Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/avr-capsense/scan_loop.c
2013-11-16 19:37:16 -05:00

1153 lines
25 KiB
C

/* Copyright (C) 2011-2013 by Joseph Makuch
* Additions by Jacob Alexander (2013)
*
* dfj, put whatever license here you want -HaaTa
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <led.h>
#include <print.h>
// Local Includes
#include "scan_loop.h"
// ----- Defines -----
// TODO dfj defines...needs cleaning up and commenting...
#define LED_CONFIG (DDRD |= (1<<6))
#define LED_ON (PORTD &= ~(1<<6))
#define LED_OFF (PORTD |= (1<<6))
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
#define MAX_PRESS_DELTA_MV 470
#define THRESHOLD_MV (MAX_PRESS_DELTA_MV >> 1)
//(2560 / (0x3ff/2)) ~= 5
#define MV_PER_ADC 5
// 5
#define THRESHOLD (THRESHOLD_MV / MV_PER_ADC)
#define BUMP_DETECTION 0
#define BUMP_THRESHOLD 0x50
//((THRESHOLD) * 3)
#define BUMP_REST_US 1200
#define STROBE_SETTLE 1
#define MUX_SETTLE 1
#define HYST 1
#define HYST_T 0x10
#define TEST_KEY_STROBE (0x05)
#define TEST_KEY_MASK (1 << 0)
#define ADHSM 7
/** Whether to use all of D and C, vs using E0, E1 instead of D6, D7,
* or alternately all of D, and E0,E1 and C0,..5 */
//#define ALL_D_C
//#define SHORT_D
#define SHORT_C
// rough offset voltage: one diode drop, about 50mV = 0x3ff * 50/3560 = 20
//#define OFFSET_VOLTAGE 0x14
//#define OFFSET_VOLTAGE 0x28
#define RIGHT_JUSTIFY 0
#define LEFT_JUSTIFY (0xff)
// set left or right justification here:
#define JUSTIFY_ADC RIGHT_JUSTIFY
#define ADLAR_MASK (1 << ADLAR)
#ifdef JUSTIFY_ADC
#define ADLAR_BITS ((ADLAR_MASK) & (JUSTIFY_ADC))
#else // defaults to right justification.
#define ADLAR_BITS 0
#endif
// full muxmask
#define FULL_MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2) | (1 << MUX3) | (1 << MUX4))
// F0-f7 pins only muxmask.
#define MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2))
#define SET_MUX(X) ((ADMUX) = (((ADMUX) & ~(MUX_MASK)) | ((X) & (MUX_MASK))))
#define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))
#define MUX_1_1 0x1e
#define MUX_GND 0x1f
// set ADC clock prescale
#define PRESCALE_MASK ((1 << ADPS0) | (1 << ADPS1) | (1 << ADPS2))
#define PRESCALE_SHIFT (ADPS0)
#define PRESCALE 3
#ifdef EXTENDED_STROBE
#define STROBE_LINES 18
#else
#define STROBE_LINES 16
#endif
#define STROBE_LINES_XSHIFT 4
#define STROBE_LINES_MASK 0x0f
#define MUXES_COUNT 8
#define MUXES_COUNT_XSHIFT 3
#define MUXES_MASK 0x7
#define WARMUP_LOOPS ( 1024 )
#define RECOVERY_US 2
#define SAMPLES 10
#define SAMPLE_OFFSET ((SAMPLES) - MUXES_COUNT)
//#define SAMPLE_OFFSET 9
#define STROBE_OFFSET 0
#define SAMPLE_CONTROL 3
//#define DEFAULT_KEY_BASE 0xc8
#define DEFAULT_KEY_BASE 0x95
#define KEY_COUNT ((STROBE_LINES) * (MUXES_COUNT))
#define LX2FX
#define RECOVERY_CONTROL 1
#define RECOVERY_SOURCE 0
#define RECOVERY_SINK 2
#define RECOVERY_MASK 0x03
#define ON 1
#define OFF 0
// mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
#define MUX_MIX 2
#define IDLE_COUNT_MASK 0xff
#define IDLE_COUNT_MAX (IDLE_COUNT_MASK + 1)
#define IDLE_COUNT_SHIFT 8
#define KEYS_AVERAGES_MIX 2
#ifdef ALL_D_C
#define D_MASK (0xff)
#define D_SHIFT 0
#define E_MASK (0x00)
#define E_SHIFT 0
#define C_MASK (0xff)
#define C_SHIFT 8
#else
#if defined(SHORT_D)
#define D_MASK (0x3f)
#define D_SHIFT 0
#define E_MASK (0x03)
#define E_SHIFT 6
#define C_MASK (0xff)
#define C_SHIFT 8
#else
#if defined(SHORT_C)
#define D_MASK (0xff)
#define D_SHIFT 0
#define E_MASK (0x03)
#define E_SHIFT 6
#define C_MASK (0xff)
#define C_SHIFT 8
#endif
#endif
#endif
// ----- Macros -----
// Make sure we haven't overflowed the buffer
#define bufferAdd(byte) \
if ( KeyIndex_BufferUsed < KEYBOARD_BUFFER ) \
KeyIndex_Buffer[KeyIndex_BufferUsed++] = byte
// TODO dfj macros...needs cleaning up and commenting...
#define STROBE_CASE(SC_CASE, SC_REG_A) case (SC_CASE): PORT##SC_REG_A = \
(( (PORT##SC_REG_A) & ~(1 << (SC_CASE - SC_REG_A##_SHIFT)) ) | (1 << (SC_CASE - SC_REG_A##_SHIFT)))
#define SET_MUX(X) ((ADMUX) = (((ADMUX) & ~(MUX_MASK)) | ((X) & (MUX_MASK))))
#define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))
// ----- Variables -----
// Buffer used to inform the macro processing module which keys have been detected as pressed
volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
volatile uint8_t KeyIndex_BufferUsed;
// TODO dfj variables...needs cleaning up and commenting
uint8_t blink = 0;
volatile uint16_t full_av = 0;
/**/ uint8_t ze_strober = 0;
uint16_t samples [SAMPLES];
//int16_t gsamples [SAMPLES];
int16_t adc_mux_averages[MUXES_COUNT];
int16_t adc_strobe_averages[STROBE_LINES];
uint8_t cur_keymap[STROBE_LINES];
// /**/ int8_t last_keymap[STROBE_LINES];
uint8_t usb_keymap[STROBE_LINES];
uint16_t keys_down=0;
uint8_t dirty;
uint8_t unstable;
uint8_t usb_dirty;
uint16_t threshold = 0x25; // HaaTa Hack -TODO
//uint16_t threshold = 0x16; // HaaTa Hack -TODO
//uint16_t threshold = THRESHOLD;
uint16_t tests = 0;
uint8_t col_a=0;
uint8_t col_b=0;
uint8_t col_c=0;
uint8_t column=0;
uint16_t keys_averages_acc[KEY_COUNT];
uint16_t keys_averages[KEY_COUNT];
uint16_t keys_averages_acc_count=0;
uint8_t full_samples[KEY_COUNT];
// 0x9f...f
// #define COUNT_MASK 0x9fff
// #define COUNT_HIGH_BIT (INT16_MIN)
// TODO: change this to 'booting', then count down.
uint16_t boot_count = 0;
uint16_t idle_count=0;
uint8_t idle = 1;
uint16_t count = 0;
uint8_t error = 0;
uint16_t error_data = 0;
int16_t mux_averages[MUXES_COUNT];
int16_t strobe_averages[STROBE_LINES];
uint8_t dump_count = 0;
//uint8_t column =0;
uint16_t db_delta = 0;
uint8_t db_sample = 0;
uint16_t db_threshold = 0;
// ----- Function Declarations -----
void dump ( void );
void dumpkeys( void );
void recovery( uint8_t on );
int sampleColumn( uint8_t column );
void setup_ADC( void );
void strobe_w( uint8_t strobe_num );
uint8_t testColumn( uint8_t strobe );
// ----- Functions -----
// Initial setup for cap sense controller
inline void scan_setup()
{
// TODO dfj code...needs cleanup + commenting...
setup_ADC();
DDRC = C_MASK;
PORTC = 0;
DDRD = D_MASK;
PORTD = 0;
DDRE = E_MASK;
PORTE = 0 ;
//DDRC |= (1 << 6);
//PORTC &= ~(1<< 6);
//uint16_t strobe = 1;
// TODO all this code should probably be in scan_resetKeyboard
for (int i=0; i < STROBE_LINES; ++i) {
cur_keymap[i] = 0;
//last_keymap[i] = 0;
usb_keymap[i] = 0;
}
for(int i=0; i < MUXES_COUNT; ++i) {
adc_mux_averages[i] = 0x20; // experimentally determined.
}
for(int i=0; i < STROBE_LINES; ++i) {
adc_strobe_averages[i] = 0x20; // yup.
}
for(int i=0; i < KEY_COUNT; ++i) {
keys_averages[i] = DEFAULT_KEY_BASE;
keys_averages_acc[i] = (DEFAULT_KEY_BASE);
}
/** warm things up a bit before we start collecting data, taking real samples. */
for(uint8_t i = 0; i < STROBE_LINES; ++i) {
sampleColumn(i);
}
// Reset the keyboard before scanning, we might be in a wierd state
// Also sets the KeyIndex_BufferUsed to 0
scan_resetKeyboard();
}
// Main Detection Loop
// This is where the important stuff happens
inline uint8_t scan_loop()
{
// TODO dfj code...needs commenting + cleanup...
uint8_t strober = 0;
uint32_t full_av_acc = 0;
for (strober = 0; strober < STROBE_LINES; ++strober) {
uint8_t tries;
tries = 1;
while (tries++ && sampleColumn(strober)) { tries &= 0x7; } // don't waste this one just because the last one was poop.
column = testColumn(strober);
idle |= column; // if column has any pressed keys, then we are not idle.
if( column != cur_keymap[strober] && (boot_count >= WARMUP_LOOPS) ) {
tests++;
cur_keymap[strober] = column;
usb_dirty = 1;
}
idle |= usb_dirty; // if any keys have changed inc. released, then we are not idle.
if(error == 0x50) {
error_data |= (((uint16_t)strober) << 12);
}
uint8_t strobe_line = strober << MUXES_COUNT_XSHIFT;
for(int i=0; i<MUXES_COUNT; ++i) {
// discard sketchy low bit, and meaningless high bits.
uint8_t sample = samples[SAMPLE_OFFSET + i] >> 1;
full_samples[strobe_line + i] = sample;
keys_averages_acc[strobe_line + i] += sample;
}
keys_averages_acc_count++;
strobe_averages[strober] = 0;
for (uint8_t i = SAMPLE_OFFSET; i < (SAMPLE_OFFSET + MUXES_COUNT); ++i) {
//samples[i] -= samples[i-SAMPLE_OFFSET]; // av; // + full_av); // -something.
//samples[i] -= OFFSET_VOLTAGE; // moved to sampleColumn.
full_av_acc += (samples[i]);
#ifdef COLLECT_STROBE_AVERAGES
mux_averages[i - SAMPLE_OFFSET] += samples[i];
strobe_averages[strober] += samples[i];
#endif
//samples[i] -= (full_av - HYST_T);
//++count;
}
#ifdef COLLECT_STROBE_AVERAGES
adc_strobe_averages[strober] += strobe_averages[strober] >> 3;
adc_strobe_averages[strober] >>= 1;
/** test if we went negative. */
if ((adc_strobe_averages[strober] & 0xFF00) && (boot_count
>= WARMUP_LOOPS)) {
error = 0xf; error_data = adc_strobe_averages[strober];
}
#endif
} // for strober
#ifdef VERIFY_TEST_PAD
// verify test key is not down.
if((cur_keymap[TEST_KEY_STROBE] & TEST_KEY_MASK) ) {
//count=0;
error = 0x05;
error_data = cur_keymap[TEST_KEY_STROBE] << 8;
error_data += full_samples[TEST_KEY_STROBE * 8];
//threshold++;
}
#endif
#ifdef COLLECT_STROBE_AVERAGES
// calc mux averages.
if (boot_count < WARMUP_LOOPS) {
full_av += (full_av_acc >> (7));
full_av >>= 1;
//full_av = full_av_acc / count;
full_av_acc = 0;
for (int i=0; i < MUXES_COUNT; ++i) {
#define MUX_MIX 2 // mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
adc_mux_averages[i] = (adc_mux_averages[i] << MUX_MIX) - adc_mux_averages[i];
adc_mux_averages[i] += (mux_averages[i] >> 4);
adc_mux_averages[i] >>= MUX_MIX;
mux_averages[i] = 0;
}
}
#endif
// av = (av << shift) - av + sample; av >>= shift
// e.g. 1 -> (av + sample) / 2 simple average of new and old
// 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new.
// 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new.
#define KEYS_AVERAGES_MIX_SHIFT 3
/** aggregate if booting, or if idle;
* else, if not booting, check for dirty USB.
* */
idle_count++;
idle_count &= IDLE_COUNT_MASK;
idle = idle && !keys_down;
if (boot_count < WARMUP_LOOPS) {
error = 0x0C;
error_data = boot_count;
boot_count++;
} else { // count >= WARMUP_LOOPS
if (usb_dirty) {
for (int i=0; i < STROBE_LINES; ++i) {
usb_keymap[i] = cur_keymap[i];
}
dumpkeys();
usb_dirty=0;
memset(((void *)keys_averages_acc), 0, (size_t)(KEY_COUNT * sizeof (uint16_t)));
keys_averages_acc_count = 0;
idle_count = 0;
idle = 0;
_delay_us(100);
}
if (!idle_count) {
if(idle) {
// aggregate
for (uint8_t i = 0; i < KEY_COUNT; ++i) {
uint16_t acc = keys_averages_acc[i] >> IDLE_COUNT_SHIFT;
uint32_t av = keys_averages[i];
av = (av << KEYS_AVERAGES_MIX_SHIFT) - av + acc;
av >>= KEYS_AVERAGES_MIX_SHIFT;
keys_averages[i] = av;
keys_averages_acc[i] = 0;
}
}
keys_averages_acc_count = 0;
if(boot_count >= WARMUP_LOOPS) {
dump();
}
sampleColumn(0x0); // to resync us if we dumped a mess 'o text.
}
}
// Return non-zero if macro and USB processing should be delayed
// Macro processing will always run if returning 0
// USB processing only happens once the USB send timer expires, if it has not, scan_loop will be called
// after the macro processing has been completed
return 0;
}
// Reset Keyboard
void scan_resetKeyboard( void )
{
// Empty buffer, now that keyboard has been reset
KeyIndex_BufferUsed = 0;
}
// Send data to keyboard
// NOTE: Only used for converters, since the scan module shouldn't handle sending data in a controller
uint8_t scan_sendData( uint8_t dataPayload )
{
return 0;
}
// Reset/Hold keyboard
// NOTE: Only used for converters, not needed for full controllers
void scan_lockKeyboard( void )
{
}
// NOTE: Only used for converters, not needed for full controllers
void scan_unlockKeyboard( void )
{
}
// Signal KeyIndex_Buffer that it has been properly read
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
void scan_finishedWithBuffer( uint8_t sentKeys )
{
// Convenient place to clear the KeyIndex_Buffer
KeyIndex_BufferUsed = 0;
return;
}
// Signal KeyIndex_Buffer that it has been properly read and sent out by the USB module
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
void scan_finishedWithUSBBuffer( uint8_t sentKeys )
{
return;
}
void _delay_loop(uint8_t __count)
{
__asm__ volatile (
"1: dec %0" "\n\t"
"brne 1b"
: "=r" (__count)
: "0" (__count)
);
}
void setup_ADC (void) {
// disable adc digital pins.
DIDR1 |= (1 << AIN0D) | (1<<AIN1D); // set disable on pins 1,0.
//DIDR0 = 0xff; // disable all. (port F, usually). - testing w/o disable.
DDRF = 0x0;
PORTF = 0x0;
uint8_t mux = 0 & 0x1f; // 0 == first. // 0x1e = 1.1V ref.
// 0 = external aref 1,1 = 2.56V internal ref
uint8_t aref = ((1 << REFS1) | (1 << REFS0)) & ((1 << REFS1) | (1 << REFS0));
// uint8_t adlar = 0xff & (1 << ADLAR); // 1 := left justify bits, 0 := right
uint8_t adate = (1 << ADATE) & (1 << ADATE); // trigger enable
uint8_t trig = 0 & ((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2)); // 0 = free running
// ps2, ps1 := /64 ( 2^6 ) ps2 := /16 (2^4), ps1 := 4, ps0 :=2, PS1,PS0 := 8 (2^8)
uint8_t prescale = ( ((PRESCALE) << PRESCALE_SHIFT) & PRESCALE_MASK ); // 001 == 2^1 == 2
uint8_t hispeed = (1 << ADHSM);
uint8_t en_mux = (1 << ACME);
//ADCSRA = (ADCSRA & ~PRESCALES) | ((1 << ADPS1) | (1 << ADPS2)); // 2, 1 := /64 ( 2^6 )
//ADCSRA = (ADCSRA & ~PRESCALES) | ((1 << ADPS0) | (1 << ADPS2)); // 2, 0 := /32 ( 2^5 )
//ADCSRA = (ADCSRA & ~PRESCALES) | ((1 << ADPS2)); // 2 := /16 ( 2^4 )
ADCSRA = (1 << ADEN) | prescale; // ADC enable
// select ref.
//ADMUX |= ((1 << REFS1) | (1 << REFS0)); // 2.56 V internal.
//ADMUX |= ((1 << REFS0) ); // Vcc with external cap.
//ADMUX &= ~((1 << REFS1) | (1 << REFS0)); // 0,0 : aref.
ADMUX = aref | mux | ADLAR_BITS;
// enable MUX
// ADCSRB |= (1 << ACME); // enable
// ADCSRB &= ~(1 << ADEN); // ?
// select first mux.
//ADMUX = (ADMUX & ~MUXES); // start at 000 = ADC0
// clear adlar to left justify data
//ADMUX = ~();
// set adlar to right justify data
//ADMUX |= (1 << ADLAR);
// set free-running
ADCSRA |= adate; // trigger enable
ADCSRB = en_mux | hispeed | trig | (ADCSRB & ~((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2))); // trigger select free running
// ADCSRA |= (1 << ADATE); // tiggger enable
ADCSRA |= (1 << ADEN); // ADC enable
ADCSRA |= (1 << ADSC); // start conversions q
}
void recovery(uint8_t on) {
DDRB |= (1 << RECOVERY_CONTROL);
PORTB &= ~(1 << RECOVERY_SINK); // SINK always zero
DDRB &= ~(1 << RECOVERY_SOURCE); // SOURCE high imp
if(on) {
// set strobes to sink to gnd.
DDRC |= C_MASK;
DDRD |= D_MASK;
DDRE |= E_MASK;
PORTC &= ~C_MASK;
PORTD &= ~D_MASK;
PORTE &= ~E_MASK;
DDRB |= (1 << RECOVERY_SINK); // SINK pull
PORTB |= (1 << RECOVERY_CONTROL);
PORTB |= (1 << RECOVERY_SOURCE); // SOURCE high
DDRB |= (1 << RECOVERY_SOURCE);
} else {
// _delay_loop(10);
PORTB &= ~(1 << RECOVERY_CONTROL);
DDRB &= ~(1 << RECOVERY_SOURCE);
PORTB &= ~(1 << RECOVERY_SOURCE); // SOURCE low
DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp
//DDRB &= ~(1 << RECOVERY_SINK);
}
}
void hold_sample(uint8_t on) {
if (!on) {
PORTB |= (1 << SAMPLE_CONTROL);
DDRB |= (1 << SAMPLE_CONTROL);
} else {
DDRB |= (1 << SAMPLE_CONTROL);
PORTB &= ~(1 << SAMPLE_CONTROL);
}
}
void strobe_w(uint8_t strobe_num) {
PORTC &= ~(C_MASK);
PORTD &= ~(D_MASK);
PORTE &= ~(E_MASK);
#ifdef SHORT_C
//strobe_num = 15 - strobe_num;
#endif
/*
printHex( strobe_num );
print(" ");
strobe_num = 9 - strobe_num;
printHex( strobe_num );
print("\n");
*/
switch(strobe_num) {
// XXX Kishsaver strobe (note that D0, D1 are not used)
case 0: PORTD |= (1 << 0); break;
case 1: PORTD |= (1 << 1); break;
case 2: PORTD |= (1 << 2); break;
case 3: PORTD |= (1 << 3); break;
case 4: PORTD |= (1 << 4); break;
case 5: PORTD |= (1 << 5); break;
// TODO REMOVEME
case 6: PORTD |= (1 << 6); break;
case 7: PORTD |= (1 << 7); break;
case 8: PORTE |= (1 << 0); break;
case 9: PORTE |= (1 << 1); break;
//case 15: PORTC |= (1 << 5); break; // Test strobe on kishsaver
#if 0
// XXX Kishsaver strobe (note that D0, D1 are not used)
case 0: PORTD |= (1 << 2); break;
case 1: PORTD |= (1 << 3); break;
case 2: PORTD |= (1 << 4); break;
case 3: PORTD |= (1 << 5); break;
// TODO REMOVEME
case 4: PORTD |= (1 << 6); break;
case 5: PORTD |= (1 << 7); break;
case 6: PORTE |= (1 << 0); break;
case 7: PORTE |= (1 << 1); break;
case 15: PORTC |= (1 << 5); break; // Test strobe on kishsaver
#endif
/*
#ifdef ALL_D
case 6: PORTD |= (1 << 6); break;
case 7: PORTD |= (1 << 7); break;
case 8: PORTC |= (1 << 0); break;
case 9: PORTC |= (1 << 1); break;
case 10: PORTC |= (1 << 2); break;
case 11: PORTC |= (1 << 3); break;
case 12: PORTC |= (1 << 4); break;
case 13: PORTC |= (1 << 5); break;
case 14: PORTC |= (1 << 6); break;
case 15: PORTC |= (1 << 7); break;
case 16: PORTE |= (1 << 0); break;
case 17: PORTE |= (1 << 1); break;
#else
#ifdef SHORT_D
case 6: PORTE |= (1 << 0); break;
case 7: PORTE |= (1 << 1); break;
case 8: PORTC |= (1 << 0); break;
case 9: PORTC |= (1 << 1); break;
case 10: PORTC |= (1 << 2); break;
case 11: PORTC |= (1 << 3); break;
case 12: PORTC |= (1 << 4); break;
case 13: PORTC |= (1 << 5); break;
case 14: PORTC |= (1 << 6); break;
case 15: PORTC |= (1 << 7); break;
#else
#ifdef SHORT_C
case 6: PORTD |= (1 << 6); break;
case 7: PORTD |= (1 << 7); break;
case 8: PORTE |= (1 << 0); break;
case 9: PORTE |= (1 << 1); break;
case 10: PORTC |= (1 << 0); break;
case 11: PORTC |= (1 << 1); break;
case 12: PORTC |= (1 << 2); break;
case 13: PORTC |= (1 << 3); break;
case 14: PORTC |= (1 << 4); break;
case 15: PORTC |= (1 << 5); break;
case 16: PORTC |= (1 << 6); break;
case 17: PORTC |= (1 << 7); break;
#endif
#endif
#endif
*/
default:
break;
}
#if 0 // New code from dfj -> still needs redoing for kishsaver and autodetection of strobes
#ifdef SHORT_C
strobe_num = 15 - strobe_num;
#endif
#ifdef SINGLE_COLUMN_TEST
strobe_num = 5;
#endif
switch(strobe_num) {
case 0: PORTD |= (1 << 0); DDRD &= ~(1 << 0); break;
case 1: PORTD |= (1 << 1); DDRD &= ~(1 << 1); break;
case 2: PORTD |= (1 << 2); DDRD &= ~(1 << 2); break;
case 3: PORTD |= (1 << 3); DDRD &= ~(1 << 3); break;
case 4: PORTD |= (1 << 4); DDRD &= ~(1 << 4); break;
case 5: PORTD |= (1 << 5); DDRD &= ~(1 << 5); break;
#ifdef ALL_D
case 6: PORTD |= (1 << 6); break;
case 7: PORTD |= (1 << 7); break;
case 8: PORTC |= (1 << 0); break;
case 9: PORTC |= (1 << 1); break;
case 10: PORTC |= (1 << 2); break;
case 11: PORTC |= (1 << 3); break;
case 12: PORTC |= (1 << 4); break;
case 13: PORTC |= (1 << 5); break;
case 14: PORTC |= (1 << 6); break;
case 15: PORTC |= (1 << 7); break;
case 16: PORTE |= (1 << 0); break;
case 17: PORTE |= (1 << 1); break;
#else
#ifdef SHORT_D
case 6: PORTE |= (1 << 0); break;
case 7: PORTE |= (1 << 1); break;
case 8: PORTC |= (1 << 0); break;
case 9: PORTC |= (1 << 1); break;
case 10: PORTC |= (1 << 2); break;
case 11: PORTC |= (1 << 3); break;
case 12: PORTC |= (1 << 4); break;
case 13: PORTC |= (1 << 5); break;
case 14: PORTC |= (1 << 6); break;
case 15: PORTC |= (1 << 7); break;
#else
#ifdef SHORT_C
case 6: PORTD |= (1 << 6); DDRD &= ~(1 << 6); break;
case 7: PORTD |= (1 << 7); DDRD &= ~(1 << 7); break;
case 8: PORTE |= (1 << 0); DDRE &= ~(1 << 0); break;
case 9: PORTE |= (1 << 1); DDRE &= ~(1 << 1); break;
case 10: PORTC |= (1 << 0); DDRC &= ~(1 << 0); break;
case 11: PORTC |= (1 << 1); DDRC &= ~(1 << 1); break;
case 12: PORTC |= (1 << 2); DDRC &= ~(1 << 2); break;
case 13: PORTC |= (1 << 3); DDRC &= ~(1 << 3); break;
case 14: PORTC |= (1 << 4); DDRC &= ~(1 << 4); break;
case 15: PORTC |= (1 << 5); DDRC &= ~(1 << 5); break;
case 16: PORTC |= (1 << 6); DDRC &= ~(1 << 6); break;
case 17: PORTC |= (1 << 7); DDRC &= ~(1 << 7); break;
#endif
#endif
#endif
default:
break;
}
#endif
}
inline uint16_t getADC() {
ADCSRA |= (1 << ADIF); // clear int flag by writing 1.
//wait for last read to complete.
while (! (ADCSRA & (1 << ADIF)));
return ADC; // return sample
}
int sampleColumn_8x(uint8_t column, uint16_t * buffer) {
// ensure all probe lines are driven low, and chill for recovery delay.
uint16_t sample;
ADCSRA |= (1 << ADEN) | (1 << ADSC); // enable and start conversions
// sync up with adc clock:
//sample = getADC();
PORTC &= ~C_MASK;
PORTD &= ~D_MASK;
PORTE &= ~E_MASK;
PORTF = 0;
DDRF = 0;
recovery(OFF);
strobe_w(column);
hold_sample(OFF);
SET_FULL_MUX(0);
for(uint8_t i=0; i < STROBE_SETTLE; ++i) {
sample = getADC();
}
hold_sample(ON);
#undef MUX_SETTLE
#if (MUX_SETTLE)
for(uint8_t mux=0; mux < 8; ++mux) {
SET_FULL_MUX(mux); // our sample will use this
// wait for mux to settle.
for(uint8_t i=0; i < MUX_SETTLE; ++i) {
sample = getADC();
}
// retrieve current read.
buffer[mux] = getADC();// - OFFSET_VOLTAGE;
}
#else
uint8_t mux=0;
SET_FULL_MUX(mux);
sample = getADC(); // throw away; unknown mux.
do {
SET_FULL_MUX(mux + 1); // our *next* sample will use this
// retrieve current read.
buffer[mux] = getADC();// - OFFSET_VOLTAGE;
mux++;
} while (mux < 8);
#endif
hold_sample(OFF);
recovery(ON);
// turn off adc.
ADCSRA &= ~(1 << ADEN);
// pull all columns' strobe-lines low.
DDRC |= C_MASK;
DDRD |= D_MASK;
DDRE |= E_MASK;
PORTC &= ~C_MASK;
PORTD &= ~D_MASK;
PORTE &= ~E_MASK;
return 0;
}
int sampleColumn(uint8_t column) {
int rval = 0;
rval = sampleColumn_8x(column, samples+SAMPLE_OFFSET);
#if (BUMP_DETECTION)
for(uint8_t i=0; i<8; ++i) {
if(samples[SAMPLE_OFFSET + i] - adc_mux_averages[i] > BUMP_THRESHOLD) {
// was a hump
_delay_us(BUMP_REST_US);
rval++;
error = 0x50;
error_data = samples[SAMPLE_OFFSET +i]; // | ((uint16_t)i << 8);
return rval;
}
}
#endif
return rval;
}
uint8_t testColumn(uint8_t strobe)
{
uint8_t column = 0;
uint8_t bit = 1;
for (uint8_t i = 0; i < MUXES_COUNT; ++i)
{
uint16_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + i];
if ((db_sample = samples[SAMPLE_OFFSET + i] >> 1) > (db_threshold = threshold) + (db_delta = delta))
{
column |= bit;
}
#ifdef THRESHOLD_VERIFICATION
if ( db_sample > 0xA0 )
{
printHex( db_sample );
print(" : ");
printHex( db_threshold );
print(" : ");
printHex( db_delta );
print(" :: ");
printHex( column );
print(" : ");
printHex( strobe );
print(NL);
}
#endif
bit <<= 1;
}
return column;
}
void dumpkeys(void) {
//print(" \n");
if(error) {
/*
if (count >= WARMUP_LOOPS && error) {
dump();
}
*/
// Key scan debug
for (uint8_t i=0; i < STROBE_LINES; ++i) {
printHex(usb_keymap[i]);
print(" ");
}
print(" : ");
printHex(error);
error = 0;
print(" : ");
printHex(error_data);
error_data = 0;
print(" : " NL);
}
// XXX Will be cleaned up eventually, but this will do for now :P -HaaTa
for (uint8_t i=0; i < STROBE_LINES; ++i) {
for(uint8_t j=0; j<MUXES_COUNT; ++j) {
if ( usb_keymap[i] & (1 << j) ) {
uint8_t key = (i << MUXES_COUNT_XSHIFT) + j;
// Add to the Macro processing buffer
// Automatically handles converting to a USB code and sending off to the PC
//bufferAdd( key );
if(usb_dirty)
{
printHex( key );
print("\n");
}
}
}
}
//if(usb_dirty) print("\n");
usb_keyboard_send();
}
void dump(void) {
//#define DEBUG_FULL_SAMPLES_AVERAGES
#ifdef DEBUG_FULL_SAMPLES_AVERAGES
if(!dump_count) { // we don't want to debug-out during the measurements.
// Averages currently set per key
for(int i =0; i< KEY_COUNT; ++i) {
if(!(i & 0x0f)) {
print("\n");
} else if (!(i & 0x07)) {
print(" ");
}
print(" ");
printHex (keys_averages[i]);
}
print("\n");
// Previously read full ADC scans?
for(int i =0; i< KEY_COUNT; ++i) {
if(!(i & 0x0f)) {
print("\n");
} else if (!(i & 0x07)) {
print(" ");
}
print(" ");
printHex(full_samples[i]);
}
}
#endif
#ifdef DEBUG_STROBE_SAMPLES_AVERAGES
// Per strobe information
uint8_t cur_strober = ze_strober;
print("\n");
printHex(cur_strober);
// Previously read ADC scans on current strobe
print(" :");
for (uint8_t i=0; i < MUXES_COUNT; ++i) {
print(" ");
printHex(full_samples[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
}
// Averages current set on current strobe
print(" :");
for (uint8_t i=0; i < MUXES_COUNT; ++i) {
print(" ");
printHex(keys_averages[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
}
#endif
//#define DEBUG_DELTA_SAMPLE_THRESHOLD
#ifdef DEBUG_DELTA_SAMPLE_THRESHOLD
print("\n");
//uint16_t db_delta = 0;
//uint16_t db_sample = 0;
//uint16_t db_threshold = 0;
printHex( db_delta );
print(" ");
printHex( db_sample );
print(" ");
printHex( db_threshold );
print(" ");
printHex( column );
#endif
//#define DEBUG_USB_KEYMAP
#ifdef DEBUG_USB_KEYMAP
print("\n ");
// Current keymap values
for (uint8_t i=0; i < STROBE_LINES; ++i) {
printHex(cur_keymap[i]);
print(" ");
}
#endif
ze_strober++;
ze_strober &= 0xf;
dump_count++;
dump_count &= 0x0f;
}