Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/UARTConnect/connect_scan.c
Jacob Alexander aaae9bc0f2 Adding dynamic USB power support
- Each scan module now has a current change callback which passes the available current as a parameter
- No longer attempts to use the max 500 mA immediately, starts with 100 mA then goes to 500 mA after enumeration
- If enumeration fails due to bMaxPower of 500 mA, then attempt again at 100 mA (might also be possible to go even lower to 20 mA in certain cases)
- Now working with the Apple Ipad (no over-power messages)
- Fixed Wake-up behaviour on Apple Ipad (and likely other iOS devices)
- More effecient set_feature/clear_feature handling (device handler)
- Initial power handling via Interconnect (still needs work to get it more dynamic)
2016-02-25 23:56:04 -08:00

1395 lines
36 KiB
C

/* Copyright (C) 2014-2016 by Jacob Alexander
*
* This file is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this file. If not, see <http://www.gnu.org/licenses/>.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <cli.h>
#include <kll_defs.h>
#include <led.h>
#include <print.h>
#include <macro.h>
// Local Includes
#include "connect_scan.h"
// ----- Defines -----
#define UART_Num_Interfaces 2
#define UART_Master 1
#define UART_Slave 0
#define UART_Buffer_Size UARTConnectBufSize_define
// ----- Macros -----
// Macro for popping from Tx ring buffer
#define uart_fillTxFifo( uartNum ) \
{ \
uint8_t fifoSize = ( ( UART##uartNum##_PFIFO & UART_PFIFO_TXFIFOSIZE ) >> 2 ); \
if ( fifoSize == 0 ) \
fifoSize = 1; \
if ( Connect_debug ) \
{ \
print( "TxFIFO " #uartNum " - " ); \
printHex( fifoSize ); \
print("/"); \
printHex( UART##uartNum##_TCFIFO ); \
print("/"); \
printHex( uart_tx_buf[ uartNum ].items ); \
print( NL ); \
} \
/* XXX Doesn't work well */ \
/* while ( UART##uartNum##_TCFIFO < fifoSize ) */ \
/* More reliable, albeit slower */ \
fifoSize -= UART##uartNum##_TCFIFO; \
while ( fifoSize-- != 0 ) \
{ \
if ( uart_tx_buf[ uartNum ].items == 0 ) \
break; \
UART##uartNum##_D = uart_tx_buf[ uartNum ].buffer[ uart_tx_buf[ uartNum ].head++ ]; \
uart_tx_buf[ uartNum ].items--; \
if ( uart_tx_buf[ uartNum ].head >= UART_Buffer_Size ) \
uart_tx_buf[ uartNum ].head = 0; \
} \
}
// Macros for locking/unlock Tx buffers
#define uart_lockTx( uartNum ) \
{ \
/* First, secure place in line for the resource */ \
while ( uart_tx_status[ uartNum ].lock ); \
uart_tx_status[ uartNum ].lock = 1; \
/* Next, wait unit the UART is ready */ \
while ( uart_tx_status[ uartNum ].status != UARTStatus_Ready ); \
uart_tx_status[ uartNum ].status = UARTStatus_Wait; \
}
#define uart_lockBothTx( uartNum1, uartNum2 ) \
{ \
/* First, secure place in line for the resource */ \
while ( uart_tx_status[ uartNum1 ].lock || uart_tx_status[ uartNum2 ].lock ); \
uart_tx_status[ uartNum1 ].lock = 1; \
uart_tx_status[ uartNum2 ].lock = 1; \
/* Next, wait unit the UARTs are ready */ \
while ( uart_tx_status[ uartNum1 ].status != UARTStatus_Ready || uart_tx_status[ uartNum2 ].status != UARTStatus_Ready ); \
uart_tx_status[ uartNum1 ].status = UARTStatus_Wait; \
uart_tx_status[ uartNum2 ].status = UARTStatus_Wait; \
}
#define uart_unlockTx( uartNum ) \
{ \
/* Ready the UART */ \
uart_tx_status[ uartNum ].status = UARTStatus_Ready; \
/* Unlock the resource */ \
uart_tx_status[ uartNum ].lock = 0; \
}
// ----- Function Declarations -----
// CLI Functions
void cliFunc_connectCmd ( char *args );
void cliFunc_connectDbg ( char *args );
void cliFunc_connectIdl ( char *args );
void cliFunc_connectLst ( char *args );
void cliFunc_connectMst ( char *args );
void cliFunc_connectRst ( char *args );
void cliFunc_connectSts ( char *args );
// ----- Structs -----
typedef struct UARTRingBuf {
uint8_t head;
uint8_t tail;
uint8_t items;
uint8_t buffer[UART_Buffer_Size];
} UARTRingBuf;
typedef struct UARTDMABuf {
uint8_t buffer[UART_Buffer_Size];
uint16_t last_read;
} UARTDMABuf;
typedef struct UARTStatusRx {
UARTStatus status;
Command command;
uint16_t bytes_waiting;
} UARTStatusRx;
typedef struct UARTStatusTx {
UARTStatus status;
uint8_t lock;
} UARTStatusTx;
// ----- Variables -----
// Connect Module command dictionary
CLIDict_Entry( connectCmd, "Sends a command via UART Connect, first arg is which uart, next arg is the command, rest are the arguments." );
CLIDict_Entry( connectDbg, "Toggle UARTConnect debug mode." );
CLIDict_Entry( connectIdl, "Sends N number of Idle commands, 2 is the default value, and should be sufficient in most cases." );
CLIDict_Entry( connectLst, "Lists available UARTConnect commands and index id" );
CLIDict_Entry( connectMst, "Sets the device as master. Use argument of s to set as slave." );
CLIDict_Entry( connectRst, "Resets both Rx and Tx connect buffers and state variables." );
CLIDict_Entry( connectSts, "UARTConnect status." );
CLIDict_Def( uartConnectCLIDict, "UARTConnect Module Commands" ) = {
CLIDict_Item( connectCmd ),
CLIDict_Item( connectDbg ),
CLIDict_Item( connectIdl ),
CLIDict_Item( connectLst ),
CLIDict_Item( connectMst ),
CLIDict_Item( connectRst ),
CLIDict_Item( connectSts ),
{ 0, 0, 0 } // Null entry for dictionary end
};
// -- Connect Device Id Variables --
uint8_t Connect_id = 255; // Invalid, unset
uint8_t Connect_master = 0;
uint8_t Connect_maxId = 0;
// -- Control Variables --
uint32_t Connect_lastCheck = 0; // Cable Check scheduler
uint8_t Connect_debug = 0; // Set 1 for debug
uint8_t Connect_override = 0; // Prevents master from automatically being set
volatile uint8_t uarts_configured = 0;
// -- Rx Variables --
volatile UARTDMABuf uart_rx_buf[UART_Num_Interfaces];
volatile UARTStatusRx uart_rx_status[UART_Num_Interfaces];
// -- Tx Variables --
UARTRingBuf uart_tx_buf [UART_Num_Interfaces];
UARTStatusTx uart_tx_status[UART_Num_Interfaces];
// -- Ring Buffer Convenience Functions --
void Connect_addBytes( uint8_t *buffer, uint8_t count, uint8_t uart )
{
// Too big to fit into buffer
if ( count > UART_Buffer_Size )
{
erro_msg("Too big of a command to fit into the buffer...");
return;
}
// Invalid UART
if ( uart >= UART_Num_Interfaces )
{
erro_print("Invalid UART to send from...");
return;
}
// Delay UART copy until there's some space left
while ( uart_tx_buf[ uart ].items + count > UART_Buffer_Size )
{
warn_msg("Too much data to send on UART");
printInt8( uart );
print( ", waiting..." NL );
delay( 1 );
}
// Append data to ring buffer
for ( uint8_t c = 0; c < count; c++ )
{
if ( Connect_debug )
{
printHex( buffer[ c ] );
print(" +");
printInt8( uart );
print( NL );
}
uart_tx_buf[ uart ].buffer[ uart_tx_buf[ uart ].tail++ ] = buffer[ c ];
uart_tx_buf[ uart ].items++;
if ( uart_tx_buf[ uart ].tail >= UART_Buffer_Size )
uart_tx_buf[ uart ].tail = 0;
if ( uart_tx_buf[ uart ].head == uart_tx_buf[ uart ].tail )
uart_tx_buf[ uart ].head++;
if ( uart_tx_buf[ uart ].head >= UART_Buffer_Size )
uart_tx_buf[ uart ].head = 0;
}
}
// -- Connect send functions --
// patternLen defines how many bytes should the incrementing pattern have
void Connect_send_CableCheck( uint8_t patternLen )
{
// Wait until the Tx buffers are ready, then lock them
uart_lockBothTx( UART_Master, UART_Slave );
// Prepare header
uint8_t header[] = { 0x16, 0x01, CableCheck, patternLen };
// Send header
Connect_addBytes( header, sizeof( header ), UART_Master );
Connect_addBytes( header, sizeof( header ), UART_Slave );
// Send 0xD2 (11010010) for each argument
uint8_t value = 0xD2;
for ( uint8_t c = 0; c < patternLen; c++ )
{
Connect_addBytes( &value, 1, UART_Master );
Connect_addBytes( &value, 1, UART_Slave );
}
// Release Tx buffers
uart_unlockTx( UART_Master );
uart_unlockTx( UART_Slave );
}
void Connect_send_IdRequest()
{
// Lock master bound Tx
uart_lockTx( UART_Master );
// Prepare header
uint8_t header[] = { 0x16, 0x01, IdRequest };
// Send header
Connect_addBytes( header, sizeof( header ), UART_Master );
// Unlock Tx
uart_unlockTx( UART_Master );
}
// id is the value the next slave should enumerate as
void Connect_send_IdEnumeration( uint8_t id )
{
// Lock slave bound Tx
uart_lockTx( UART_Slave );
// Prepare header
uint8_t header[] = { 0x16, 0x01, IdEnumeration, id };
// Send header
Connect_addBytes( header, sizeof( header ), UART_Slave );
// Unlock Tx
uart_unlockTx( UART_Slave );
}
// id is the currently assigned id to the slave
void Connect_send_IdReport( uint8_t id )
{
// Lock master bound Tx
uart_lockTx( UART_Master );
// Prepare header
uint8_t header[] = { 0x16, 0x01, IdReport, id };
// Send header
Connect_addBytes( header, sizeof( header ), UART_Master );
// Unlock Tx
uart_unlockTx( UART_Master );
}
// id is the currently assigned id to the slave
// scanCodeStateList is an array of [scancode, state]'s (8 bit values)
// numScanCodes is the number of scan codes to parse from array
void Connect_send_ScanCode( uint8_t id, TriggerGuide *scanCodeStateList, uint8_t numScanCodes )
{
// Lock master bound Tx
uart_lockTx( UART_Master );
// Prepare header
uint8_t header[] = { 0x16, 0x01, ScanCode, id, numScanCodes };
// Send header
Connect_addBytes( header, sizeof( header ), UART_Master );
// Send each of the scan codes
Connect_addBytes( (uint8_t*)scanCodeStateList, numScanCodes * TriggerGuideSize, UART_Master );
// Unlock Tx
uart_unlockTx( UART_Master );
}
// id is the currently assigned id to the slave
// paramList is an array of [param, value]'s (8 bit values)
// numParams is the number of params to parse from the array
void Connect_send_Animation( uint8_t id, uint8_t *paramList, uint8_t numParams )
{
// Lock slave bound Tx
uart_lockTx( UART_Slave );
// Prepare header
uint8_t header[] = { 0x16, 0x01, Animation, id, numParams };
// Send header
Connect_addBytes( header, sizeof( header ), UART_Slave );
// Send each of the scan codes
Connect_addBytes( paramList, numParams, UART_Slave );
// Unlock Tx
uart_unlockTx( UART_Slave );
}
// Send a remote capability command using capability index
// This may not be what's expected (especially if the firmware is not the same on each node)
// To broadcast to all slave nodes, set id to 255 instead of a specific id
void Connect_send_RemoteCapability( uint8_t id, uint8_t capabilityIndex, uint8_t state, uint8_t stateType, uint8_t numArgs, uint8_t *args )
{
// Prepare header
uint8_t header[] = { 0x16, 0x01, RemoteCapability, id, capabilityIndex, state, stateType, numArgs };
// Ignore current id
if ( id == Connect_id )
return;
// Send towards slave node
if ( id > Connect_id )
{
// Lock slave bound Tx
uart_lockTx( UART_Slave );
// Send header
Connect_addBytes( header, sizeof( header ), UART_Slave );
// Send arguments
Connect_addBytes( args, numArgs, UART_Slave );
// Unlock Tx
uart_unlockTx( UART_Slave );
}
// Send towards master node
if ( id < Connect_id || id == 255 )
{
// Lock slave bound Tx
uart_lockTx( UART_Master );
// Send header
Connect_addBytes( header, sizeof( header ), UART_Master );
// Send arguments
Connect_addBytes( args, numArgs, UART_Master );
// Unlock Tx
uart_unlockTx( UART_Master );
}
}
void Connect_send_Idle( uint8_t num )
{
// Wait until the Tx buffers are ready, then lock them
uart_lockBothTx( UART_Slave, UART_Master );
// Send n number of idles to reset link status (if in a bad state)
uint8_t value = 0x16;
for ( uint8_t c = 0; c < num; c++ )
{
Connect_addBytes( &value, 1, UART_Master );
Connect_addBytes( &value, 1, UART_Slave );
}
// Release Tx buffers
uart_unlockTx( UART_Master );
uart_unlockTx( UART_Slave );
}
// -- Connect receive functions --
// - Cable Check variables -
uint32_t Connect_cableFaultsMaster = 0;
uint32_t Connect_cableFaultsSlave = 0;
uint32_t Connect_cableChecksMaster = 0;
uint32_t Connect_cableChecksSlave = 0;
uint8_t Connect_cableOkMaster = 0;
uint8_t Connect_cableOkSlave = 0;
uint8_t Connect_receive_CableCheck( uint8_t byte, uint16_t *pending_bytes, uint8_t uart_num )
{
// Check if this is the first byte
if ( *pending_bytes == 0xFFFF )
{
*pending_bytes = byte;
if ( Connect_debug )
{
dbug_msg("PENDING SET -> ");
printHex( byte );
print(" ");
printHex( *pending_bytes );
print( NL );
}
}
// Verify byte
else
{
(*pending_bytes)--;
// The argument bytes are always 0xD2 (11010010)
if ( byte != 0xD2 )
{
warn_print("Cable Fault!");
// Check which side of the chain
if ( uart_num == UART_Slave )
{
Connect_cableFaultsSlave++;
Connect_cableOkSlave = 0;
print(" Slave ");
}
else
{
// Lower current requirement during errors
// USB minimum
// Only if this is not the master node
if ( Connect_id != 0 )
{
Output_update_external_current( 100 );
}
Connect_cableFaultsMaster++;
Connect_cableOkMaster = 0;
print(" Master ");
}
printHex( byte );
print( NL );
// Signal that the command should wait for a SYN again
return 1;
}
else
{
// Check which side of the chain
if ( uart_num == UART_Slave )
{
Connect_cableChecksSlave++;
}
else
{
// If we already have an Id, then set max current again
if ( Connect_id != 255 && Connect_id != 0 )
{
// TODO reset to original negotiated current
Output_update_external_current( 500 );
}
Connect_cableChecksMaster++;
}
}
}
// If cable check was successful, set cable ok
if ( *pending_bytes == 0 )
{
if ( uart_num == UART_Slave )
{
Connect_cableOkSlave = 1;
}
else
{
Connect_cableOkMaster = 1;
}
}
if ( Connect_debug )
{
dbug_msg("CABLECHECK RECEIVE - ");
printHex( byte );
print(" ");
printHex( *pending_bytes );
print( NL );
}
// Check whether the cable check has finished
return *pending_bytes == 0 ? 1 : 0;
}
uint8_t Connect_receive_IdRequest( uint8_t byte, uint16_t *pending_bytes, uint8_t uart_num )
{
dbug_print("IdRequest");
// Check the directionality
if ( uart_num == UART_Master )
{
erro_print("Invalid IdRequest direction...");
}
// Check if master, begin IdEnumeration
if ( Connect_master )
{
// The first device is always id 1
// Id 0 is reserved for the master
Connect_send_IdEnumeration( 1 );
}
// Propagate IdRequest
else
{
Connect_send_IdRequest();
}
return 1;
}
uint8_t Connect_receive_IdEnumeration( uint8_t id, uint16_t *pending_bytes, uint8_t uart_num )
{
dbug_print("IdEnumeration");
// Check the directionality
if ( uart_num == UART_Slave )
{
erro_print("Invalid IdEnumeration direction...");
}
// Set the device id
Connect_id = id;
// Send reponse back to master
Connect_send_IdReport( id );
// Node now enumerated, set external power to USB Max
// Only set if this is not the master node
// TODO Determine power slice for each node as part of protocol
if ( Connect_id != 0 )
{
Output_update_external_current( 500 );
}
// Propogate next Id if the connection is ok
if ( Connect_cableOkSlave )
{
Connect_send_IdEnumeration( id + 1 );
}
return 1;
}
uint8_t Connect_receive_IdReport( uint8_t id, uint16_t *pending_bytes, uint8_t uart_num )
{
dbug_print("IdReport");
// Check the directionality
if ( uart_num == UART_Master )
{
erro_print("Invalid IdRequest direction...");
}
// Track Id response if master
if ( Connect_master )
{
info_msg("Id Reported: ");
printHex( id );
print( NL );
// Check if this is the highest ID
if ( id > Connect_maxId )
Connect_maxId = id;
return 1;
}
// Propagate id if yet another slave
else
{
Connect_send_IdReport( id );
}
return 1;
}
// - Scan Code Variables -
TriggerGuide Connect_receive_ScanCodeBuffer;
uint8_t Connect_receive_ScanCodeBufferPos;
uint8_t Connect_receive_ScanCodeDeviceId;
uint8_t Connect_receive_ScanCode( uint8_t byte, uint16_t *pending_bytes, uint8_t uart_num )
{
// Check the directionality
if ( uart_num == UART_Master )
{
erro_print("Invalid ScanCode direction...");
}
// Master node, trigger scan codes
if ( Connect_master ) switch ( (*pending_bytes)-- )
{
// Byte count always starts at 0xFFFF
case 0xFFFF: // Device Id
Connect_receive_ScanCodeDeviceId = byte;
break;
case 0xFFFE: // Number of TriggerGuides in bytes (byte * 3)
*pending_bytes = byte * sizeof( TriggerGuide );
Connect_receive_ScanCodeBufferPos = 0;
break;
default:
// Set the specific TriggerGuide entry
((uint8_t*)&Connect_receive_ScanCodeBuffer)[ Connect_receive_ScanCodeBufferPos++ ] = byte;
// Reset the BufferPos if higher than sizeof TriggerGuide
// And send the TriggerGuide to the Macro Module
if ( Connect_receive_ScanCodeBufferPos >= sizeof( TriggerGuide ) )
{
Connect_receive_ScanCodeBufferPos = 0;
// Adjust ScanCode offset
if ( Connect_receive_ScanCodeDeviceId > 0 )
{
// Check if this node is too large
if ( Connect_receive_ScanCodeDeviceId >= InterconnectNodeMax )
{
warn_msg("Not enough interconnect layout nodes configured: ");
printHex( Connect_receive_ScanCodeDeviceId );
print( NL );
break;
}
// This variable is in generatedKeymaps.h
extern uint8_t InterconnectOffsetList[];
Connect_receive_ScanCodeBuffer.scanCode = Connect_receive_ScanCodeBuffer.scanCode + InterconnectOffsetList[ Connect_receive_ScanCodeDeviceId - 1 ];
}
// ScanCode receive debug
if ( Connect_debug )
{
dbug_msg("");
printHex( Connect_receive_ScanCodeBuffer.type );
print(" ");
printHex( Connect_receive_ScanCodeBuffer.state );
print(" ");
printHex( Connect_receive_ScanCodeBuffer.scanCode );
print( NL );
}
// Send ScanCode to macro module
Macro_interconnectAdd( &Connect_receive_ScanCodeBuffer );
}
break;
}
// Propagate ScanCode packet
// XXX It would be safer to buffer the scancodes first, before transmitting the packet -Jacob
// The current method is the more efficient/aggressive, but could cause issues if there were errors during transmission
else switch ( (*pending_bytes)-- )
{
// Byte count always starts at 0xFFFF
case 0xFFFF: // Device Id
{
Connect_receive_ScanCodeDeviceId = byte;
// Lock the master Tx buffer
uart_lockTx( UART_Master );
// Send header + Id byte
uint8_t header[] = { 0x16, 0x01, ScanCode, byte };
Connect_addBytes( header, sizeof( header ), UART_Master );
break;
}
case 0xFFFE: // Number of TriggerGuides in bytes
*pending_bytes = byte * sizeof( TriggerGuide );
Connect_receive_ScanCodeBufferPos = 0;
// Pass through byte
Connect_addBytes( &byte, 1, UART_Master );
break;
default:
// Pass through byte
Connect_addBytes( &byte, 1, UART_Master );
// Unlock Tx Buffer after sending last byte
if ( *pending_bytes == 0 )
uart_unlockTx( UART_Master );
break;
}
// Check whether the scan codes have finished sending
return *pending_bytes == 0 ? 1 : 0;
}
uint8_t Connect_receive_Animation( uint8_t byte, uint16_t *pending_bytes, uint8_t uart_num )
{
dbug_print("Animation");
return 1;
}
// - Remote Capability Variables -
#define Connect_receive_RemoteCapabilityMaxArgs 25 // XXX Calculate the max using kll
RemoteCapabilityCommand Connect_receive_RemoteCapabilityBuffer;
uint8_t Connect_receive_RemoteCapabilityArgs[Connect_receive_RemoteCapabilityMaxArgs];
uint8_t Connect_receive_RemoteCapability( uint8_t byte, uint16_t *pending_bytes, uint8_t uart_num )
{
// Check which byte in the packet we are at
switch ( (*pending_bytes)-- )
{
// Byte count always starts at 0xFFFF
case 0xFFFF: // Device Id
Connect_receive_RemoteCapabilityBuffer.id = byte;
break;
case 0xFFFE: // Capability Index
Connect_receive_RemoteCapabilityBuffer.capabilityIndex = byte;
break;
case 0xFFFD: // State
Connect_receive_RemoteCapabilityBuffer.state = byte;
break;
case 0xFFFC: // StateType
Connect_receive_RemoteCapabilityBuffer.stateType = byte;
break;
case 0xFFFB: // Number of args
Connect_receive_RemoteCapabilityBuffer.numArgs = byte;
*pending_bytes = byte;
break;
default: // Args (# defined by previous byte)
Connect_receive_RemoteCapabilityArgs[
Connect_receive_RemoteCapabilityBuffer.numArgs - *pending_bytes + 1
] = byte;
// If entire packet has been fully received
if ( *pending_bytes == 0 )
{
// Determine if this is the node to run the capability on
// Conditions: Matches or broadcast (0xFF)
if ( Connect_receive_RemoteCapabilityBuffer.id == 0xFF
|| Connect_receive_RemoteCapabilityBuffer.id == Connect_id )
{
extern const Capability CapabilitiesList[]; // See generatedKeymap.h
void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(
CapabilitiesList[ Connect_receive_RemoteCapabilityBuffer.capabilityIndex ].func
);
capability(
Connect_receive_RemoteCapabilityBuffer.state,
Connect_receive_RemoteCapabilityBuffer.stateType,
&Connect_receive_RemoteCapabilityArgs[2]
);
}
// If this is not the correct node, keep sending it in the same direction (doesn't matter if more nodes exist)
// or if this is a broadcast
if ( Connect_receive_RemoteCapabilityBuffer.id == 0xFF
|| Connect_receive_RemoteCapabilityBuffer.id != Connect_id )
{
// Prepare outgoing packet
Connect_receive_RemoteCapabilityBuffer.command = RemoteCapability;
// Send to the other UART (not the one receiving the packet from
uint8_t uart_direction = uart_num == UART_Master ? UART_Slave : UART_Master;
// Lock Tx UART
switch ( uart_direction )
{
case UART_Master: uart_lockTx( UART_Master ); break;
case UART_Slave: uart_lockTx( UART_Slave ); break;
}
// Send header
uint8_t header[] = { 0x16, 0x01 };
Connect_addBytes( header, sizeof( header ), uart_direction );
// Send Remote Capability and arguments
Connect_addBytes( (uint8_t*)&Connect_receive_RemoteCapabilityBuffer, sizeof( RemoteCapabilityCommand ), uart_direction );
Connect_addBytes( Connect_receive_RemoteCapabilityArgs, Connect_receive_RemoteCapabilityBuffer.numArgs, uart_direction );
// Unlock Tx UART
switch ( uart_direction )
{
case UART_Master: uart_unlockTx( UART_Master ); break;
case UART_Slave: uart_unlockTx( UART_Slave ); break;
}
}
}
break;
}
// Check whether the scan codes have finished sending
return *pending_bytes == 0 ? 1 : 0;
}
// Baud Rate
// NOTE: If finer baud adjustment is needed see UARTx_C4 -> BRFA in the datasheet
uint16_t Connect_baud = UARTConnectBaud_define; // Max setting of 8191
uint16_t Connect_baudFine = UARTConnectBaudFine_define;
// Connect receive function lookup
void *Connect_receiveFunctions[] = {
Connect_receive_CableCheck,
Connect_receive_IdRequest,
Connect_receive_IdEnumeration,
Connect_receive_IdReport,
Connect_receive_ScanCode,
Connect_receive_Animation,
Connect_receive_RemoteCapability,
};
// ----- Functions -----
// Resets the state of the UART buffers and state variables
void Connect_reset()
{
// Reset Rx
memset( (void*)uart_rx_status, 0, sizeof( UARTStatusRx ) * UART_Num_Interfaces );
// Reset Tx
memset( (void*)uart_tx_buf, 0, sizeof( UARTRingBuf ) * UART_Num_Interfaces );
memset( (void*)uart_tx_status, 0, sizeof( UARTStatusTx ) * UART_Num_Interfaces );
// Set Rx/Tx buffers as ready
for ( uint8_t inter = 0; inter < UART_Num_Interfaces; inter++ )
{
uart_tx_status[ inter ].status = UARTStatus_Ready;
uart_rx_buf[ inter ].last_read = UART_Buffer_Size;
}
}
// Setup connection to other side
// - Only supports a single slave and master
// - If USB has been initiallized at this point, this side is the master
// - If both sides assert master, flash error leds
void Connect_setup( uint8_t master )
{
// Indication that UARTs are not ready
uarts_configured = 0;
// Register Connect CLI dictionary
CLI_registerDictionary( uartConnectCLIDict, uartConnectCLIDictName );
// Check if master
Connect_master = master;
if ( Connect_master )
Connect_id = 0; // 0x00 is always the master Id
// UART0 setup
// UART1 setup
// Setup the the UART interface for keyboard data input
SIM_SCGC4 |= SIM_SCGC4_UART0; // Disable clock gating
SIM_SCGC4 |= SIM_SCGC4_UART1; // Disable clock gating
// Pin Setup for UART0 / UART1
PORTA_PCR1 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); // RX Pin
PORTA_PCR2 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(2); // TX Pin
PORTE_PCR0 = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); // RX Pin
PORTE_PCR1 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); // TX Pin
// Baud Rate setting
UART0_BDH = (uint8_t)(Connect_baud >> 8);
UART0_BDL = (uint8_t)Connect_baud;
UART0_C4 = Connect_baudFine;
UART1_BDH = (uint8_t)(Connect_baud >> 8);
UART1_BDL = (uint8_t)Connect_baud;
UART1_C4 = Connect_baudFine;
// 8 bit, Even Parity, Idle Character bit after stop
// NOTE: For 8 bit with Parity you must enable 9 bit transmission (pg. 1065)
// You only need to use UART0_D for 8 bit reading/writing though
// UART_C1_M UART_C1_PE UART_C1_PT UART_C1_ILT
UART0_C1 = UART_C1_M | UART_C1_PE | UART_C1_ILT;
UART1_C1 = UART_C1_M | UART_C1_PE | UART_C1_ILT;
// Only using Tx Fifos
UART0_PFIFO = UART_PFIFO_TXFE;
UART1_PFIFO = UART_PFIFO_TXFE;
// Setup DMA clocks
SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
SIM_SCGC7 |= SIM_SCGC7_DMA;
// Start with channels disabled first
DMAMUX0_CHCFG0 = 0;
DMAMUX0_CHCFG1 = 0;
// Configure DMA channels
//DMA_DSR_BCR0 |= DMA_DSR_BCR_DONE_MASK; // TODO What's this?
DMA_TCD0_CSR = 0;
DMA_TCD1_CSR = 0;
// Default control register
DMA_CR = 0;
// DMA Priority
DMA_DCHPRI0 = 0; // Ch 0, priority 0
DMA_DCHPRI1 = 1; // ch 1, priority 1
// Clear error interrupts
DMA_EEI = 0;
// Setup TCD
DMA_TCD0_SADDR = (uint32_t*)&UART0_D;
DMA_TCD1_SADDR = (uint32_t*)&UART1_D;
DMA_TCD0_SOFF = 0;
DMA_TCD1_SOFF = 0;
// No modulo, 8-bit transfer size
DMA_TCD0_ATTR = DMA_TCD_ATTR_SMOD(0) | DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DMOD(0) | DMA_TCD_ATTR_DSIZE(0);
DMA_TCD1_ATTR = DMA_TCD_ATTR_SMOD(0) | DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DMOD(0) | DMA_TCD_ATTR_DSIZE(0);
// One byte transferred at a time
DMA_TCD0_NBYTES_MLNO = 1;
DMA_TCD1_NBYTES_MLNO = 1;
// Source address does not change
DMA_TCD0_SLAST = 0;
DMA_TCD1_SLAST = 0;
// Destination buffer
DMA_TCD0_DADDR = (uint32_t*)uart_rx_buf[0].buffer;
DMA_TCD1_DADDR = (uint32_t*)uart_rx_buf[1].buffer;
// Incoming byte, increment by 1 in the rx buffer
DMA_TCD0_DOFF = 1;
DMA_TCD1_DOFF = 1;
// Single major loop, must be the same value
DMA_TCD0_CITER_ELINKNO = UART_Buffer_Size;
DMA_TCD1_CITER_ELINKNO = UART_Buffer_Size;
DMA_TCD0_BITER_ELINKNO = UART_Buffer_Size;
DMA_TCD1_BITER_ELINKNO = UART_Buffer_Size;
// Reset buffer when full
DMA_TCD0_DLASTSGA = -( UART_Buffer_Size );
DMA_TCD1_DLASTSGA = -( UART_Buffer_Size );
// Enable DMA channels
DMA_ERQ |= DMA_ERQ_ERQ0 | DMA_ERQ_ERQ1;
// Setup DMA channel routing
DMAMUX0_CHCFG0 = DMAMUX_ENABLE | DMAMUX_SOURCE_UART0_RX;
DMAMUX0_CHCFG1 = DMAMUX_ENABLE | DMAMUX_SOURCE_UART1_RX;
// Enable DMA requests (requires Rx interrupts)
UART0_C5 = UART_C5_RDMAS;
UART1_C5 = UART_C5_RDMAS;
// TX Enabled, RX Enabled, RX Interrupt Enabled
UART0_C2 = UART_C2_TE | UART_C2_RE | UART_C2_RIE;
UART1_C2 = UART_C2_TE | UART_C2_RE | UART_C2_RIE;
// Add interrupts to the vector table
NVIC_ENABLE_IRQ( IRQ_UART0_STATUS );
NVIC_ENABLE_IRQ( IRQ_UART1_STATUS );
// UARTs are now ready to go
uarts_configured = 1;
// Reset the state of the UART variables
Connect_reset();
}
#define DMA_BUF_POS( x, pos ) \
case x: \
pos = DMA_TCD##x##_CITER_ELINKNO; \
break
void Connect_rx_process( uint8_t uartNum )
{
// Determine current position to read until
uint16_t bufpos = 0;
switch ( uartNum )
{
DMA_BUF_POS( 0, bufpos );
DMA_BUF_POS( 1, bufpos );
}
// Process each of the new bytes
// Even if we receive more bytes during processing, wait until the next check so we don't starve other tasks
while ( bufpos != uart_rx_buf[ uartNum ].last_read )
{
// If the last_read byte is at the buffer edge, roll back to beginning
if ( uart_rx_buf[ uartNum ].last_read == 0 )
{
uart_rx_buf[ uartNum ].last_read = UART_Buffer_Size;
// Check to see if we're at the boundary
if ( bufpos == UART_Buffer_Size )
break;
}
// Read the byte out of Rx DMA buffer
uint8_t byte = uart_rx_buf[ uartNum ].buffer[ UART_Buffer_Size - uart_rx_buf[ uartNum ].last_read-- ];
if ( Connect_debug )
{
printHex( byte );
print(" ");
}
// Process UART byte
switch ( uart_rx_status[ uartNum ].status )
{
// Every packet must start with a SYN / 0x16
case UARTStatus_Wait:
if ( Connect_debug )
{
print(" Wait ");
}
uart_rx_status[ uartNum ].status = byte == 0x16 ? UARTStatus_SYN : UARTStatus_Wait;
break;
// After a SYN, there must be a SOH / 0x01
case UARTStatus_SYN:
if ( Connect_debug )
{
print(" SYN ");
}
uart_rx_status[ uartNum ].status = byte == 0x01 ? UARTStatus_SOH : UARTStatus_Wait;
break;
// After a SOH the packet structure may diverge a bit
// This is the packet type field (refer to the Command enum)
// For very small packets (e.g. IdRequest) this is all that's required to take action
case UARTStatus_SOH:
{
if ( Connect_debug )
{
print(" SOH ");
}
// Check if this is actually a reserved CMD 0x16 (Error condition)
if ( byte == Command_SYN )
{
uart_rx_status[ uartNum ].status = UARTStatus_SYN;
break;
}
// Otherwise process the command
if ( byte < Command_TOP )
{
uart_rx_status[ uartNum ].status = UARTStatus_Command;
uart_rx_status[ uartNum ].command = byte;
uart_rx_status[ uartNum ].bytes_waiting = 0xFFFF;
}
// Invalid packet type, ignore
else
{
uart_rx_status[ uartNum ].status = UARTStatus_Wait;
}
// Check if this is a very short packet
switch ( uart_rx_status[ uartNum ].command )
{
case IdRequest:
Connect_receive_IdRequest( 0, (uint16_t*)&uart_rx_status[ uartNum ].bytes_waiting, uartNum );
uart_rx_status[ uartNum ].status = UARTStatus_Wait;
break;
default:
if ( Connect_debug )
{
print(" ### ");
printHex( uart_rx_status[ uartNum ].command );
}
break;
}
break;
}
// After the packet type has been deciphered do Command specific processing
// Until the Command has received all the bytes it requires the UART buffer stays in this state
case UARTStatus_Command:
{
if ( Connect_debug )
{
print(" CMD ");
}
/* Call specific UARTConnect command receive function */
uint8_t (*rcvFunc)(uint8_t, uint16_t(*), uint8_t) = (uint8_t(*)(uint8_t, uint16_t(*), uint8_t))(Connect_receiveFunctions[ uart_rx_status[ uartNum ].command ]);
if ( rcvFunc( byte, (uint16_t*)&uart_rx_status[ uartNum ].bytes_waiting, uartNum ) )
uart_rx_status[ uartNum ].status = UARTStatus_Wait;
break;
}
// Unknown status, should never get here
default:
erro_msg("Invalid UARTStatus...");
uart_rx_status[ uartNum ].status = UARTStatus_Wait;
continue;
}
if ( Connect_debug )
{
print( NL );
}
}
}
// Scan for updates in the master/slave
// - Interrupts will deal with most input functions
// - Used to send queries
// - SyncEvent is sent immediately once the current command is sent
// - SyncEvent is also blocking until sent
void Connect_scan()
{
// Check if initially configured as a slave and usb comes up
// Then reconfigure as a master
if ( !Connect_master && Output_Available && !Connect_override )
{
Connect_setup( Output_Available );
}
// Limit how often we do cable checks
//uint32_t time_compare = 0x007; // Used for debugging cables -HaaTa
uint32_t time_compare = 0x7FF; // Must be all 1's, 0x3FF is valid, 0x4FF is not
uint32_t current_time = systick_millis_count;
if ( Connect_lastCheck != current_time
&& ( current_time & time_compare ) == time_compare
)
{
// Make sure we don't double check if the clock speed is too high
Connect_lastCheck = current_time;
// Send a cable check command of 2 bytes
Connect_send_CableCheck( UARTConnectCableCheckLength_define );
// If this is a slave, and we don't have an id yeth
// Don't bother sending if there are cable issues
if ( !Connect_master && Connect_id == 0xFF && Connect_cableOkMaster )
{
Connect_send_IdRequest();
}
}
// Only process commands if uarts have been configured
if ( uarts_configured )
{
// Check if Tx Buffers are empty and the Tx Ring buffers have data to send
// This happens if there was previously nothing to send
if ( uart_tx_buf[ 0 ].items > 0 && UART0_TCFIFO == 0 )
uart_fillTxFifo( 0 );
if ( uart_tx_buf[ 1 ].items > 0 && UART1_TCFIFO == 0 )
uart_fillTxFifo( 1 );
// Process Rx Buffers
Connect_rx_process( 0 );
Connect_rx_process( 1 );
}
}
// Called by parent Scan module whenever the available current changes
void Connect_currentChange( unsigned int current )
{
// TODO - Any potential power saving here?
}
// ----- CLI Command Functions -----
void cliFunc_connectCmd( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
print( NL );
switch ( numToInt( &arg1Ptr[0] ) )
{
case CableCheck:
Connect_send_CableCheck( UARTConnectCableCheckLength_define );
break;
case IdRequest:
Connect_send_IdRequest();
break;
case IdEnumeration:
Connect_send_IdEnumeration( 5 );
break;
case IdReport:
Connect_send_IdReport( 8 );
break;
case ScanCode:
{
TriggerGuide scanCodes[] = { { 0x00, 0x01, 0x05 }, { 0x00, 0x03, 0x16 } };
Connect_send_ScanCode( 10, scanCodes, 2 );
break;
}
case Animation:
break;
case RemoteCapability:
// TODO
break;
case RemoteOutput:
// TODO
break;
case RemoteInput:
// TODO
break;
default:
break;
}
}
void cliFunc_connectDbg( char* args )
{
print( NL );
info_msg("Connect Debug Mode Toggle");
Connect_debug = !Connect_debug;
}
void cliFunc_connectIdl( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
print( NL );
info_msg("Sending Sync Idles...");
uint8_t count = numToInt( &arg1Ptr[0] );
// Default to 2 idles
if ( count == 0 )
count = 2;
Connect_send_Idle( count );
}
void cliFunc_connectLst( char* args )
{
const char *Command_strs[] = {
"CableCheck",
"IdRequest",
"IdEnumeration",
"IdReport",
"ScanCode",
"Animation",
"RemoteCapability",
"RemoteOutput",
"RemoteInput",
};
print( NL );
info_msg("List of UARTConnect commands");
for ( uint8_t cmd = 0; cmd < Command_TOP; cmd++ )
{
print( NL );
printInt8( cmd );
print(" - ");
dPrint( (char*)Command_strs[ cmd ] );
}
}
void cliFunc_connectMst( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
print( NL );
// Set override
Connect_override = 1;
switch ( arg1Ptr[0] )
{
// Disable override
case 'd':
case 'D':
Connect_override = 0;
case 's':
case 'S':
info_msg("Setting device as slave.");
Connect_master = 0;
Connect_id = 0xFF;
break;
case 'm':
case 'M':
default:
info_msg("Setting device as master.");
Connect_master = 1;
Connect_id = 0;
break;
}
}
void cliFunc_connectRst( char* args )
{
print( NL );
info_msg("Resetting UARTConnect state...");
Connect_reset();
// Reset node id
Connect_id = 0xFF;
}
void cliFunc_connectSts( char* args )
{
print( NL );
info_msg("UARTConnect Status");
print( NL "Device Type:\t" );
print( Connect_master ? "Master" : "Slave" );
print( NL "Device Id:\t" );
printHex( Connect_id );
print( NL "Max Id:\t" );
printHex( Connect_maxId );
print( NL "Master <=" NL "\tStatus:\t");
printHex( Connect_cableOkMaster );
print( NL "\tFaults:\t");
printHex32( Connect_cableFaultsMaster );
print("/");
printHex32( Connect_cableChecksMaster );
print( NL "\tRx:\t");
printHex( uart_rx_status[UART_Master].status );
print( NL "\tTx:\t");
printHex( uart_tx_status[UART_Master].status );
print( NL "Slave <=" NL "\tStatus:\t");
printHex( Connect_cableOkSlave );
print( NL "\tFaults:\t");
printHex32( Connect_cableFaultsSlave );
print("/");
printHex32( Connect_cableChecksSlave );
print( NL "\tRx:\t");
printHex( uart_rx_status[UART_Slave].status );
print( NL "\tTx:\t");
printHex( uart_tx_status[UART_Slave].status );
}