1153 lines
25 KiB
C
1153 lines
25 KiB
C
/* Copyright (C) 2011-2013 by Joseph Makuch
|
|
* Additions by Jacob Alexander (2013)
|
|
*
|
|
* dfj, put whatever license here you want -HaaTa
|
|
*/
|
|
|
|
// ----- Includes -----
|
|
|
|
// Compiler Includes
|
|
#include <Lib/ScanLib.h>
|
|
|
|
// Project Includes
|
|
#include <led.h>
|
|
#include <print.h>
|
|
|
|
// Local Includes
|
|
#include "scan_loop.h"
|
|
|
|
|
|
|
|
// ----- Defines -----
|
|
|
|
// TODO dfj defines...needs cleaning up and commenting...
|
|
#define LED_CONFIG (DDRD |= (1<<6))
|
|
#define LED_ON (PORTD &= ~(1<<6))
|
|
#define LED_OFF (PORTD |= (1<<6))
|
|
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
|
|
|
|
#define MAX_PRESS_DELTA_MV 470
|
|
#define THRESHOLD_MV (MAX_PRESS_DELTA_MV >> 1)
|
|
//(2560 / (0x3ff/2)) ~= 5
|
|
#define MV_PER_ADC 5
|
|
// 5
|
|
|
|
#define THRESHOLD (THRESHOLD_MV / MV_PER_ADC)
|
|
|
|
#define BUMP_DETECTION 0
|
|
#define BUMP_THRESHOLD 0x50
|
|
//((THRESHOLD) * 3)
|
|
#define BUMP_REST_US 1200
|
|
|
|
#define STROBE_SETTLE 1
|
|
#define MUX_SETTLE 1
|
|
|
|
#define HYST 1
|
|
#define HYST_T 0x10
|
|
|
|
#define TEST_KEY_STROBE (0x05)
|
|
#define TEST_KEY_MASK (1 << 0)
|
|
|
|
#define ADHSM 7
|
|
|
|
/** Whether to use all of D and C, vs using E0, E1 instead of D6, D7,
|
|
* or alternately all of D, and E0,E1 and C0,..5 */
|
|
//#define ALL_D_C
|
|
//#define SHORT_D
|
|
#define SHORT_C
|
|
|
|
// rough offset voltage: one diode drop, about 50mV = 0x3ff * 50/3560 = 20
|
|
//#define OFFSET_VOLTAGE 0x14
|
|
//#define OFFSET_VOLTAGE 0x28
|
|
|
|
|
|
#define RIGHT_JUSTIFY 0
|
|
#define LEFT_JUSTIFY (0xff)
|
|
|
|
// set left or right justification here:
|
|
#define JUSTIFY_ADC RIGHT_JUSTIFY
|
|
|
|
#define ADLAR_MASK (1 << ADLAR)
|
|
#ifdef JUSTIFY_ADC
|
|
#define ADLAR_BITS ((ADLAR_MASK) & (JUSTIFY_ADC))
|
|
#else // defaults to right justification.
|
|
#define ADLAR_BITS 0
|
|
#endif
|
|
|
|
|
|
// full muxmask
|
|
#define FULL_MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2) | (1 << MUX3) | (1 << MUX4))
|
|
|
|
// F0-f7 pins only muxmask.
|
|
#define MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2))
|
|
|
|
#define SET_MUX(X) ((ADMUX) = (((ADMUX) & ~(MUX_MASK)) | ((X) & (MUX_MASK))))
|
|
#define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))
|
|
|
|
#define MUX_1_1 0x1e
|
|
#define MUX_GND 0x1f
|
|
|
|
|
|
// set ADC clock prescale
|
|
#define PRESCALE_MASK ((1 << ADPS0) | (1 << ADPS1) | (1 << ADPS2))
|
|
#define PRESCALE_SHIFT (ADPS0)
|
|
#define PRESCALE 3
|
|
|
|
|
|
#ifdef EXTENDED_STROBE
|
|
|
|
#define STROBE_LINES 18
|
|
|
|
#else
|
|
|
|
#define STROBE_LINES 16
|
|
|
|
#endif
|
|
|
|
#define STROBE_LINES_XSHIFT 4
|
|
#define STROBE_LINES_MASK 0x0f
|
|
#define MUXES_COUNT 8
|
|
#define MUXES_COUNT_XSHIFT 3
|
|
#define MUXES_MASK 0x7
|
|
|
|
#define WARMUP_LOOPS ( 1024 )
|
|
|
|
#define RECOVERY_US 2
|
|
|
|
#define SAMPLES 10
|
|
|
|
|
|
#define SAMPLE_OFFSET ((SAMPLES) - MUXES_COUNT)
|
|
//#define SAMPLE_OFFSET 9
|
|
#define STROBE_OFFSET 0
|
|
|
|
#define SAMPLE_CONTROL 3
|
|
|
|
//#define DEFAULT_KEY_BASE 0xc8
|
|
#define DEFAULT_KEY_BASE 0x95
|
|
|
|
#define KEY_COUNT ((STROBE_LINES) * (MUXES_COUNT))
|
|
|
|
#define LX2FX
|
|
|
|
|
|
#define RECOVERY_CONTROL 1
|
|
|
|
#define RECOVERY_SOURCE 0
|
|
#define RECOVERY_SINK 2
|
|
#define RECOVERY_MASK 0x03
|
|
|
|
#define ON 1
|
|
#define OFF 0
|
|
|
|
|
|
// mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
|
|
#define MUX_MIX 2
|
|
|
|
|
|
#define IDLE_COUNT_MASK 0xff
|
|
#define IDLE_COUNT_MAX (IDLE_COUNT_MASK + 1)
|
|
#define IDLE_COUNT_SHIFT 8
|
|
|
|
#define KEYS_AVERAGES_MIX 2
|
|
|
|
|
|
#ifdef ALL_D_C
|
|
|
|
#define D_MASK (0xff)
|
|
#define D_SHIFT 0
|
|
|
|
#define E_MASK (0x00)
|
|
#define E_SHIFT 0
|
|
|
|
#define C_MASK (0xff)
|
|
#define C_SHIFT 8
|
|
|
|
#else
|
|
#if defined(SHORT_D)
|
|
|
|
#define D_MASK (0x3f)
|
|
#define D_SHIFT 0
|
|
|
|
#define E_MASK (0x03)
|
|
#define E_SHIFT 6
|
|
|
|
#define C_MASK (0xff)
|
|
#define C_SHIFT 8
|
|
|
|
#else
|
|
#if defined(SHORT_C)
|
|
|
|
#define D_MASK (0xff)
|
|
#define D_SHIFT 0
|
|
|
|
#define E_MASK (0x03)
|
|
#define E_SHIFT 6
|
|
|
|
#define C_MASK (0xff)
|
|
#define C_SHIFT 8
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// ----- Macros -----
|
|
|
|
// Make sure we haven't overflowed the buffer
|
|
#define bufferAdd(byte) \
|
|
if ( KeyIndex_BufferUsed < KEYBOARD_BUFFER ) \
|
|
KeyIndex_Buffer[KeyIndex_BufferUsed++] = byte
|
|
|
|
|
|
// TODO dfj macros...needs cleaning up and commenting...
|
|
#define STROBE_CASE(SC_CASE, SC_REG_A) case (SC_CASE): PORT##SC_REG_A = \
|
|
(( (PORT##SC_REG_A) & ~(1 << (SC_CASE - SC_REG_A##_SHIFT)) ) | (1 << (SC_CASE - SC_REG_A##_SHIFT)))
|
|
|
|
#define SET_MUX(X) ((ADMUX) = (((ADMUX) & ~(MUX_MASK)) | ((X) & (MUX_MASK))))
|
|
#define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))
|
|
|
|
|
|
|
|
|
|
|
|
// ----- Variables -----
|
|
|
|
// Buffer used to inform the macro processing module which keys have been detected as pressed
|
|
volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
|
|
volatile uint8_t KeyIndex_BufferUsed;
|
|
|
|
|
|
// TODO dfj variables...needs cleaning up and commenting
|
|
uint8_t blink = 0;
|
|
volatile uint16_t full_av = 0;
|
|
|
|
/**/ uint8_t ze_strober = 0;
|
|
|
|
uint16_t samples [SAMPLES];
|
|
|
|
//int16_t gsamples [SAMPLES];
|
|
|
|
int16_t adc_mux_averages[MUXES_COUNT];
|
|
int16_t adc_strobe_averages[STROBE_LINES];
|
|
|
|
|
|
uint8_t cur_keymap[STROBE_LINES];
|
|
// /**/ int8_t last_keymap[STROBE_LINES];
|
|
uint8_t usb_keymap[STROBE_LINES];
|
|
uint16_t keys_down=0;
|
|
|
|
uint8_t dirty;
|
|
uint8_t unstable;
|
|
uint8_t usb_dirty;
|
|
|
|
uint16_t threshold = 0x25; // HaaTa Hack -TODO
|
|
//uint16_t threshold = 0x16; // HaaTa Hack -TODO
|
|
//uint16_t threshold = THRESHOLD;
|
|
uint16_t tests = 0;
|
|
|
|
uint8_t col_a=0;
|
|
uint8_t col_b=0;
|
|
uint8_t col_c=0;
|
|
|
|
uint8_t column=0;
|
|
|
|
|
|
uint16_t keys_averages_acc[KEY_COUNT];
|
|
uint16_t keys_averages[KEY_COUNT];
|
|
uint16_t keys_averages_acc_count=0;
|
|
|
|
uint8_t full_samples[KEY_COUNT];
|
|
|
|
// 0x9f...f
|
|
// #define COUNT_MASK 0x9fff
|
|
// #define COUNT_HIGH_BIT (INT16_MIN)
|
|
// TODO: change this to 'booting', then count down.
|
|
uint16_t boot_count = 0;
|
|
|
|
uint16_t idle_count=0;
|
|
uint8_t idle = 1;
|
|
|
|
uint16_t count = 0;
|
|
|
|
uint8_t error = 0;
|
|
uint16_t error_data = 0;
|
|
|
|
|
|
int16_t mux_averages[MUXES_COUNT];
|
|
int16_t strobe_averages[STROBE_LINES];
|
|
|
|
uint8_t dump_count = 0;
|
|
|
|
|
|
//uint8_t column =0;
|
|
uint16_t db_delta = 0;
|
|
uint8_t db_sample = 0;
|
|
uint16_t db_threshold = 0;
|
|
|
|
|
|
|
|
// ----- Function Declarations -----
|
|
|
|
void dump ( void );
|
|
void dumpkeys( void );
|
|
|
|
void recovery( uint8_t on );
|
|
|
|
int sampleColumn( uint8_t column );
|
|
|
|
void setup_ADC( void );
|
|
|
|
void strobe_w( uint8_t strobe_num );
|
|
|
|
uint8_t testColumn( uint8_t strobe );
|
|
|
|
|
|
|
|
// ----- Functions -----
|
|
|
|
// Initial setup for cap sense controller
|
|
inline void scan_setup()
|
|
{
|
|
// TODO dfj code...needs cleanup + commenting...
|
|
setup_ADC();
|
|
|
|
DDRC = C_MASK;
|
|
PORTC = 0;
|
|
DDRD = D_MASK;
|
|
PORTD = 0;
|
|
DDRE = E_MASK;
|
|
PORTE = 0 ;
|
|
|
|
//DDRC |= (1 << 6);
|
|
//PORTC &= ~(1<< 6);
|
|
|
|
//uint16_t strobe = 1;
|
|
|
|
|
|
// TODO all this code should probably be in scan_resetKeyboard
|
|
for (int i=0; i < STROBE_LINES; ++i) {
|
|
cur_keymap[i] = 0;
|
|
//last_keymap[i] = 0;
|
|
usb_keymap[i] = 0;
|
|
}
|
|
|
|
for(int i=0; i < MUXES_COUNT; ++i) {
|
|
adc_mux_averages[i] = 0x20; // experimentally determined.
|
|
}
|
|
for(int i=0; i < STROBE_LINES; ++i) {
|
|
adc_strobe_averages[i] = 0x20; // yup.
|
|
}
|
|
|
|
for(int i=0; i < KEY_COUNT; ++i) {
|
|
keys_averages[i] = DEFAULT_KEY_BASE;
|
|
keys_averages_acc[i] = (DEFAULT_KEY_BASE);
|
|
}
|
|
|
|
/** warm things up a bit before we start collecting data, taking real samples. */
|
|
for(uint8_t i = 0; i < STROBE_LINES; ++i) {
|
|
sampleColumn(i);
|
|
}
|
|
|
|
|
|
// Reset the keyboard before scanning, we might be in a wierd state
|
|
// Also sets the KeyIndex_BufferUsed to 0
|
|
scan_resetKeyboard();
|
|
}
|
|
|
|
|
|
// Main Detection Loop
|
|
// This is where the important stuff happens
|
|
inline uint8_t scan_loop()
|
|
{
|
|
// TODO dfj code...needs commenting + cleanup...
|
|
uint8_t strober = 0;
|
|
uint32_t full_av_acc = 0;
|
|
|
|
for (strober = 0; strober < STROBE_LINES; ++strober) {
|
|
|
|
uint8_t tries;
|
|
tries = 1;
|
|
while (tries++ && sampleColumn(strober)) { tries &= 0x7; } // don't waste this one just because the last one was poop.
|
|
column = testColumn(strober);
|
|
|
|
idle |= column; // if column has any pressed keys, then we are not idle.
|
|
|
|
if( column != cur_keymap[strober] && (boot_count >= WARMUP_LOOPS) ) {
|
|
tests++;
|
|
|
|
cur_keymap[strober] = column;
|
|
usb_dirty = 1;
|
|
}
|
|
|
|
idle |= usb_dirty; // if any keys have changed inc. released, then we are not idle.
|
|
|
|
if(error == 0x50) {
|
|
error_data |= (((uint16_t)strober) << 12);
|
|
}
|
|
|
|
uint8_t strobe_line = strober << MUXES_COUNT_XSHIFT;
|
|
for(int i=0; i<MUXES_COUNT; ++i) {
|
|
// discard sketchy low bit, and meaningless high bits.
|
|
uint8_t sample = samples[SAMPLE_OFFSET + i] >> 1;
|
|
full_samples[strobe_line + i] = sample;
|
|
keys_averages_acc[strobe_line + i] += sample;
|
|
}
|
|
keys_averages_acc_count++;
|
|
|
|
strobe_averages[strober] = 0;
|
|
for (uint8_t i = SAMPLE_OFFSET; i < (SAMPLE_OFFSET + MUXES_COUNT); ++i) {
|
|
//samples[i] -= samples[i-SAMPLE_OFFSET]; // av; // + full_av); // -something.
|
|
//samples[i] -= OFFSET_VOLTAGE; // moved to sampleColumn.
|
|
|
|
full_av_acc += (samples[i]);
|
|
#ifdef COLLECT_STROBE_AVERAGES
|
|
mux_averages[i - SAMPLE_OFFSET] += samples[i];
|
|
strobe_averages[strober] += samples[i];
|
|
#endif
|
|
//samples[i] -= (full_av - HYST_T);
|
|
|
|
//++count;
|
|
}
|
|
|
|
#ifdef COLLECT_STROBE_AVERAGES
|
|
adc_strobe_averages[strober] += strobe_averages[strober] >> 3;
|
|
adc_strobe_averages[strober] >>= 1;
|
|
|
|
/** test if we went negative. */
|
|
if ((adc_strobe_averages[strober] & 0xFF00) && (boot_count
|
|
>= WARMUP_LOOPS)) {
|
|
error = 0xf; error_data = adc_strobe_averages[strober];
|
|
}
|
|
#endif
|
|
} // for strober
|
|
|
|
#ifdef VERIFY_TEST_PAD
|
|
// verify test key is not down.
|
|
if((cur_keymap[TEST_KEY_STROBE] & TEST_KEY_MASK) ) {
|
|
//count=0;
|
|
error = 0x05;
|
|
error_data = cur_keymap[TEST_KEY_STROBE] << 8;
|
|
error_data += full_samples[TEST_KEY_STROBE * 8];
|
|
//threshold++;
|
|
}
|
|
#endif
|
|
|
|
#ifdef COLLECT_STROBE_AVERAGES
|
|
// calc mux averages.
|
|
if (boot_count < WARMUP_LOOPS) {
|
|
full_av += (full_av_acc >> (7));
|
|
full_av >>= 1;
|
|
//full_av = full_av_acc / count;
|
|
full_av_acc = 0;
|
|
|
|
for (int i=0; i < MUXES_COUNT; ++i) {
|
|
#define MUX_MIX 2 // mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
|
|
adc_mux_averages[i] = (adc_mux_averages[i] << MUX_MIX) - adc_mux_averages[i];
|
|
adc_mux_averages[i] += (mux_averages[i] >> 4);
|
|
adc_mux_averages[i] >>= MUX_MIX;
|
|
|
|
mux_averages[i] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// av = (av << shift) - av + sample; av >>= shift
|
|
// e.g. 1 -> (av + sample) / 2 simple average of new and old
|
|
// 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new.
|
|
// 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new.
|
|
#define KEYS_AVERAGES_MIX_SHIFT 3
|
|
|
|
/** aggregate if booting, or if idle;
|
|
* else, if not booting, check for dirty USB.
|
|
* */
|
|
|
|
idle_count++;
|
|
idle_count &= IDLE_COUNT_MASK;
|
|
|
|
idle = idle && !keys_down;
|
|
|
|
if (boot_count < WARMUP_LOOPS) {
|
|
error = 0x0C;
|
|
error_data = boot_count;
|
|
boot_count++;
|
|
} else { // count >= WARMUP_LOOPS
|
|
if (usb_dirty) {
|
|
for (int i=0; i < STROBE_LINES; ++i) {
|
|
usb_keymap[i] = cur_keymap[i];
|
|
}
|
|
|
|
dumpkeys();
|
|
usb_dirty=0;
|
|
memset(((void *)keys_averages_acc), 0, (size_t)(KEY_COUNT * sizeof (uint16_t)));
|
|
keys_averages_acc_count = 0;
|
|
idle_count = 0;
|
|
idle = 0;
|
|
_delay_us(100);
|
|
}
|
|
|
|
if (!idle_count) {
|
|
if(idle) {
|
|
// aggregate
|
|
for (uint8_t i = 0; i < KEY_COUNT; ++i) {
|
|
uint16_t acc = keys_averages_acc[i] >> IDLE_COUNT_SHIFT;
|
|
uint32_t av = keys_averages[i];
|
|
|
|
av = (av << KEYS_AVERAGES_MIX_SHIFT) - av + acc;
|
|
av >>= KEYS_AVERAGES_MIX_SHIFT;
|
|
|
|
keys_averages[i] = av;
|
|
keys_averages_acc[i] = 0;
|
|
}
|
|
}
|
|
keys_averages_acc_count = 0;
|
|
|
|
if(boot_count >= WARMUP_LOOPS) {
|
|
dump();
|
|
}
|
|
|
|
sampleColumn(0x0); // to resync us if we dumped a mess 'o text.
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// Return non-zero if macro and USB processing should be delayed
|
|
// Macro processing will always run if returning 0
|
|
// USB processing only happens once the USB send timer expires, if it has not, scan_loop will be called
|
|
// after the macro processing has been completed
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Reset Keyboard
|
|
void scan_resetKeyboard( void )
|
|
{
|
|
// Empty buffer, now that keyboard has been reset
|
|
KeyIndex_BufferUsed = 0;
|
|
}
|
|
|
|
|
|
// Send data to keyboard
|
|
// NOTE: Only used for converters, since the scan module shouldn't handle sending data in a controller
|
|
uint8_t scan_sendData( uint8_t dataPayload )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Reset/Hold keyboard
|
|
// NOTE: Only used for converters, not needed for full controllers
|
|
void scan_lockKeyboard( void )
|
|
{
|
|
}
|
|
|
|
// NOTE: Only used for converters, not needed for full controllers
|
|
void scan_unlockKeyboard( void )
|
|
{
|
|
}
|
|
|
|
|
|
// Signal KeyIndex_Buffer that it has been properly read
|
|
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
|
|
void scan_finishedWithBuffer( uint8_t sentKeys )
|
|
{
|
|
// Convenient place to clear the KeyIndex_Buffer
|
|
KeyIndex_BufferUsed = 0;
|
|
return;
|
|
}
|
|
|
|
|
|
// Signal KeyIndex_Buffer that it has been properly read and sent out by the USB module
|
|
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
|
|
void scan_finishedWithUSBBuffer( uint8_t sentKeys )
|
|
{
|
|
return;
|
|
}
|
|
|
|
|
|
void _delay_loop(uint8_t __count)
|
|
{
|
|
__asm__ volatile (
|
|
"1: dec %0" "\n\t"
|
|
"brne 1b"
|
|
: "=r" (__count)
|
|
: "0" (__count)
|
|
);
|
|
}
|
|
|
|
|
|
void setup_ADC (void) {
|
|
// disable adc digital pins.
|
|
DIDR1 |= (1 << AIN0D) | (1<<AIN1D); // set disable on pins 1,0.
|
|
//DIDR0 = 0xff; // disable all. (port F, usually). - testing w/o disable.
|
|
DDRF = 0x0;
|
|
PORTF = 0x0;
|
|
uint8_t mux = 0 & 0x1f; // 0 == first. // 0x1e = 1.1V ref.
|
|
|
|
// 0 = external aref 1,1 = 2.56V internal ref
|
|
uint8_t aref = ((1 << REFS1) | (1 << REFS0)) & ((1 << REFS1) | (1 << REFS0));
|
|
// uint8_t adlar = 0xff & (1 << ADLAR); // 1 := left justify bits, 0 := right
|
|
uint8_t adate = (1 << ADATE) & (1 << ADATE); // trigger enable
|
|
uint8_t trig = 0 & ((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2)); // 0 = free running
|
|
// ps2, ps1 := /64 ( 2^6 ) ps2 := /16 (2^4), ps1 := 4, ps0 :=2, PS1,PS0 := 8 (2^8)
|
|
uint8_t prescale = ( ((PRESCALE) << PRESCALE_SHIFT) & PRESCALE_MASK ); // 001 == 2^1 == 2
|
|
uint8_t hispeed = (1 << ADHSM);
|
|
uint8_t en_mux = (1 << ACME);
|
|
|
|
//ADCSRA = (ADCSRA & ~PRESCALES) | ((1 << ADPS1) | (1 << ADPS2)); // 2, 1 := /64 ( 2^6 )
|
|
//ADCSRA = (ADCSRA & ~PRESCALES) | ((1 << ADPS0) | (1 << ADPS2)); // 2, 0 := /32 ( 2^5 )
|
|
//ADCSRA = (ADCSRA & ~PRESCALES) | ((1 << ADPS2)); // 2 := /16 ( 2^4 )
|
|
|
|
ADCSRA = (1 << ADEN) | prescale; // ADC enable
|
|
|
|
// select ref.
|
|
//ADMUX |= ((1 << REFS1) | (1 << REFS0)); // 2.56 V internal.
|
|
//ADMUX |= ((1 << REFS0) ); // Vcc with external cap.
|
|
//ADMUX &= ~((1 << REFS1) | (1 << REFS0)); // 0,0 : aref.
|
|
ADMUX = aref | mux | ADLAR_BITS;
|
|
|
|
// enable MUX
|
|
// ADCSRB |= (1 << ACME); // enable
|
|
// ADCSRB &= ~(1 << ADEN); // ?
|
|
|
|
// select first mux.
|
|
//ADMUX = (ADMUX & ~MUXES); // start at 000 = ADC0
|
|
|
|
// clear adlar to left justify data
|
|
//ADMUX = ~();
|
|
|
|
// set adlar to right justify data
|
|
//ADMUX |= (1 << ADLAR);
|
|
|
|
|
|
// set free-running
|
|
ADCSRA |= adate; // trigger enable
|
|
ADCSRB = en_mux | hispeed | trig | (ADCSRB & ~((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2))); // trigger select free running
|
|
|
|
// ADCSRA |= (1 << ADATE); // tiggger enable
|
|
|
|
ADCSRA |= (1 << ADEN); // ADC enable
|
|
ADCSRA |= (1 << ADSC); // start conversions q
|
|
}
|
|
|
|
|
|
void recovery(uint8_t on) {
|
|
DDRB |= (1 << RECOVERY_CONTROL);
|
|
|
|
PORTB &= ~(1 << RECOVERY_SINK); // SINK always zero
|
|
DDRB &= ~(1 << RECOVERY_SOURCE); // SOURCE high imp
|
|
|
|
if(on) {
|
|
// set strobes to sink to gnd.
|
|
DDRC |= C_MASK;
|
|
DDRD |= D_MASK;
|
|
DDRE |= E_MASK;
|
|
|
|
PORTC &= ~C_MASK;
|
|
PORTD &= ~D_MASK;
|
|
PORTE &= ~E_MASK;
|
|
|
|
DDRB |= (1 << RECOVERY_SINK); // SINK pull
|
|
|
|
PORTB |= (1 << RECOVERY_CONTROL);
|
|
|
|
PORTB |= (1 << RECOVERY_SOURCE); // SOURCE high
|
|
DDRB |= (1 << RECOVERY_SOURCE);
|
|
} else {
|
|
// _delay_loop(10);
|
|
PORTB &= ~(1 << RECOVERY_CONTROL);
|
|
|
|
DDRB &= ~(1 << RECOVERY_SOURCE);
|
|
PORTB &= ~(1 << RECOVERY_SOURCE); // SOURCE low
|
|
DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp
|
|
|
|
//DDRB &= ~(1 << RECOVERY_SINK);
|
|
}
|
|
}
|
|
|
|
|
|
void hold_sample(uint8_t on) {
|
|
if (!on) {
|
|
PORTB |= (1 << SAMPLE_CONTROL);
|
|
DDRB |= (1 << SAMPLE_CONTROL);
|
|
} else {
|
|
DDRB |= (1 << SAMPLE_CONTROL);
|
|
PORTB &= ~(1 << SAMPLE_CONTROL);
|
|
}
|
|
}
|
|
|
|
|
|
void strobe_w(uint8_t strobe_num) {
|
|
|
|
PORTC &= ~(C_MASK);
|
|
PORTD &= ~(D_MASK);
|
|
PORTE &= ~(E_MASK);
|
|
|
|
#ifdef SHORT_C
|
|
//strobe_num = 15 - strobe_num;
|
|
#endif
|
|
/*
|
|
printHex( strobe_num );
|
|
print(" ");
|
|
strobe_num = 9 - strobe_num;
|
|
printHex( strobe_num );
|
|
print("\n");
|
|
*/
|
|
|
|
switch(strobe_num) {
|
|
|
|
// XXX Kishsaver strobe (note that D0, D1 are not used)
|
|
case 0: PORTD |= (1 << 0); break;
|
|
case 1: PORTD |= (1 << 1); break;
|
|
case 2: PORTD |= (1 << 2); break;
|
|
case 3: PORTD |= (1 << 3); break;
|
|
case 4: PORTD |= (1 << 4); break;
|
|
case 5: PORTD |= (1 << 5); break;
|
|
|
|
// TODO REMOVEME
|
|
case 6: PORTD |= (1 << 6); break;
|
|
case 7: PORTD |= (1 << 7); break;
|
|
case 8: PORTE |= (1 << 0); break;
|
|
case 9: PORTE |= (1 << 1); break;
|
|
//case 15: PORTC |= (1 << 5); break; // Test strobe on kishsaver
|
|
|
|
#if 0
|
|
// XXX Kishsaver strobe (note that D0, D1 are not used)
|
|
case 0: PORTD |= (1 << 2); break;
|
|
case 1: PORTD |= (1 << 3); break;
|
|
case 2: PORTD |= (1 << 4); break;
|
|
case 3: PORTD |= (1 << 5); break;
|
|
|
|
// TODO REMOVEME
|
|
case 4: PORTD |= (1 << 6); break;
|
|
case 5: PORTD |= (1 << 7); break;
|
|
case 6: PORTE |= (1 << 0); break;
|
|
case 7: PORTE |= (1 << 1); break;
|
|
case 15: PORTC |= (1 << 5); break; // Test strobe on kishsaver
|
|
#endif
|
|
/*
|
|
#ifdef ALL_D
|
|
|
|
case 6: PORTD |= (1 << 6); break;
|
|
case 7: PORTD |= (1 << 7); break;
|
|
|
|
case 8: PORTC |= (1 << 0); break;
|
|
case 9: PORTC |= (1 << 1); break;
|
|
case 10: PORTC |= (1 << 2); break;
|
|
case 11: PORTC |= (1 << 3); break;
|
|
case 12: PORTC |= (1 << 4); break;
|
|
case 13: PORTC |= (1 << 5); break;
|
|
case 14: PORTC |= (1 << 6); break;
|
|
case 15: PORTC |= (1 << 7); break;
|
|
|
|
case 16: PORTE |= (1 << 0); break;
|
|
case 17: PORTE |= (1 << 1); break;
|
|
|
|
#else
|
|
#ifdef SHORT_D
|
|
|
|
case 6: PORTE |= (1 << 0); break;
|
|
case 7: PORTE |= (1 << 1); break;
|
|
|
|
case 8: PORTC |= (1 << 0); break;
|
|
case 9: PORTC |= (1 << 1); break;
|
|
case 10: PORTC |= (1 << 2); break;
|
|
case 11: PORTC |= (1 << 3); break;
|
|
case 12: PORTC |= (1 << 4); break;
|
|
case 13: PORTC |= (1 << 5); break;
|
|
case 14: PORTC |= (1 << 6); break;
|
|
case 15: PORTC |= (1 << 7); break;
|
|
|
|
#else
|
|
#ifdef SHORT_C
|
|
|
|
case 6: PORTD |= (1 << 6); break;
|
|
case 7: PORTD |= (1 << 7); break;
|
|
|
|
case 8: PORTE |= (1 << 0); break;
|
|
case 9: PORTE |= (1 << 1); break;
|
|
|
|
case 10: PORTC |= (1 << 0); break;
|
|
case 11: PORTC |= (1 << 1); break;
|
|
case 12: PORTC |= (1 << 2); break;
|
|
case 13: PORTC |= (1 << 3); break;
|
|
case 14: PORTC |= (1 << 4); break;
|
|
case 15: PORTC |= (1 << 5); break;
|
|
|
|
case 16: PORTC |= (1 << 6); break;
|
|
case 17: PORTC |= (1 << 7); break;
|
|
|
|
#endif
|
|
#endif
|
|
#endif
|
|
*/
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
|
|
#if 0 // New code from dfj -> still needs redoing for kishsaver and autodetection of strobes
|
|
#ifdef SHORT_C
|
|
strobe_num = 15 - strobe_num;
|
|
#endif
|
|
|
|
#ifdef SINGLE_COLUMN_TEST
|
|
strobe_num = 5;
|
|
#endif
|
|
|
|
switch(strobe_num) {
|
|
|
|
case 0: PORTD |= (1 << 0); DDRD &= ~(1 << 0); break;
|
|
case 1: PORTD |= (1 << 1); DDRD &= ~(1 << 1); break;
|
|
case 2: PORTD |= (1 << 2); DDRD &= ~(1 << 2); break;
|
|
case 3: PORTD |= (1 << 3); DDRD &= ~(1 << 3); break;
|
|
case 4: PORTD |= (1 << 4); DDRD &= ~(1 << 4); break;
|
|
case 5: PORTD |= (1 << 5); DDRD &= ~(1 << 5); break;
|
|
|
|
#ifdef ALL_D
|
|
|
|
case 6: PORTD |= (1 << 6); break;
|
|
case 7: PORTD |= (1 << 7); break;
|
|
|
|
case 8: PORTC |= (1 << 0); break;
|
|
case 9: PORTC |= (1 << 1); break;
|
|
case 10: PORTC |= (1 << 2); break;
|
|
case 11: PORTC |= (1 << 3); break;
|
|
case 12: PORTC |= (1 << 4); break;
|
|
case 13: PORTC |= (1 << 5); break;
|
|
case 14: PORTC |= (1 << 6); break;
|
|
case 15: PORTC |= (1 << 7); break;
|
|
|
|
case 16: PORTE |= (1 << 0); break;
|
|
case 17: PORTE |= (1 << 1); break;
|
|
|
|
#else
|
|
#ifdef SHORT_D
|
|
|
|
case 6: PORTE |= (1 << 0); break;
|
|
case 7: PORTE |= (1 << 1); break;
|
|
|
|
case 8: PORTC |= (1 << 0); break;
|
|
case 9: PORTC |= (1 << 1); break;
|
|
case 10: PORTC |= (1 << 2); break;
|
|
case 11: PORTC |= (1 << 3); break;
|
|
case 12: PORTC |= (1 << 4); break;
|
|
case 13: PORTC |= (1 << 5); break;
|
|
case 14: PORTC |= (1 << 6); break;
|
|
case 15: PORTC |= (1 << 7); break;
|
|
|
|
#else
|
|
#ifdef SHORT_C
|
|
|
|
case 6: PORTD |= (1 << 6); DDRD &= ~(1 << 6); break;
|
|
case 7: PORTD |= (1 << 7); DDRD &= ~(1 << 7); break;
|
|
|
|
case 8: PORTE |= (1 << 0); DDRE &= ~(1 << 0); break;
|
|
case 9: PORTE |= (1 << 1); DDRE &= ~(1 << 1); break;
|
|
|
|
case 10: PORTC |= (1 << 0); DDRC &= ~(1 << 0); break;
|
|
case 11: PORTC |= (1 << 1); DDRC &= ~(1 << 1); break;
|
|
case 12: PORTC |= (1 << 2); DDRC &= ~(1 << 2); break;
|
|
case 13: PORTC |= (1 << 3); DDRC &= ~(1 << 3); break;
|
|
case 14: PORTC |= (1 << 4); DDRC &= ~(1 << 4); break;
|
|
case 15: PORTC |= (1 << 5); DDRC &= ~(1 << 5); break;
|
|
|
|
case 16: PORTC |= (1 << 6); DDRC &= ~(1 << 6); break;
|
|
case 17: PORTC |= (1 << 7); DDRC &= ~(1 << 7); break;
|
|
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
}
|
|
|
|
|
|
inline uint16_t getADC() {
|
|
ADCSRA |= (1 << ADIF); // clear int flag by writing 1.
|
|
//wait for last read to complete.
|
|
while (! (ADCSRA & (1 << ADIF)));
|
|
return ADC; // return sample
|
|
}
|
|
|
|
|
|
int sampleColumn_8x(uint8_t column, uint16_t * buffer) {
|
|
// ensure all probe lines are driven low, and chill for recovery delay.
|
|
uint16_t sample;
|
|
|
|
ADCSRA |= (1 << ADEN) | (1 << ADSC); // enable and start conversions
|
|
|
|
// sync up with adc clock:
|
|
//sample = getADC();
|
|
|
|
PORTC &= ~C_MASK;
|
|
PORTD &= ~D_MASK;
|
|
PORTE &= ~E_MASK;
|
|
|
|
PORTF = 0;
|
|
DDRF = 0;
|
|
|
|
recovery(OFF);
|
|
strobe_w(column);
|
|
|
|
hold_sample(OFF);
|
|
SET_FULL_MUX(0);
|
|
for(uint8_t i=0; i < STROBE_SETTLE; ++i) {
|
|
sample = getADC();
|
|
}
|
|
hold_sample(ON);
|
|
|
|
#undef MUX_SETTLE
|
|
|
|
#if (MUX_SETTLE)
|
|
for(uint8_t mux=0; mux < 8; ++mux) {
|
|
|
|
SET_FULL_MUX(mux); // our sample will use this
|
|
// wait for mux to settle.
|
|
for(uint8_t i=0; i < MUX_SETTLE; ++i) {
|
|
sample = getADC();
|
|
}
|
|
|
|
|
|
// retrieve current read.
|
|
buffer[mux] = getADC();// - OFFSET_VOLTAGE;
|
|
|
|
}
|
|
#else
|
|
uint8_t mux=0;
|
|
SET_FULL_MUX(mux);
|
|
sample = getADC(); // throw away; unknown mux.
|
|
do {
|
|
SET_FULL_MUX(mux + 1); // our *next* sample will use this
|
|
|
|
// retrieve current read.
|
|
buffer[mux] = getADC();// - OFFSET_VOLTAGE;
|
|
mux++;
|
|
|
|
} while (mux < 8);
|
|
|
|
#endif
|
|
hold_sample(OFF);
|
|
recovery(ON);
|
|
|
|
// turn off adc.
|
|
ADCSRA &= ~(1 << ADEN);
|
|
|
|
// pull all columns' strobe-lines low.
|
|
DDRC |= C_MASK;
|
|
DDRD |= D_MASK;
|
|
DDRE |= E_MASK;
|
|
|
|
PORTC &= ~C_MASK;
|
|
PORTD &= ~D_MASK;
|
|
PORTE &= ~E_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int sampleColumn(uint8_t column) {
|
|
int rval = 0;
|
|
|
|
rval = sampleColumn_8x(column, samples+SAMPLE_OFFSET);
|
|
|
|
#if (BUMP_DETECTION)
|
|
for(uint8_t i=0; i<8; ++i) {
|
|
if(samples[SAMPLE_OFFSET + i] - adc_mux_averages[i] > BUMP_THRESHOLD) {
|
|
// was a hump
|
|
|
|
_delay_us(BUMP_REST_US);
|
|
rval++;
|
|
error = 0x50;
|
|
error_data = samples[SAMPLE_OFFSET +i]; // | ((uint16_t)i << 8);
|
|
return rval;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return rval;
|
|
}
|
|
|
|
|
|
uint8_t testColumn(uint8_t strobe)
|
|
{
|
|
uint8_t column = 0;
|
|
uint8_t bit = 1;
|
|
for (uint8_t i = 0; i < MUXES_COUNT; ++i)
|
|
{
|
|
uint16_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + i];
|
|
|
|
if ((db_sample = samples[SAMPLE_OFFSET + i] >> 1) > (db_threshold = threshold) + (db_delta = delta))
|
|
{
|
|
column |= bit;
|
|
}
|
|
|
|
#ifdef THRESHOLD_VERIFICATION
|
|
if ( db_sample > 0xA0 )
|
|
{
|
|
printHex( db_sample );
|
|
print(" : ");
|
|
printHex( db_threshold );
|
|
print(" : ");
|
|
printHex( db_delta );
|
|
print(" :: ");
|
|
printHex( column );
|
|
print(" : ");
|
|
printHex( strobe );
|
|
print(NL);
|
|
}
|
|
#endif
|
|
|
|
bit <<= 1;
|
|
}
|
|
return column;
|
|
}
|
|
|
|
|
|
void dumpkeys(void) {
|
|
//print(" \n");
|
|
if(error) {
|
|
/*
|
|
if (count >= WARMUP_LOOPS && error) {
|
|
dump();
|
|
}
|
|
*/
|
|
|
|
// Key scan debug
|
|
for (uint8_t i=0; i < STROBE_LINES; ++i) {
|
|
printHex(usb_keymap[i]);
|
|
print(" ");
|
|
}
|
|
|
|
print(" : ");
|
|
printHex(error);
|
|
error = 0;
|
|
print(" : ");
|
|
printHex(error_data);
|
|
error_data = 0;
|
|
print(" : " NL);
|
|
}
|
|
|
|
// XXX Will be cleaned up eventually, but this will do for now :P -HaaTa
|
|
for (uint8_t i=0; i < STROBE_LINES; ++i) {
|
|
for(uint8_t j=0; j<MUXES_COUNT; ++j) {
|
|
if ( usb_keymap[i] & (1 << j) ) {
|
|
uint8_t key = (i << MUXES_COUNT_XSHIFT) + j;
|
|
|
|
// Add to the Macro processing buffer
|
|
// Automatically handles converting to a USB code and sending off to the PC
|
|
//bufferAdd( key );
|
|
|
|
if(usb_dirty)
|
|
{
|
|
printHex( key );
|
|
print("\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//if(usb_dirty) print("\n");
|
|
usb_keyboard_send();
|
|
}
|
|
|
|
|
|
void dump(void) {
|
|
|
|
//#define DEBUG_FULL_SAMPLES_AVERAGES
|
|
#ifdef DEBUG_FULL_SAMPLES_AVERAGES
|
|
if(!dump_count) { // we don't want to debug-out during the measurements.
|
|
|
|
// Averages currently set per key
|
|
for(int i =0; i< KEY_COUNT; ++i) {
|
|
if(!(i & 0x0f)) {
|
|
print("\n");
|
|
} else if (!(i & 0x07)) {
|
|
print(" ");
|
|
}
|
|
print(" ");
|
|
printHex (keys_averages[i]);
|
|
}
|
|
|
|
print("\n");
|
|
|
|
// Previously read full ADC scans?
|
|
for(int i =0; i< KEY_COUNT; ++i) {
|
|
if(!(i & 0x0f)) {
|
|
print("\n");
|
|
} else if (!(i & 0x07)) {
|
|
print(" ");
|
|
}
|
|
print(" ");
|
|
printHex(full_samples[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef DEBUG_STROBE_SAMPLES_AVERAGES
|
|
// Per strobe information
|
|
uint8_t cur_strober = ze_strober;
|
|
print("\n");
|
|
|
|
printHex(cur_strober);
|
|
|
|
// Previously read ADC scans on current strobe
|
|
print(" :");
|
|
for (uint8_t i=0; i < MUXES_COUNT; ++i) {
|
|
print(" ");
|
|
printHex(full_samples[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
|
|
}
|
|
|
|
// Averages current set on current strobe
|
|
print(" :");
|
|
|
|
for (uint8_t i=0; i < MUXES_COUNT; ++i) {
|
|
print(" ");
|
|
printHex(keys_averages[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
|
|
}
|
|
|
|
#endif
|
|
|
|
//#define DEBUG_DELTA_SAMPLE_THRESHOLD
|
|
#ifdef DEBUG_DELTA_SAMPLE_THRESHOLD
|
|
print("\n");
|
|
//uint16_t db_delta = 0;
|
|
//uint16_t db_sample = 0;
|
|
//uint16_t db_threshold = 0;
|
|
printHex( db_delta );
|
|
print(" ");
|
|
printHex( db_sample );
|
|
print(" ");
|
|
printHex( db_threshold );
|
|
print(" ");
|
|
printHex( column );
|
|
#endif
|
|
|
|
//#define DEBUG_USB_KEYMAP
|
|
#ifdef DEBUG_USB_KEYMAP
|
|
print("\n ");
|
|
|
|
// Current keymap values
|
|
for (uint8_t i=0; i < STROBE_LINES; ++i) {
|
|
printHex(cur_keymap[i]);
|
|
print(" ");
|
|
}
|
|
#endif
|
|
|
|
ze_strober++;
|
|
ze_strober &= 0xf;
|
|
|
|
dump_count++;
|
|
dump_count &= 0x0f;
|
|
}
|
|
|