Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/EpsonQX-10/scan_loop.c
Jacob Alexander 14158009b2 Preparing for Teensy 3 (ARM) integration, abstracting code hierarchy
- Abstracted USB Module
- Abstracted compiler specific includes for Scan, Macro, Debug, and USB modules
- Updated CMake build files to support changes
- Added abstractions necessary to main.c as well as a compiler specific include file
2013-01-26 15:05:28 -05:00

572 lines
14 KiB
C

/* Copyright (C) 2011 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <led.h>
#include <print.h>
// Local Includes
#include "scan_loop.h"
// ----- Defines -----
// Pinout Defines
#define CLOCK_PORT PORTB
#define CLOCK_DDR DDRB
#define CLOCK_PIN 0
// ----- Macros -----
// Make sure we haven't overflowed the buffer
#define bufferAdd(byte) \
if ( KeyIndex_BufferUsed < KEYBOARD_BUFFER ) \
KeyIndex_Buffer[KeyIndex_BufferUsed++] = byte
#define setLED(id, status) \
status = status ? 0 : 1; \
scan_setLED( id, status )
// ----- Variables -----
// Buffer used to inform the macro processing module which keys have been detected as pressed
volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
volatile uint8_t KeyIndex_BufferUsed;
volatile uint8_t currentWaveState = 0;
volatile uint8_t calcLED = 0;
volatile uint8_t insertLED = 0;
volatile uint8_t shiftLockLED = 0;
volatile uint8_t schedLED = 0;
volatile uint8_t drawLED = 0;
// ----- Function Declarations -----
void scan_diagnostics( void );
void processKeyValue( uint8_t keyValue );
void scan_diagnostics( void );
void scan_setRepeatStart( uint8_t n );
void scan_readSwitchStatus( void );
void scan_repeatControl( uint8_t on );
void scan_enableKeyboard( uint8_t enable );
void scan_setRepeatRate( uint8_t n );
void scan_setLED( uint8_t ledNumber, uint8_t on );
void scan_readLED( void );
// ----- Interrupt Functions -----
// Generates a constant external clock
ISR( TIMER1_COMPA_vect )
{
if ( currentWaveState )
{
CLOCK_PORT &= ~(1 << CLOCK_PIN);
currentWaveState--;
}
else
{
CLOCK_PORT |= (1 << CLOCK_PIN);
currentWaveState++;
}
}
// USART Receive Buffer Full Interrupt
ISR(USART1_RX_vect)
{
cli(); // Disable Interrupts
uint8_t keyValue = 0x00;
// Read the raw packet from the USART
keyValue = UDR1;
// Debug
char tmpStr[6];
hexToStr( keyValue, tmpStr );
dPrintStrs( tmpStr, " " );
// Process the scancode
if ( keyValue != 0x00 )
processKeyValue( keyValue );
sei(); // Re-enable Interrupts
}
// ----- Functions -----
// Setup
inline void scan_setup()
{
// Setup Timer Pulse (16 bit)
// 16 MHz / (2 * Prescaler * (1 + OCR1A)) = 1204.8 baud (820 us)
// Prescaler is 1
/*
TCCR1B = 0x09;
OCR1AH = 0x19;
OCR1AL = 0xEF;
TIMSK1 = (1 << OCIE1A);
CLOCK_DDR = (1 << CLOCK_PIN);
*/
// 16 MHz / (2 * Prescaler * (1 + OCR1A)) = 1200.1 baud
// Prescaler is 1
// Twice every 1200 baud (actually 1200.1, timer isn't accurate enough)
// This is close to 820 us, but a bit slower
cli();
TCCR1B = 0x09;
OCR1AH = 0x1A;
OCR1AL = 0x09;
TIMSK1 = (1 << OCIE1A);
CLOCK_DDR = (1 << CLOCK_PIN);
// Setup the the USART interface for keyboard data input
// Setup baud rate
// 16 MHz / ( 16 * Baud ) = UBRR
// Baud <- 1200 as per the spec (see datasheet archives), rounding to 1200.1 (as that's as accurate as the timer can be)
// Thus UBRR = 833.26 -> round to 833
uint16_t baud = 833; // Max setting of 4095
UBRR1H = (uint8_t)(baud >> 8);
UBRR1L = (uint8_t)baud;
// Enable the receiver, transitter, and RX Complete Interrupt
UCSR1B = 0x98;
// Set frame format: 8 data, no stop bits or parity
// Synchrounous USART mode
// Tx Data on Falling Edge, Rx on Rising
UCSR1C = 0x47;
sei();
// Reset the keyboard before scanning, we might be in a wierd state
_delay_ms( 50 );
scan_resetKeyboard();
_delay_ms( 5000 ); // Wait for the reset command to finish enough for new settings to take hold afterwards
scan_setRepeatRate( 0x00 ); // Set the fastest repeat rate
}
// Main Detection Loop
// Nothing is required here with the Epson QX-10 Keyboards as the interrupts take care of the inputs
inline uint8_t scan_loop()
{
return 0;
}
// TODO
void processKeyValue( uint8_t keyValue )
{
// Detect LED Status
uint8_t inputType = keyValue & 0xC0;
// Determine the input type
switch ( inputType )
{
// LED Status
case 0xC0:
// Binary Representation: 1100 llln
// Hex Range: 0xC0 to 0xCF
// - First 3 bits determine which LED (0 to 7)
// - Last bit is whether the LED is On (1) or Off (0)
// 000 - N/A (A)
// 001 - N/A (B)
// 010 - INSERT
// 011 - SHIFT LOCK
// 100 - N/A (C)
// 101 - DRAW
// 110 - SCHED
// 111 - CALC
break;
// SW (Switch) Status
case 0x80:
{
// Binary Representation: 1000 dddn
// Hex Range: 0x80 to 0x8F
// - First 3 bits determine which DB (KRTN) (See datasheet)
// - Last bit is whether the key is enabled
// 000 - N/A?
// 001 - N/A?
// 010 - Right SHIFT
// 011 - Left SHIFT
// 100 - N/A?
// 101 - Left CTRL
// 110 - GRPH SHIFT
// 111 - Right CTRL
// Detect Modifier Press/Release
uint8_t press = keyValue & 0x01;
// Modifier Press Detected
if ( press )
{
// Make sure the key isn't already in the buffer
for ( uint8_t c = 0; c < KeyIndex_BufferUsed + 1; c++ )
{
// Key isn't in the buffer yet
if ( c == KeyIndex_BufferUsed )
{
bufferAdd( keyValue );
break;
}
// Key already in the buffer
if ( KeyIndex_Buffer[c] == keyValue )
break;
}
}
// Modifier Release Detected
else
{
uint8_t actualKeyValue = keyValue | 0x01;
// Check for the released key, and shift the other keys lower on the buffer
uint8_t c;
for ( c = 0; c < KeyIndex_BufferUsed; c++ )
{
// Key to release found
if ( KeyIndex_Buffer[c] == actualKeyValue )
{
// Shift keys from c position
for ( uint8_t k = c; k < KeyIndex_BufferUsed - 1; k++ )
KeyIndex_Buffer[k] = KeyIndex_Buffer[k + 1];
// Decrement Buffer
KeyIndex_BufferUsed--;
break;
}
}
// Error case (no key to release)
if ( c == KeyIndex_BufferUsed + 1 )
{
errorLED( 1 );
char tmpStr[6];
hexToStr( keyValue, tmpStr );
erro_dPrint( "Could not find key to release: ", tmpStr );
}
}
break;
}
// Key code
default:
// Binary Representation: 0ddd pppp
// Hex Range: 0x00 to 0x7F
// - First 3 bits determine which DB (KRTN) (See datasheet)
// - Last 4 bits corresond to the KSC signals (P13, P12, P11, P10 respectively)
// Or, that can be read as, each key has it's own keycode (with NO release code)
// Modifiers are treated differently
// Add the key to the buffer, if it isn't already in the current Key Buffer
for ( uint8_t c = 0; c < KeyIndex_BufferUsed + 1; c++ )
{
// Key isn't in the buffer yet
if ( c == KeyIndex_BufferUsed )
{
bufferAdd( keyValue );
break;
}
// Key already in the buffer
if ( KeyIndex_Buffer[c] == keyValue )
break;
}
// Special Internal Key Mapping/Functions
switch ( keyValue )
{
// LED Test
case 0x0A: // CALC
setLED( 0x07, calcLED ); // 0x4F
break;
case 0x0B: // SCHED
setLED( 0x0E, schedLED ); // 0x5D
break;
case 0x0C: // DRAW
setLED( 0x0D, drawLED ); // 0x5B
break;
case 0x42: // SHIFT LOCK
setLED( 0x0B, shiftLockLED ); // 0x57
break;
case 0x5E: // INSERT
setLED( 0x02, insertLED ); // 0x45
break;
/*
// TEST
case 0x51:
scan_resetKeyboard();
break;
case 0x52:
scan_diagnostics();
break;
case 0x53:
scan_setRepeatStart( 0x00 );
break;
case 0x54:
scan_readSwitchStatus();
break;
case 0x55:
scan_repeatControl( 0x00 );
break;
case 0x56:
scan_repeatControl( 0x01 );
break;
case 0x57:
scan_enableKeyboard( 0x00 );
break;
case 0x58:
scan_enableKeyboard( 0x01 );
break;
case 0x59:
scan_setRepeatRate( 0x00 );
break;
case 0x5A:
scan_readLED();
break;
*/
}
break;
}
}
// Send data
// See below functions for the input sequences for the Epson QX-10 Keyboard
uint8_t scan_sendData( uint8_t dataPayload )
{
// Debug
char tmpStr[6];
hexToStr( dataPayload, tmpStr );
info_dPrint( tmpStr, " " );
UDR1 = dataPayload;
return 0;
}
// Signal KeyIndex_Buffer that it has been properly read
inline void scan_finishedWithBuffer( uint8_t sentKeys )
{
return;
}
// Signal that the keys have been properly sent over USB
// For the Epson QX-10 only the modifier keys have release signals
// Therefore, only 5 keys could possibly be assigned as a modifiers
// The rest of the keys are single press (like the Kaypro keyboards)
//
// However, this differentiation causes complications on how the key signals are discarded and used
// The single keypresses must be discarded immediately, while the modifiers must be kept
inline void scan_finishedWithUSBBuffer( uint8_t sentKeys )
{
uint8_t foundModifiers = 0;
// Look for all of the modifiers present, there is a max of 8 (but only keys for 5 on the HASCI version)
for ( uint8_t c = 0; c < KeyIndex_BufferUsed; c++ )
{
// The modifier range is from 0x80 to 0x8F (well, the last bit is the ON/OFF signal, but whatever...)
if ( KeyIndex_Buffer[c] <= 0x8F && KeyIndex_Buffer[c] >= 0x80 )
{
// Add the modifier back into the the Key Buffer
KeyIndex_Buffer[foundModifiers] = KeyIndex_Buffer[c];
foundModifiers++;
}
}
// Adjust the size of the new Key Buffer
KeyIndex_BufferUsed = foundModifiers;
/* Non-working, too slow (too much traffic on the bus)
// Poll the modifiers using an input command
uint8_t oldBuffer = KeyIndex_BufferUsed;
KeyIndex_BufferUsed = 0;
if ( oldBuffer )
scan_readSwitchStatus();
*/
}
// Reset/Hold keyboard
// Warning! This will cause the keyboard to not send any data, so you can't disable with a keypress
// The Epson QX-10 Keyboards have a command used to lock the keyboard output
void scan_lockKeyboard( void )
{
scan_enableKeyboard( 0x00 );
}
void scan_unlockKeyboard( void )
{
scan_enableKeyboard( 0x01 );
}
// Reset Keyboard
// Does the following
// - Clears the keycode buffer (32 characters)
// - Validates repeat function (what does this do?)
// - Sets repeat start time (500 ms)
// - Sets repeat interval (50 ms)
// - Turns off all LEDs
void scan_resetKeyboard( void )
{
// Reset command for the QX-10 Keyboard
scan_sendData( 0xE0 );
// Empty buffer, now that keyboard has been reset
KeyIndex_BufferUsed = 0;
}
// TODO Check
// Runs Diagnostics on the keyboard
// - First does a reset (see scan_resetKeyboard)
// - Blinks all of the LEDs one after another
// - Outputs 0x00 if no keys are pressed
// - Outputs 0xFF if any keys are being pressed
void scan_diagnostics( void )
{
// Send reset command with diagnositics
scan_sendData( 0xE7 );
}
// TODO Check
// Set Repeat Interval Start
// 300 ms + n * 25 ms
// Interval after which to start the repeated keys
void scan_setRepeatStart( uint8_t n )
{
// Send command
// Binary Representation: 000n nnnn
// Hex boundaries 0x00 to 0x1F
// 300 ms to 1075 ms (intervals of 25 ms)
scan_sendData( n );
}
// Read Switch Status (preferential to actual keypress outputs)
// 000 - N/A?
// 001 - N/A?
// 010 - Right SHIFT
// 011 - Left SHIFT
// 100 - N/A?
// 101 - Left CTRL
// 110 - GRPH SHIFT
// 111 - Right CTRL
void scan_readSwitchStatus( void )
{
scan_sendData( 0x80 );
}
// TODO Check
// Repeat Control
// 0x00 Stops repeat function
// 0x01 Enables repeat function
void scan_repeatControl( uint8_t on )
{
// Send command
// Binary Representation: 101X XXXn
// Hex options: 0xA0 or 0xA1
scan_sendData( 0xA0 | on );
}
// TODO Check
// Enable Sending Keyboard Data
// 0x00 Stops keycode transmission
// 0x01 Enables keycode transmission
void scan_enableKeyboard( uint8_t enable )
{
// Send command
// Binary Representation: 110X XXXn
// Hex options: 0xC0 or 0xC1
scan_sendData( 0xC0 | enable );
}
// Set Repeat Interval
// 30 ms + n * 5 ms
// Period between sending each repeated key after the initial interval
void scan_setRepeatRate( uint8_t n )
{
// Send command
// Binary Representation: 001n nnnn
// Hex options: 0x00 to 0x1F
// 30 ms to 185 ms (intervals of 5 ms)
scan_sendData( 0x20 | n );
}
// Turn On/Off LED
// 0x00 LED Off
// 0x01 LED On
//
// 8 LEDs max (Note: 5 connected on my board, there is 1 position empty on the PCB for a total of 6)
// 0 to 7 (0x0 to 0x7)
void scan_setLED( uint8_t ledNumber, uint8_t on )
{
// Send command
// Binary Representation: 010l llln
// Hex options: 0x40 to 0x4F
// The spec is NOT accurate (especially about the "don't care" bit)
// llll n - Usage
// 0000 X - N/A (1)
// 0001 X - N/A (2)
// 0010 1 - INSERT On
// 0011 0 - SHIFT LOCK Off
// 0100 X - N/A (3)
// 0101 0 - DRAW Off
// 0110 0 - SCHED Off
// 0111 1 - CALC On
// 1000 X - N/A (1)
// 1001 X - N/A (2)
// 1010 0 - INSERT Off
// 1011 1 - SHIFT LOCK On
// 1100 X - N/A (3)
// 1101 1 - DRAW On
// 1110 1 - SCHED On
// 1111 0 - CALC Off
uint8_t off = 0;
if ( !on )
{
off = 0x10;
}
scan_sendData( ( 0x40 | (ledNumber << 1) | on ) ^ off );
}
// Read LED Status
// High priority data output (may overwrite some keycode data)
void scan_readLED( void )
{
scan_sendData( 0x7F );
}