8ee8e3cb55
- Mostly for reference, you shouldn't include it verbatim in your module.
421 lines
11 KiB
C
421 lines
11 KiB
C
/* Teensyduino Core Library
|
|
* http://www.pjrc.com/teensy/
|
|
* Copyright (c) 2013 PJRC.COM, LLC.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* 1. The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* 2. If the Software is incorporated into a build system that allows
|
|
* selection among a list of target devices, then similar target
|
|
* devices manufactured by PJRC.COM must be included in the list of
|
|
* target devices and selectable in the same manner.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <Lib/ScanLib.h>
|
|
|
|
static uint8_t calibrating;
|
|
static uint8_t analog_right_shift = 0;
|
|
static uint8_t analog_config_bits = 10;
|
|
static uint8_t analog_num_average = 4;
|
|
static uint8_t analog_reference_internal = 0;
|
|
|
|
// the alternate clock is connected to OSCERCLK (16 MHz).
|
|
// datasheet says ADC clock should be 2 to 12 MHz for 16 bit mode
|
|
// datasheet says ADC clock should be 1 to 18 MHz for 8-12 bit mode
|
|
|
|
#if F_BUS == 48000000
|
|
#define ADC_CFG1_6MHZ ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1)
|
|
#define ADC_CFG1_12MHZ ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1)
|
|
#define ADC_CFG1_24MHZ ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1)
|
|
#elif F_BUS == 24000000
|
|
#define ADC_CFG1_6MHZ ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(0)
|
|
#define ADC_CFG1_12MHZ ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0)
|
|
#define ADC_CFG1_24MHZ ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0)
|
|
#else
|
|
#error
|
|
#endif
|
|
|
|
void analog_init(void)
|
|
{
|
|
uint32_t num;
|
|
|
|
VREF_TRM = 0x60;
|
|
VREF_SC = 0xE1; // enable 1.2 volt ref
|
|
|
|
if (analog_config_bits == 8) {
|
|
ADC0_CFG1 = ADC_CFG1_24MHZ + ADC_CFG1_MODE(0);
|
|
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
|
|
#if defined(_mk20dx256_)
|
|
ADC1_CFG1 = ADC_CFG1_24MHZ + ADC_CFG1_MODE(0);
|
|
ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
|
|
#endif
|
|
} else if (analog_config_bits == 10) {
|
|
ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
|
|
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
|
|
#if defined(_mk20dx256_)
|
|
ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
|
|
ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
|
|
#endif
|
|
} else if (analog_config_bits == 12) {
|
|
ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
|
|
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
|
|
#if defined(_mk20dx256_)
|
|
ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
|
|
ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
|
|
#endif
|
|
} else {
|
|
ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
|
|
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
|
|
#if defined(_mk20dx256_)
|
|
ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
|
|
ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
|
|
#endif
|
|
}
|
|
|
|
if (analog_reference_internal) {
|
|
ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
|
|
#if defined(_mk20dx256_)
|
|
ADC1_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
|
|
#endif
|
|
} else {
|
|
ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
|
|
#if defined(_mk20dx256_)
|
|
ADC1_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
|
|
#endif
|
|
}
|
|
|
|
num = analog_num_average;
|
|
if (num <= 1) {
|
|
ADC0_SC3 = ADC_SC3_CAL; // begin cal
|
|
#if defined(_mk20dx256_)
|
|
ADC1_SC3 = ADC_SC3_CAL; // begin cal
|
|
#endif
|
|
} else if (num <= 4) {
|
|
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
|
|
#if defined(_mk20dx256_)
|
|
ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
|
|
#endif
|
|
} else if (num <= 8) {
|
|
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
|
|
#if defined(_mk20dx256_)
|
|
ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
|
|
#endif
|
|
} else if (num <= 16) {
|
|
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
|
|
#if defined(_mk20dx256_)
|
|
ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
|
|
#endif
|
|
} else {
|
|
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
|
|
#if defined(_mk20dx256_)
|
|
ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
|
|
#endif
|
|
}
|
|
calibrating = 1;
|
|
}
|
|
|
|
static void wait_for_cal(void)
|
|
{
|
|
uint16_t sum;
|
|
|
|
//serial_print("wait_for_cal\n");
|
|
#if defined(_mk20dx128_)
|
|
while (ADC0_SC3 & ADC_SC3_CAL) {
|
|
// wait
|
|
}
|
|
#elif defined(_mk20dx256_)
|
|
while ((ADC0_SC3 & ADC_SC3_CAL) || (ADC1_SC3 & ADC_SC3_CAL)) {
|
|
// wait
|
|
}
|
|
#endif
|
|
__disable_irq();
|
|
if (calibrating) {
|
|
//serial_print("\n");
|
|
sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0;
|
|
sum = (sum / 2) | 0x8000;
|
|
ADC0_PG = sum;
|
|
//serial_print("ADC0_PG = ");
|
|
//serial_phex16(sum);
|
|
//serial_print("\n");
|
|
sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0;
|
|
sum = (sum / 2) | 0x8000;
|
|
ADC0_MG = sum;
|
|
//serial_print("ADC0_MG = ");
|
|
//serial_phex16(sum);
|
|
//serial_print("\n");
|
|
#if defined(_mk20dx256_)
|
|
sum = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0;
|
|
sum = (sum / 2) | 0x8000;
|
|
ADC1_PG = sum;
|
|
sum = ADC1_CLMS + ADC1_CLM4 + ADC1_CLM3 + ADC1_CLM2 + ADC1_CLM1 + ADC1_CLM0;
|
|
sum = (sum / 2) | 0x8000;
|
|
ADC1_MG = sum;
|
|
#endif
|
|
calibrating = 0;
|
|
}
|
|
__enable_irq();
|
|
}
|
|
|
|
// ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC.
|
|
// VREFH/VREFL - connected as the primary reference option
|
|
// 1.2 V VREF_OUT - connected as the VALT reference option
|
|
|
|
|
|
#define DEFAULT 0
|
|
#define INTERNAL 2
|
|
#define INTERNAL1V2 2
|
|
#define INTERNAL1V1 2
|
|
#define EXTERNAL 0
|
|
|
|
void analogReference(uint8_t type)
|
|
{
|
|
if (type) {
|
|
// internal reference requested
|
|
if (!analog_reference_internal) {
|
|
analog_reference_internal = 1;
|
|
if (calibrating) {
|
|
ADC0_SC3 = 0; // cancel cal
|
|
#if defined(_mk20dx256_)
|
|
ADC1_SC3 = 0; // cancel cal
|
|
#endif
|
|
}
|
|
analog_init();
|
|
}
|
|
} else {
|
|
// vcc or external reference requested
|
|
if (analog_reference_internal) {
|
|
analog_reference_internal = 0;
|
|
if (calibrating) {
|
|
ADC0_SC3 = 0; // cancel cal
|
|
#if defined(_mk20dx256_)
|
|
ADC1_SC3 = 0; // cancel cal
|
|
#endif
|
|
}
|
|
analog_init();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void analogReadRes(unsigned int bits)
|
|
{
|
|
unsigned int config;
|
|
|
|
if (bits >= 13) {
|
|
if (bits > 16) bits = 16;
|
|
config = 16;
|
|
} else if (bits >= 11) {
|
|
config = 12;
|
|
} else if (bits >= 9) {
|
|
config = 10;
|
|
} else {
|
|
config = 8;
|
|
}
|
|
analog_right_shift = config - bits;
|
|
if (config != analog_config_bits) {
|
|
analog_config_bits = config;
|
|
if (calibrating) ADC0_SC3 = 0; // cancel cal
|
|
analog_init();
|
|
}
|
|
}
|
|
|
|
void analogReadAveraging(unsigned int num)
|
|
{
|
|
|
|
if (calibrating) wait_for_cal();
|
|
if (num <= 1) {
|
|
num = 0;
|
|
ADC0_SC3 = 0;
|
|
} else if (num <= 4) {
|
|
num = 4;
|
|
ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0);
|
|
} else if (num <= 8) {
|
|
num = 8;
|
|
ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1);
|
|
} else if (num <= 16) {
|
|
num = 16;
|
|
ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(2);
|
|
} else {
|
|
num = 32;
|
|
ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(3);
|
|
}
|
|
analog_num_average = num;
|
|
}
|
|
|
|
// The SC1A register is used for both software and hardware trigger modes of operation.
|
|
|
|
#if defined(_mk20dx128_)
|
|
static const uint8_t channel2sc1a[] = {
|
|
5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
|
|
0, 19, 3, 21, 26, 22, 23
|
|
};
|
|
#elif defined(_mk20dx256_)
|
|
static const uint8_t channel2sc1a[] = {
|
|
5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
|
|
0, 19, 3, 19+128, 26, 22, 23,
|
|
5+192, 5+128, 4+128, 6+128, 7+128, 4+192
|
|
// A15 26 E1 ADC1_SE5a 5+64
|
|
// A16 27 C9 ADC1_SE5b 5
|
|
// A17 28 C8 ADC1_SE4b 4
|
|
// A18 29 C10 ADC1_SE6b 6
|
|
// A19 30 C11 ADC1_SE7b 7
|
|
// A20 31 E0 ADC1_SE4a 4+64
|
|
};
|
|
#endif
|
|
|
|
|
|
|
|
// TODO: perhaps this should store the NVIC priority, so it works recursively?
|
|
static volatile uint8_t analogReadBusyADC0 = 0;
|
|
#if defined(_mk20dx256_)
|
|
static volatile uint8_t analogReadBusyADC1 = 0;
|
|
#endif
|
|
|
|
int analogRead(uint8_t pin)
|
|
{
|
|
int result;
|
|
uint8_t index, channel;
|
|
|
|
//serial_phex(pin);
|
|
//serial_print(" ");
|
|
|
|
if (pin <= 13) {
|
|
index = pin; // 0-13 refer to A0-A13
|
|
} else if (pin <= 23) {
|
|
index = pin - 14; // 14-23 are A0-A9
|
|
#if defined(_mk20dx256_)
|
|
} else if (pin >= 26 && pin <= 31) {
|
|
index = pin - 9; // 26-31 are A15-A20
|
|
#endif
|
|
} else if (pin >= 34 && pin <= 40) {
|
|
index = pin - 24; // 34-37 are A10-A13, 38 is temp sensor,
|
|
// 39 is vref, 40 is unused (A14 on Teensy 3.1)
|
|
} else {
|
|
return 0; // all others are invalid
|
|
}
|
|
|
|
//serial_phex(index);
|
|
//serial_print(" ");
|
|
|
|
channel = channel2sc1a[index];
|
|
//serial_phex(channel);
|
|
//serial_print(" ");
|
|
|
|
//serial_print("analogRead");
|
|
//return 0;
|
|
if (calibrating) wait_for_cal();
|
|
//pin = 5; // PTD1/SE5b, pin 14, analog 0
|
|
|
|
#if defined(_mk20dx256_)
|
|
if (channel & 0x80) goto beginADC1;
|
|
#endif
|
|
|
|
__disable_irq();
|
|
startADC0:
|
|
//serial_print("startADC0\n");
|
|
ADC0_SC1A = channel;
|
|
analogReadBusyADC0 = 1;
|
|
__enable_irq();
|
|
while (1) {
|
|
__disable_irq();
|
|
if ((ADC0_SC1A & ADC_SC1_COCO)) {
|
|
result = ADC0_RA;
|
|
analogReadBusyADC0 = 0;
|
|
__enable_irq();
|
|
result >>= analog_right_shift;
|
|
return result;
|
|
}
|
|
// detect if analogRead was used from an interrupt
|
|
// if so, our analogRead got canceled, so it must
|
|
// be restarted.
|
|
if (!analogReadBusyADC0) goto startADC0;
|
|
__enable_irq();
|
|
yield();
|
|
}
|
|
|
|
#if defined(_mk20dx256_)
|
|
beginADC1:
|
|
__disable_irq();
|
|
startADC1:
|
|
//serial_print("startADC0\n");
|
|
// ADC1_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b.
|
|
if (channel & 0x40) {
|
|
ADC1_CFG2 &= ~ADC_CFG2_MUXSEL;
|
|
} else {
|
|
ADC1_CFG2 |= ADC_CFG2_MUXSEL;
|
|
}
|
|
ADC1_SC1A = channel & 0x3F;
|
|
analogReadBusyADC1 = 1;
|
|
__enable_irq();
|
|
while (1) {
|
|
__disable_irq();
|
|
if ((ADC1_SC1A & ADC_SC1_COCO)) {
|
|
result = ADC1_RA;
|
|
analogReadBusyADC1 = 0;
|
|
__enable_irq();
|
|
result >>= analog_right_shift;
|
|
return result;
|
|
}
|
|
// detect if analogRead was used from an interrupt
|
|
// if so, our analogRead got canceled, so it must
|
|
// be restarted.
|
|
if (!analogReadBusyADC1) goto startADC1;
|
|
__enable_irq();
|
|
yield();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
void analogWriteDAC0(int val)
|
|
{
|
|
#if defined(_mk20dx256_)
|
|
SIM_SCGC2 |= SIM_SCGC2_DAC0;
|
|
if (analog_reference_internal) {
|
|
DAC0_C0 = DAC_C0_DACEN; // 1.2V ref is DACREF_1
|
|
} else {
|
|
DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
|
|
}
|
|
if (val < 0) val = 0; // TODO: saturate instruction?
|
|
else if (val > 4095) val = 4095;
|
|
*(int16_t *)&(DAC0_DAT0L) = val;
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|