
|
|
|
|
#define LCD_TOTAL_VISIBLE_PAGES 4
|
|
#define LCD_TOTAL_PAGES 9
|
|
#define LCD_PAGE_LEN 128
|
|
|
|
|
|
|
|
// ----- Macros -----
|
|
|
|
// Number of entries in the SPI0 TxFIFO
|
|
#define SPI0_TxFIFO_CNT ( ( SPI0_SR & SPI_SR_TXCTR ) >> 12 )
|
|
|
|
|
|
|
|
// ----- Structs -----
|
|
|
|
// ----- Function Declarations -----
|
|
|
|
// CLI Functions
|
|
void cliFunc_lcdCmd ( char* args );
|
|
void cliFunc_lcdColor( char* args );
|
|
void cliFunc_lcdDisp ( char* args );
|
|
void cliFunc_lcdInit ( char* args );
|
|
void cliFunc_lcdTest ( char* args );
|
|
|
|
|
|
|
|
// ----- Variables -----
|
|
|
|
// Default Image - Displays on startup
|
|
const uint8_t STLcdDefaultImage[] = { STLcdDefaultImage_define };
|
|
|
|
// Full Toggle State
|
|
uint8_t cliFullToggleState = 0;
|
|
|
|
// Normal/Reverse Toggle State
|
|
uint8_t cliNormalReverseToggleState = 0;
|
|
|
|
// Scan Module command dictionary
|
|
CLIDict_Entry( lcdCmd, "Send byte via SPI, second argument enables a0. Defaults to control." );
|
|
CLIDict_Entry( lcdColor, "Set backlight color. 3 16-bit numbers: R G B. i.e. 0xFFF 0x1444 0x32" );
|
|
CLIDict_Entry( lcdDisp, "Write byte(s) to given page starting at given address. i.e. 0x1 0x5 0xFF 0x00" );
|
|
CLIDict_Entry( lcdInit, "Re-initialize the LCD display." );
|
|
CLIDict_Entry( lcdTest, "Test out the LCD display." );
|
|
|
|
CLIDict_Def( lcdCLIDict, "ST LCD Module Commands" ) = {
|
|
CLIDict_Item( lcdCmd ),
|
|
CLIDict_Item( lcdColor ),
|
|
CLIDict_Item( lcdDisp ),
|
|
CLIDict_Item( lcdInit ),
|
|
CLIDict_Item( lcdTest ),
|
|
{ 0, 0, 0 } // Null entry for dictionary end
|
|
};
|
|
|
|
|
|
|
|
// ----- Interrupt Functions -----
|
|
|
|
|
|
|
|
// ----- Functions -----
|
|
|
|
inline void SPI_setup()
|
|
{
|
|
// Enable SPI internal clock
|
|
SIM_SCGC6 |= SIM_SCGC6_SPI0;
|
|
|
|
// Setup MOSI (SOUT) and SCLK (SCK)
|
|
PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(2);
|
|
PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(2);
|
|
|
|
// Setup SS (PCS)
|
|
PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(2);
|
|
|
|
// Master Mode, CS0
|
|
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(1);
|
|
|
|
// DSPI Clock and Transfer Attributes
|
|
// Frame Size: 8 bits
|
|
// MSB First
|
|
// CLK Low by default
|
|
SPI0_CTAR0 = SPI_CTAR_FMSZ(7)
|
|
| SPI_CTAR_ASC(7)
|
|
| SPI_CTAR_DT(7)
|
|
| SPI_CTAR_CSSCK(7)
|
|
| SPI_CTAR_PBR(0) | SPI_CTAR_BR(7);
|
|
}
|
|
|
|
// Write buffer to SPI FIFO
|
|
void SPI_write( uint8_t *buffer, uint8_t len )
|
|
{
|
|
|
|
for ( uint8_t byte = 0; byte < len; byte++ )
|
|
{
|
|
// Wait for SPI TxFIFO to have 4 or fewer entries
|
|
while ( !( SPI0_SR & SPI_SR_TFFF ) )
|
|
delayMicroseconds(10);
|
|
|
|
// Write byte to TxFIFO
|
|
// CS0, CTAR0
|
|
SPI0_PUSHR = ( buffer[ byte ] & 0xff ) | SPI_PUSHR_PCS(1);
|
|
|
|
// Indicate transfer has completed
|
|
while ( !( SPI0_SR & SPI_SR_TCF ) );
|
|
SPI0_SR |= SPI_SR_TCF;
|
|
}
|
|
}
|
|
|
|
// Write to a control register
|
|
void LCD_writeControlReg( uint8_t byte )
|
|
{
|
|
// Wait for TxFIFO to be empt
|
|
while ( SPI0_TxFIFO_CNT != 0 );
|
|
|
|
// Set A0 low to enter control register mode
|
|
GPIOC_PCOR |= (1<<7);
|
|
|
|
// Write byte to SPI FIFO
|
|
SPI_write( &byte, 1 );
|
|
|
|
// Wait for TxFIFO to be empty
|
|
while ( SPI0_TxFIFO_CNT != 0 );
|
|
|
|
// Make sure data has transferred
|
|
delayMicroseconds(10); // XXX Adjust if SPI speed changes
|
|
|
|
// Set A0 high to go back to display register mode
|
|
GPIOC_PSOR |= (1<<7);
|
|
}
|
|
|
|
// Write to display register
|
|
// Pages 0-7 normal display
|
|
// Page 8 icon buffer
|
|
void LCD_writeDisplayReg( uint8_t page, uint8_t *buffer, uint8_t len )
|
|
{
|
|
// Set the register page
|
|
LCD_writeControlReg( 0xB0 | ( 0x0F & page ) );
|
|
|
|
// Set display start line
|
|
LCD_writeControlReg( 0x40 );
|
|
|
|
// Reset Column Address
|
|
LCD_writeControlReg( 0x10 );
|
|
LCD_writeControlReg( 0x00 );
|
|
|
|
// Write buffer to SPI
|
|
SPI_write( buffer, len );
|
|
}
|
|
|
|
inline void LCD_clearPage( uint8_t page )
|
|
{
|
|
// Set the register page
|
|
LCD_writeControlReg( 0xB0 | ( 0x0F & page ) );
|
|
|
|
// Set display start line
|
|
LCD_writeControlReg( 0x40 );
|
|
|
|
// Reset Column Address
|
|
LCD_writeControlReg( 0x10 );
|
|
LCD_writeControlReg( 0x00 );
|
|
|
|
for ( uint8_t page_reg = 0; page_reg < LCD_PAGE_LEN; page_reg++ )
|
|
{
|
|
uint8_t byte = 0;
|
|
|
|
// Write buffer to SPI
|
|
SPI_write( &byte, 1 );
|
|
}
|
|
|
|
// Wait for TxFIFO to be empty
|
|
while ( SPI0_TxFIFO_CNT != 0 );
|
|
}
|
|
|
|
// Clear Display
|
|
void LCD_clear()
|
|
{
|
|
// Setup each page
|
|
for ( uint8_t page = 0; page < LCD_TOTAL_PAGES; page++ )
|
|
{
|
|
LCD_clearPage( page );
|
|
}
|
|
|
|
// Reset Page, Start Line, and Column Address
|
|
// Page
|
|
LCD_writeControlReg( 0xB0 );
|
|
|
|
// Start Line
|
|
LCD_writeControlReg( 0x40 );
|
|
|
|
// Reset Column Address
|
|
LCD_writeControlReg( 0x10 );
|
|
LCD_writeControlReg( 0x00 );
|
|
}
|
|
|
|
// Intialize display
|
|
void LCD_initialize()
|
|
{
|
|
// ADC Select (Normal)
|
|
LCD_writeControlReg( 0xA0 );
|
|
|
|
// LCD Off
|
|
LCD_writeControlReg( 0xAE );
|
|
|
|
// COM Scan Output Direction
|
|
LCD_writeControlReg( 0xC0 );
|
|
|
|
// LCD Bias (1/6 bias)
|
|
LCD_writeControlReg( 0xA2 );
|
|
|
|
// Power Supply Operating Mode (Internal Only)
|
|
LCD_writeControlReg( 0x2F );
|
|
|
|
// Internal Rb/Ra Ratio
|
|
LCD_writeControlReg( 0x26 );
|
|
|
|
// Reset
|
|
LCD_writeControlReg( 0xE2 );
|
|
|
|
// Electric volume mode set, and value
|
|
LCD_writeControlReg( 0x81 );
|
|
LCD_writeControlReg( 0x00 );
|
|
|
|
// LCD On
|
|
LCD_writeControlReg( 0xAF );
|
|
|
|
// Clear Display RAM
|
|
LCD_clear();
|
|
}
|
|
|
|
// Setup
|
|
inline void LCD_setup()
|
|
{
|
|
// Register Scan CLI dictionary
|
|
CLI_registerDictionary( lcdCLIDict, lcdCLIDictName );
|
|
|
|
// Initialize SPI
|
|
SPI_setup();
|
|
|
|
// Setup Register Control Signal (A0)
|
|
// Start in display register mode (1)
|
|
GPIOC_PDDR |= (1<<7);
|
|
PORTC_PCR7 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
|
|
GPIOC_PSOR |= (1<<7);
|
|
|
|
// Setup LCD Reset pin (RST)
|
|
// 0 - Reset, 1 - Normal Operation
|
|
// Start in normal mode (1)
|
|
GPIOC_PDDR |= (1<<8);
|
|
PORTC_PCR8 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
|
|
GPIOC_PSOR |= (1<<8);
|
|
|
|
// Run LCD intialization sequence
|
|
LCD_initialize();
|
|
|
|
// Write default image to LCD
|
|
for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ )
|
|
LCD_writeDisplayReg( page, (uint8_t*)&STLcdDefaultImage[page * LCD_PAGE_LEN], LCD_PAGE_LEN );
|
|
|
|
// Setup Backlight
|
|
SIM_SCGC6 |= SIM_SCGC6_FTM0;
|
|
FTM0_CNT = 0; // Reset counter
|
|
|
|
// PWM Period
|
|
// 16-bit maximum
|
|
FTM0_MOD = 0xFFFF;
|
|
|
|
// Set FTM to PWM output - Edge Aligned, Low-true pulses
|
|
FTM0_C0SC = 0x24; // MSnB:MSnA = 10, ELSnB:ELSnA = 01
|
|
FTM0_C1SC = 0x24;
|
|
FTM0_C2SC = 0x24;
|
|
|
|
// Base FTM clock selection (72 MHz system clock)
|
|
// @ 0xFFFF period, 72 MHz / (0xFFFF * 2) = Actual period
|
|
// Higher pre-scalar will use the most power (also look the best)
|
|
// Pre-scalar calculations
|
|
// 0 - 72 MHz -> 549 Hz
|
|
// 1 - 36 MHz -> 275 Hz
|
|
// 2 - 18 MHz -> 137 Hz
|
|
// 3 - 9 MHz -> 69 Hz (Slightly visible flicker)
|
|
// 4 - 4 500 kHz -> 34 Hz (Visible flickering)
|
|
// 5 - 2 250 kHz -> 17 Hz
|
|
// 6 - 1 125 kHz -> 9 Hz
|
|
// 7 - 562 500 Hz -> 4 Hz
|
|
// Using a higher pre-scalar without flicker is possible but FTM0_MOD will need to be reduced
|
|
// Which will reduce the brightness range
|
|
|
|
// System clock, /w prescalar setting
|
|
FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS( STLcdBacklightPrescalar_define );
|
|
|
|
// Red
|
|
FTM0_C0V = STLcdBacklightRed_define;
|
|
PORTC_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(4);
|
|
|
|
// Green
|
|
FTM0_C1V = STLcdBacklightGreen_define;
|
|
PORTC_PCR2 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(4);
|
|
|
|
// Blue
|
|
FTM0_C2V = STLcdBacklightBlue_define;
|
|
PORTC_PCR3 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(4);
|
|
}
|
|
|
|
|
|
// LCD State processing loop
|
|
inline uint8_t LCD_scan()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Signal from parent Scan Module that available current has changed
|
|
// current - mA
|
|
void LCD_currentChange( unsigned int current )
|
|
{
|
|
// TODO - Power savings?
|
|
}
|
|
|
|
|
|
|
|
// ----- Capabilities -----
|
|
|
|
// Takes 1 8 bit length and 4 16 bit arguments, each corresponding to a layer index
|
|
// Ordered from top to bottom
|
|
// The first argument indicates how many numbers to display (max 4), set to 0 to load default image
|
|
uint16_t LCD_layerStackExact[4];
|
|
uint8_t LCD_layerStackExact_size = 0;
|
|
typedef struct LCD_layerStackExact_args {
|
|
uint8_t numArgs;
|
|
uint16_t layers[4];
|
|
} LCD_layerStackExact_args;
|
|
void LCD_layerStackExact_capability( uint8_t state, uint8_t stateType, uint8_t *args )
|
|
{
|
|
// Display capability name
|
|
if ( stateType == 0xFF && state == 0xFF )
|
|
{
|
|
print("LCD_layerStackExact_capability(num,layer1,layer2,layer3,layer4)");
|
|
return;
|
|
}
|
|
|
|
// Read arguments
|
|
LCD_layerStackExact_args *stack_args = (LCD_layerStackExact_args*)args;
|
|
|
|
// Number data for LCD
|
|
const uint8_t numbers[10][128] = {
|
|
{ STLcdNumber0_define },
|
|
{ STLcdNumber1_define },
|
|
{ STLcdNumber2_define },
|
|
{ STLcdNumber3_define },
|
|
{ STLcdNumber4_define },
|
|
{ STLcdNumber5_define },
|
|
{ STLcdNumber6_define },
|
|
{ STLcdNumber7_define },
|
|
{ STLcdNumber8_define },
|
|
{ STLcdNumber9_define },
|
|
};
|
|
|
|
// Color data for numbers
|
|
const uint16_t colors[10][3] = {
|
|
{ STLcdNumber0Color_define },
|
|
{ STLcdNumber1Color_define },
|
|
{ STLcdNumber2Color_define },
|
|
{ STLcdNumber3Color_define },
|
|
{ STLcdNumber4Color_define },
|
|
{ STLcdNumber5Color_define },
|
|
{ STLcdNumber6Color_define },
|
|
{ STLcdNumber7Color_define },
|
|
{ STLcdNumber8Color_define },
|
|
{ STLcdNumber9Color_define },
|
|
};
|
|
|
|
// Only display if there are layers active
|
|
if ( stack_args->numArgs > 0 )
|
|
{
|
|
// Set the color according to the "top-of-stack" layer
|
|
uint16_t layerIndex = stack_args->layers[0];
|
|
FTM0_C0V = colors[ layerIndex ][0];
|
|
FTM0_C1V = colors[ layerIndex ][1];
|
|
FTM0_C2V = colors[ layerIndex ][2];
|
|
|
|
// Iterate through each of the pages
|
|
// XXX Many of the values here are hard-coded
|
|
// Eventually a proper font rendering engine should take care of things like this... -HaaTa
|
|
for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ )
|
|
{
|
|
// Set the register page
|
|
LCD_writeControlReg( 0xB0 | ( 0x0F & page ) );
|
|
|
|
// Set starting address
|
|
LCD_writeControlReg( 0x10 );
|
|
LCD_writeControlReg( 0x00 );
|
|
|
|
// Write data
|
|
for ( uint16_t layer = 0; layer < stack_args->numArgs; layer++ )
|
|
{
|
|
layerIndex = stack_args->layers[ layer ];
|
|
|
|
// Default to 0, if over 9
|
|
if ( layerIndex > 9 )
|
|
{
|
|
layerIndex = 0;
|
|
}
|
|
|
|
// Write page of number to display
|
|
SPI_write( (uint8_t*)&numbers[ layerIndex ][ page * 32 ], 32 );
|
|
}
|
|
|
|
// Blank out rest of display
|
|
uint8_t data = 0;
|
|
for ( uint8_t c = 0; c < 4 - stack_args->numArgs; c++ )
|
|
{
|
|
for ( uint8_t byte = 0; byte < 32; byte++ )
|
|
{
|
|
SPI_write( &data, 1 );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Set default backlight
|
|
FTM0_C0V = STLcdBacklightRed_define;
|
|
FTM0_C1V = STLcdBacklightGreen_define;
|
|
FTM0_C2V = STLcdBacklightBlue_define;
|
|
|
|
// Write default image
|
|
for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ )
|
|
LCD_writeDisplayReg( page, (uint8_t *)&STLcdDefaultImage[page * LCD_PAGE_LEN], LCD_PAGE_LEN );
|
|
}
|
|
}
|
|
|
|
// Determines the current layer stack, and sets the LCD output accordingly
|
|
// Will only work on a master node when using the interconnect (use LCD_layerStackExact_capability instead)
|
|
uint16_t LCD_layerStack_prevSize = 0;
|
|
uint16_t LCD_layerStack_prevTop = 0;
|
|
void LCD_layerStack_capability( uint8_t state, uint8_t stateType, uint8_t *args )
|
|
{
|
|
// Display capability name
|
|
if ( stateType == 0xFF && state == 0xFF )
|
|
{
|
|
print("LCD_layerStack_capability()");
|
|
return;
|
|
}
|
|
|
|
// Parse the layer stack, top to bottom
|
|
extern uint16_t macroLayerIndexStack[];
|
|
extern uint16_t macroLayerIndexStackSize;
|
|
|
|
// Ignore if the stack size hasn't changed and the top of the stack is the same
|
|
if ( macroLayerIndexStackSize == LCD_layerStack_prevSize
|
|
&& macroLayerIndexStack[macroLayerIndexStackSize - 1] == LCD_layerStack_prevTop )
|
|
{
|
|
return;
|
|
}
|
|
LCD_layerStack_prevSize = macroLayerIndexStackSize;
|
|
LCD_layerStack_prevTop = macroLayerIndexStack[macroLayerIndexStackSize - 1];
|
|
|
|
LCD_layerStackExact_args stack_args;
|
|
memset( stack_args.layers, 0, sizeof( stack_args.layers ) );
|
|
|
|
// Use the LCD_layerStackExact_capability to set the LCD using the determined stack
|
|
// Construct argument set for capability
|
|
stack_args.numArgs = macroLayerIndexStackSize;
|
|
for ( uint16_t layer = 1; layer <= macroLayerIndexStackSize; layer++ )
|
|
{
|
|
stack_args.layers[ layer - 1 ] = macroLayerIndexStack[ macroLayerIndexStackSize - layer ];
|
|
}
|
|
|
|
// Only deal with the interconnect if it has been compiled in
|
|
#if defined(ConnectEnabled_define)
|
|
if ( Connect_master )
|
|
{
|
|
// generatedKeymap.h
|
|
extern const Capability CapabilitiesList[];
|
|
|
|
// Broadcast layerStackExact remote capability (0xFF is the broadcast id)
|
|
Connect_send_RemoteCapability(
|
|
0xFF,
|
|
LCD_layerStackExact_capability_index,
|
|
state,
|
|
stateType,
|
|
CapabilitiesList[ LCD_layerStackExact_capability_index ].argCount,
|
|
(uint8_t*)&stack_args
|
|
);
|
|
}
|
|
#endif
|
|
// Call LCD_layerStackExact directly
|
|
LCD_layerStackExact_capability( state, stateType, (uint8_t*)&stack_args );
|
|
}
|
|
|
|
|
|
|
|
// ----- CLI Command Functions -----
|
|
|
|
void cliFunc_lcdInit( char* args )
|
|
{
|
|
LCD_initialize();
|
|
}
|
|
|
|
void cliFunc_lcdTest( char* args )
|
|
{
|
|
// Write default image
|
|
for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ )
|
|
LCD_writeDisplayReg( page, (uint8_t *)&STLcdDefaultImage[page * LCD_PAGE_LEN], LCD_PAGE_LEN );
|
|
}
|
|
|
|
void cliFunc_lcdCmd( char* args )
|
|
{
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
print( NL ); // No \r\n by default after the command is entered
|
|
|
|
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// No args
|
|
if ( *arg1Ptr == '\0' )
|
|
return;
|
|
|
|
// SPI Command
|
|
uint8_t cmd = (uint8_t)numToInt( arg1Ptr );
|
|
|
|
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Single Arg
|
|
if ( *arg1Ptr == '\0' )
|
|
goto cmd;
|
|
|
|
// TODO Deal with a0
|
|
cmd:
|
|
info_msg("Sending - ");
|
|
printHex( cmd );
|
|
print( NL );
|
|
LCD_writeControlReg( cmd );
|
|
}
|
|
|
|
void cliFunc_lcdColor( char* args )
|
|
{
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// Colors
|
|
uint16_t rgb[3]; // Red, Green, Blue
|
|
|
|
// Parse integers from 3 arguments
|
|
for ( uint8_t color = 0; color < 3; color++ )
|
|
{
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Give up if not enough args given
|
|
if ( *arg1Ptr == '\0' )
|
|
return;
|
|
|
|
// Convert argument to integer
|
|
rgb[ color ] = numToInt( arg1Ptr );
|
|
}
|
|
|
|
// Set PWM channels
|
|
FTM0_C0V = rgb[0];
|
|
FTM0_C1V = rgb[1];
|
|
FTM0_C2V = rgb[2];
|
|
}
|
|
|
|
void cliFunc_lcdDisp( char* args )
|
|
{
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// First process page and starting address
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
return;
|
|
uint8_t page = numToInt( arg1Ptr );
|
|
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
return;
|
|
uint8_t address = numToInt( arg1Ptr );
|
|
|
|
// Set the register page
|
|
LCD_writeControlReg( 0xB0 | ( 0x0F & page ) );
|
|
|
|
// Set starting address
|
|
LCD_writeControlReg( 0x10 | ( ( 0xF0 & address ) >> 4 ) );
|
|
LCD_writeControlReg( 0x00 | ( 0x0F & address ));
|
|
|
|
// Process all args
|
|
for ( ;; )
|
|
{
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
uint8_t value = numToInt( arg1Ptr );
|
|
|
|
// Write buffer to SPI
|
|
SPI_write( &value, 1 );
|
|
}
|
|
}
|
|
|