Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/STLcd/lcd_scan.c
Jacob Alexander 7e68e81f47 Adding basic remote capabilities + UART Rx DMA buffers
- Rx buffers weren't fast enough, had to use DMA :D
- Basic LCD remote capabilities are working, single node
- Multi-node broadcast seems to have a bug still
- DMA ring buffer allowed for significant processing simplification
  * There is an overrun risk, but the buffer is large and generally there isn't too much data being sent (just very quickly)
- Split out LCD layer stack capability into itself and an "exact" version used for updating remote nodes
2015-10-15 00:21:54 -07:00

645 lines
16 KiB
C

/* Copyright (C) 2015 by Jacob Alexander
*
* This file is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this file. If not, see <http://www.gnu.org/licenses/>.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <cli.h>
#include <kll_defs.h>
#include <led.h>
#include <print.h>
// Interconnect module if compiled in
#if defined(ConnectEnabled_define)
#include <connect_scan.h>
#endif
// Local Includes
#include "lcd_scan.h"
// ----- Defines -----
#define LCD_TOTAL_VISIBLE_PAGES 4
#define LCD_TOTAL_PAGES 9
#define LCD_PAGE_LEN 128
// ----- Macros -----
// Number of entries in the SPI0 TxFIFO
#define SPI0_TxFIFO_CNT ( ( SPI0_SR & SPI_SR_TXCTR ) >> 12 )
// ----- Structs -----
// ----- Function Declarations -----
// CLI Functions
void cliFunc_lcdCmd ( char* args );
void cliFunc_lcdColor( char* args );
void cliFunc_lcdDisp ( char* args );
void cliFunc_lcdInit ( char* args );
void cliFunc_lcdTest ( char* args );
// ----- Variables -----
// Default Image - Displays on startup
const uint8_t STLcdDefaultImage[] = { STLcdDefaultImage_define };
// Full Toggle State
uint8_t cliFullToggleState = 0;
// Normal/Reverse Toggle State
uint8_t cliNormalReverseToggleState = 0;
// Scan Module command dictionary
CLIDict_Entry( lcdCmd, "Send byte via SPI, second argument enables a0. Defaults to control." );
CLIDict_Entry( lcdColor, "Set backlight color. 3 16-bit numbers: R G B. i.e. 0xFFF 0x1444 0x32" );
CLIDict_Entry( lcdDisp, "Write byte(s) to given page starting at given address. i.e. 0x1 0x5 0xFF 0x00" );
CLIDict_Entry( lcdInit, "Re-initialize the LCD display." );
CLIDict_Entry( lcdTest, "Test out the LCD display." );
CLIDict_Def( lcdCLIDict, "ST LCD Module Commands" ) = {
CLIDict_Item( lcdCmd ),
CLIDict_Item( lcdColor ),
CLIDict_Item( lcdDisp ),
CLIDict_Item( lcdInit ),
CLIDict_Item( lcdTest ),
{ 0, 0, 0 } // Null entry for dictionary end
};
// ----- Interrupt Functions -----
// ----- Functions -----
inline void SPI_setup()
{
// Enable SPI internal clock
SIM_SCGC6 |= SIM_SCGC6_SPI0;
// Setup MOSI (SOUT) and SCLK (SCK)
PORTC_PCR6 = PORT_PCR_DSE | PORT_PCR_MUX(2);
PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(2);
// Setup SS (PCS)
PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(2);
// Master Mode, CS0
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(1);
// DSPI Clock and Transfer Attributes
// Frame Size: 8 bits
// MSB First
// CLK Low by default
SPI0_CTAR0 = SPI_CTAR_FMSZ(7)
| SPI_CTAR_ASC(7)
| SPI_CTAR_DT(7)
| SPI_CTAR_CSSCK(7)
| SPI_CTAR_PBR(0) | SPI_CTAR_BR(7);
}
// Write buffer to SPI FIFO
void SPI_write( uint8_t *buffer, uint8_t len )
{
for ( uint8_t byte = 0; byte < len; byte++ )
{
// Wait for SPI TxFIFO to have 4 or fewer entries
while ( !( SPI0_SR & SPI_SR_TFFF ) )
delayMicroseconds(10);
// Write byte to TxFIFO
// CS0, CTAR0
SPI0_PUSHR = ( buffer[ byte ] & 0xff ) | SPI_PUSHR_PCS(1);
// Indicate transfer has completed
while ( !( SPI0_SR & SPI_SR_TCF ) );
SPI0_SR |= SPI_SR_TCF;
}
}
// Write to a control register
void LCD_writeControlReg( uint8_t byte )
{
// Wait for TxFIFO to be empt
while ( SPI0_TxFIFO_CNT != 0 );
// Set A0 low to enter control register mode
GPIOC_PCOR |= (1<<7);
// Write byte to SPI FIFO
SPI_write( &byte, 1 );
// Wait for TxFIFO to be empty
while ( SPI0_TxFIFO_CNT != 0 );
// Make sure data has transferred
delayMicroseconds(10); // XXX Adjust if SPI speed changes
// Set A0 high to go back to display register mode
GPIOC_PSOR |= (1<<7);
}
// Write to display register
// Pages 0-7 normal display
// Page 8 icon buffer
void LCD_writeDisplayReg( uint8_t page, uint8_t *buffer, uint8_t len )
{
// Set the register page
LCD_writeControlReg( 0xB0 | ( 0x0F & page ) );
// Set display start line
LCD_writeControlReg( 0x40 );
// Reset Column Address
LCD_writeControlReg( 0x10 );
LCD_writeControlReg( 0x00 );
// Write buffer to SPI
SPI_write( buffer, len );
}
inline void LCD_clearPage( uint8_t page )
{
// Set the register page
LCD_writeControlReg( 0xB0 | ( 0x0F & page ) );
// Set display start line
LCD_writeControlReg( 0x40 );
// Reset Column Address
LCD_writeControlReg( 0x10 );
LCD_writeControlReg( 0x00 );
for ( uint8_t page_reg = 0; page_reg < LCD_PAGE_LEN; page_reg++ )
{
uint8_t byte = 0;
// Write buffer to SPI
SPI_write( &byte, 1 );
}
// Wait for TxFIFO to be empty
while ( SPI0_TxFIFO_CNT != 0 );
}
// Clear Display
void LCD_clear()
{
// Setup each page
for ( uint8_t page = 0; page < LCD_TOTAL_PAGES; page++ )
{
LCD_clearPage( page );
}
// Reset Page, Start Line, and Column Address
// Page
LCD_writeControlReg( 0xB0 );
// Start Line
LCD_writeControlReg( 0x40 );
// Reset Column Address
LCD_writeControlReg( 0x10 );
LCD_writeControlReg( 0x00 );
}
// Intialize display
void LCD_initialize()
{
// ADC Select (Normal)
LCD_writeControlReg( 0xA0 );
// LCD Off
LCD_writeControlReg( 0xAE );
// COM Scan Output Direction
LCD_writeControlReg( 0xC0 );
// LCD Bias (1/6 bias)
LCD_writeControlReg( 0xA2 );
// Power Supply Operating Mode (Internal Only)
LCD_writeControlReg( 0x2F );
// Internal Rb/Ra Ratio
LCD_writeControlReg( 0x26 );
// Reset
LCD_writeControlReg( 0xE2 );
// Electric volume mode set, and value
LCD_writeControlReg( 0x81 );
LCD_writeControlReg( 0x00 );
// LCD On
LCD_writeControlReg( 0xAF );
// Clear Display RAM
LCD_clear();
}
// Setup
inline void LCD_setup()
{
// Register Scan CLI dictionary
CLI_registerDictionary( lcdCLIDict, lcdCLIDictName );
// Initialize SPI
SPI_setup();
// Setup Register Control Signal (A0)
// Start in display register mode (1)
GPIOC_PDDR |= (1<<7);
PORTC_PCR7 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOC_PSOR |= (1<<7);
// Setup LCD Reset pin (RST)
// 0 - Reset, 1 - Normal Operation
// Start in normal mode (1)
GPIOC_PDDR |= (1<<8);
PORTC_PCR8 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOC_PSOR |= (1<<8);
// Run LCD intialization sequence
LCD_initialize();
// Write default image to LCD
for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ )
LCD_writeDisplayReg( page, (uint8_t*)&STLcdDefaultImage[page * LCD_PAGE_LEN], LCD_PAGE_LEN );
// Setup Backlight
SIM_SCGC6 |= SIM_SCGC6_FTM0;
FTM0_CNT = 0; // Reset counter
// PWM Period
// 16-bit maximum
FTM0_MOD = 0xFFFF;
// Set FTM to PWM output - Edge Aligned, Low-true pulses
FTM0_C0SC = 0x24; // MSnB:MSnA = 10, ELSnB:ELSnA = 01
FTM0_C1SC = 0x24;
FTM0_C2SC = 0x24;
// Base FTM clock selection (72 MHz system clock)
// @ 0xFFFF period, 72 MHz / (0xFFFF * 2) = Actual period
// Higher pre-scalar will use the most power (also look the best)
// Pre-scalar calculations
// 0 - 72 MHz -> 549 Hz
// 1 - 36 MHz -> 275 Hz
// 2 - 18 MHz -> 137 Hz
// 3 - 9 MHz -> 69 Hz (Slightly visible flicker)
// 4 - 4 500 kHz -> 34 Hz (Visible flickering)
// 5 - 2 250 kHz -> 17 Hz
// 6 - 1 125 kHz -> 9 Hz
// 7 - 562 500 Hz -> 4 Hz
// Using a higher pre-scalar without flicker is possible but FTM0_MOD will need to be reduced
// Which will reduce the brightness range
// System clock, /w prescalar setting
FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS( STLcdBacklightPrescalar_define );
// Red
FTM0_C0V = STLcdBacklightRed_define;
PORTC_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(4);
// Green
FTM0_C1V = STLcdBacklightGreen_define;
PORTC_PCR2 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(4);
// Blue
FTM0_C2V = STLcdBacklightBlue_define;
PORTC_PCR3 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(4);
}
// LCD State processing loop
inline uint8_t LCD_scan()
{
return 0;
}
// ----- Capabilities -----
// Takes 1 8 bit length and 4 16 bit arguments, each corresponding to a layer index
// Ordered from top to bottom
// The first argument indicates how many numbers to display (max 4), set to 0 to load default image
uint16_t LCD_layerStackExact[4];
uint8_t LCD_layerStackExact_size = 0;
typedef struct LCD_layerStackExact_args {
uint8_t numArgs;
uint16_t layers[4];
} LCD_layerStackExact_args;
void LCD_layerStackExact_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("LCD_layerStackExact_capability(num,layer1,layer2,layer3,layer4)");
return;
}
// Read arguments
LCD_layerStackExact_args *stack_args = (LCD_layerStackExact_args*)args;
// Number data for LCD
const uint8_t numbers[10][128] = {
{ STLcdNumber0_define },
{ STLcdNumber1_define },
{ STLcdNumber2_define },
{ STLcdNumber3_define },
{ STLcdNumber4_define },
{ STLcdNumber5_define },
{ STLcdNumber6_define },
{ STLcdNumber7_define },
{ STLcdNumber8_define },
{ STLcdNumber9_define },
};
// Color data for numbers
const uint16_t colors[10][3] = {
{ STLcdNumber0Color_define },
{ STLcdNumber1Color_define },
{ STLcdNumber2Color_define },
{ STLcdNumber3Color_define },
{ STLcdNumber4Color_define },
{ STLcdNumber5Color_define },
{ STLcdNumber6Color_define },
{ STLcdNumber7Color_define },
{ STLcdNumber8Color_define },
{ STLcdNumber9Color_define },
};
// Only display if there are layers active
if ( stack_args->numArgs > 0 )
{
// Set the color according to the "top-of-stack" layer
uint16_t layerIndex = stack_args->layers[0];
FTM0_C0V = colors[ layerIndex ][0];
FTM0_C1V = colors[ layerIndex ][1];
FTM0_C2V = colors[ layerIndex ][2];
// Iterate through each of the pages
// XXX Many of the values here are hard-coded
// Eventually a proper font rendering engine should take care of things like this... -HaaTa
for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ )
{
// Set the register page
LCD_writeControlReg( 0xB0 | ( 0x0F & page ) );
// Set starting address
LCD_writeControlReg( 0x10 );
LCD_writeControlReg( 0x00 );
// Write data
for ( uint16_t layer = 0; layer < stack_args->numArgs; layer++ )
{
layerIndex = stack_args->layers[ layer ];
// Default to 0, if over 9
if ( layerIndex > 9 )
{
layerIndex = 0;
}
// Write page of number to display
SPI_write( (uint8_t*)&numbers[ layerIndex ][ page * 32 ], 32 );
}
// Blank out rest of display
uint8_t data = 0;
for ( uint8_t c = 0; c < 4 - stack_args->numArgs; c++ )
{
for ( uint8_t byte = 0; byte < 32; byte++ )
{
SPI_write( &data, 1 );
}
}
}
}
else
{
// Set default backlight
FTM0_C0V = STLcdBacklightRed_define;
FTM0_C1V = STLcdBacklightGreen_define;
FTM0_C2V = STLcdBacklightBlue_define;
// Write default image
for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ )
LCD_writeDisplayReg( page, (uint8_t *)&STLcdDefaultImage[page * LCD_PAGE_LEN], LCD_PAGE_LEN );
}
}
// Determines the current layer stack, and sets the LCD output accordingly
// Will only work on a master node when using the interconnect (use LCD_layerStackExact_capability instead)
uint16_t LCD_layerStack_prevSize = 0;
uint16_t LCD_layerStack_prevTop = 0;
void LCD_layerStack_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("LCD_layerStack_capability()");
return;
}
// Parse the layer stack, top to bottom
extern uint16_t macroLayerIndexStack[];
extern uint16_t macroLayerIndexStackSize;
// Ignore if the stack size hasn't changed and the top of the stack is the same
if ( macroLayerIndexStackSize == LCD_layerStack_prevSize
&& macroLayerIndexStack[macroLayerIndexStackSize - 1] == LCD_layerStack_prevTop )
{
return;
}
LCD_layerStack_prevSize = macroLayerIndexStackSize;
LCD_layerStack_prevTop = macroLayerIndexStack[macroLayerIndexStackSize - 1];
LCD_layerStackExact_args stack_args;
memset( stack_args.layers, 0, sizeof( stack_args.layers ) );
// Use the LCD_layerStackExact_capability to set the LCD using the determined stack
// Construct argument set for capability
stack_args.numArgs = macroLayerIndexStackSize;
for ( uint16_t layer = 1; layer <= macroLayerIndexStackSize; layer++ )
{
stack_args.layers[ layer - 1 ] = macroLayerIndexStack[ macroLayerIndexStackSize - layer ];
}
// Only deal with the interconnect if it has been compiled in
#if defined(ConnectEnabled_define)
if ( Connect_master )
{
// generatedKeymap.h
extern const Capability CapabilitiesList[];
// Broadcast layerStackExact remote capability (0xFF is the broadcast id)
Connect_send_RemoteCapability(
0xFF,
LCD_layerStackExact_capability_index,
state,
stateType,
CapabilitiesList[ LCD_layerStackExact_capability_index ].argCount,
(uint8_t*)&stack_args
);
}
#endif
// Call LCD_layerStackExact directly
LCD_layerStackExact_capability( state, stateType, (uint8_t*)&stack_args );
}
// ----- CLI Command Functions -----
void cliFunc_lcdInit( char* args )
{
LCD_initialize();
}
void cliFunc_lcdTest( char* args )
{
// Write default image
for ( uint8_t page = 0; page < LCD_TOTAL_VISIBLE_PAGES; page++ )
LCD_writeDisplayReg( page, (uint8_t *)&STLcdDefaultImage[page * LCD_PAGE_LEN], LCD_PAGE_LEN );
}
void cliFunc_lcdCmd( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
print( NL ); // No \r\n by default after the command is entered
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// No args
if ( *arg1Ptr == '\0' )
return;
// SPI Command
uint8_t cmd = (uint8_t)numToInt( arg1Ptr );
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Single Arg
if ( *arg1Ptr == '\0' )
goto cmd;
// TODO Deal with a0
cmd:
info_msg("Sending - ");
printHex( cmd );
print( NL );
LCD_writeControlReg( cmd );
}
void cliFunc_lcdColor( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Colors
uint16_t rgb[3]; // Red, Green, Blue
// Parse integers from 3 arguments
for ( uint8_t color = 0; color < 3; color++ )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Give up if not enough args given
if ( *arg1Ptr == '\0' )
return;
// Convert argument to integer
rgb[ color ] = numToInt( arg1Ptr );
}
// Set PWM channels
FTM0_C0V = rgb[0];
FTM0_C1V = rgb[1];
FTM0_C2V = rgb[2];
}
void cliFunc_lcdDisp( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// First process page and starting address
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
uint8_t page = numToInt( arg1Ptr );
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
uint8_t address = numToInt( arg1Ptr );
// Set the register page
LCD_writeControlReg( 0xB0 | ( 0x0F & page ) );
// Set starting address
LCD_writeControlReg( 0x10 | ( ( 0xF0 & address ) >> 4 ) );
LCD_writeControlReg( 0x00 | ( 0x0F & address ));
// Process all args
for ( ;; )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
uint8_t value = numToInt( arg1Ptr );
// Write buffer to SPI
SPI_write( &value, 1 );
}
}