Kiibohd Controller
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.

scan_loop.c 25KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033
  1. /* Copyright (C) 2011-2013 by Joseph Makuch
  2. * Additions by Jacob Alexander (2013-2014)
  3. *
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 3.0 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with this library. If not, see <http://www.gnu.org/licenses/>.
  16. */
  17. // ----- Includes -----
  18. // Compiler Includes
  19. #include <Lib/ScanLib.h>
  20. // Project Includes
  21. #include <cli.h>
  22. #include <led.h>
  23. #include <macro.h>
  24. #include <print.h>
  25. // Local Includes
  26. #include "scan_loop.h"
  27. // ----- Defines -----
  28. // TODO dfj defines...needs commenting and maybe some cleaning...
  29. #define MAX_PRESS_DELTA_MV 450 // As measured from the Teensy ADC pin
  30. #define THRESHOLD_MV (MAX_PRESS_DELTA_MV >> 1)
  31. //(2560 / (0x3ff/2)) ~= 5
  32. #define MV_PER_ADC 5
  33. #define THRESHOLD (THRESHOLD_MV / MV_PER_ADC)
  34. #define STROBE_SETTLE 1
  35. #define ADHSM 7
  36. // Right justification of ADLAR
  37. #define ADLAR_BITS 0
  38. // full muxmask
  39. #define FULL_MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2) | (1 << MUX3) | (1 << MUX4))
  40. // F0-f7 pins only muxmask.
  41. #define MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2))
  42. // Strobe Masks
  43. #define D_MASK (0xff)
  44. #define E_MASK (0x03)
  45. #define C_MASK (0xff)
  46. // set ADC clock prescale
  47. #define PRESCALE_MASK ((1 << ADPS0) | (1 << ADPS1) | (1 << ADPS2))
  48. #define PRESCALE_SHIFT (ADPS0)
  49. #define PRESCALE 3
  50. // Max number of strobes supported by the hardware
  51. // Strobe lines are detected at startup, extra strobes cause anomalies like phantom keypresses
  52. #define MAX_STROBES 18
  53. // Number of consecutive samples required to pass debounce
  54. #define DEBOUNCE_THRESHOLD 5
  55. // Scans to remain idle after all keys were release before starting averaging
  56. // XXX So this makes the initial keypresses fast,
  57. // but it's still possible to lose a keypress if you press at the wrong time -HaaTa
  58. #define KEY_IDLE_SCANS 30000
  59. // Total number of muxes/sense lines available
  60. #define MUXES_COUNT 8
  61. #define MUXES_COUNT_XSHIFT 3
  62. // Number of warm-up loops before starting to scan keys
  63. #define WARMUP_LOOPS ( 1024 )
  64. #define WARMUP_STOP (WARMUP_LOOPS - 1)
  65. #define SAMPLE_CONTROL 3
  66. #define KEY_COUNT ((MAX_STROBES) * (MUXES_COUNT))
  67. #define RECOVERY_CONTROL 1
  68. #define RECOVERY_SOURCE 0
  69. #define RECOVERY_SINK 2
  70. #define ON 1
  71. #define OFF 0
  72. // mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
  73. #define MUX_MIX 2
  74. #define IDLE_COUNT_SHIFT 8
  75. // av = (av << shift) - av + sample; av >>= shift
  76. // e.g. 1 -> (av + sample) / 2 simple average of new and old
  77. // 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new.
  78. // 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new.
  79. #define KEYS_AVERAGES_MIX_SHIFT 3
  80. // ----- Macros -----
  81. // Select mux
  82. #define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))
  83. // ----- Function Declarations -----
  84. // CLI Functions
  85. void cliFunc_avgDebug ( char* args );
  86. void cliFunc_echo ( char* args );
  87. void cliFunc_keyDebug ( char* args );
  88. void cliFunc_pressDebug ( char* args );
  89. void cliFunc_problemKeys( char* args );
  90. void cliFunc_senseDebug ( char* args );
  91. // Debug Functions
  92. void dumpSenseTable();
  93. // High-level Capsense Functions
  94. void setup_ADC();
  95. void capsense_scan();
  96. // Capsense Sense Functions
  97. void testColumn ( uint8_t strobe );
  98. void sampleColumn( uint8_t column );
  99. // Low-level Capsense Functions
  100. void strobe_w( uint8_t strobe_num );
  101. void recovery( uint8_t on );
  102. // ----- Variables -----
  103. // Buffer used to inform the macro processing module which keys have been detected as pressed
  104. volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
  105. volatile uint8_t KeyIndex_BufferUsed;
  106. // Scan Module command dictionary
  107. const char scanCLIDictName[] = "DPH Module Commands";
  108. const CLIDictItem scanCLIDict[] = {
  109. { "echo", "Example command, echos the arguments.", cliFunc_echo },
  110. { "avgDebug", "Enables/Disables averaging results." NL "\t\tDisplays each average, starting from Key 0x00, ignoring 0 valued averages.", cliFunc_avgDebug },
  111. { "keyDebug", "Enables/Disables long debug for each keypress." NL "\t\tkeycode - [strobe:mux] : sense val : threshold+delta=total : margin", cliFunc_keyDebug },
  112. { "pressDebug", "Enables/Disables short debug for each keypress.", cliFunc_pressDebug },
  113. { "problemKeys", "Display current list of problem keys,", cliFunc_problemKeys },
  114. { "senseDebug", "Prints out the current sense table N times." NL "\t\tsense:max sense:delta", cliFunc_senseDebug },
  115. { 0, 0, 0 } // Null entry for dictionary end
  116. };
  117. // CLI Control Variables
  118. uint8_t enableAvgDebug = 0;
  119. uint8_t enableKeyDebug = 0;
  120. uint8_t enablePressDebug = 1;
  121. uint8_t senseDebugCount = 3; // In order to get boot-time oddities
  122. // Variables used to calculate the starting sense value (averaging)
  123. uint32_t full_avg = 0;
  124. uint32_t high_avg = 0;
  125. uint32_t low_avg = 0;
  126. uint8_t high_count = 0;
  127. uint8_t low_count = 0;
  128. uint16_t samples[MAX_STROBES][MUXES_COUNT]; // Overall table of cap sense ADC values
  129. uint16_t sampleMax[MAX_STROBES][MUXES_COUNT]; // Records the max seen ADC value
  130. uint8_t key_activity = 0; // Increments for each detected key per each full scan of the keyboard, it is reset before each full scan
  131. uint16_t key_idle = 0; // Defines how scans after all keys were released before starting averaging again
  132. uint8_t key_release = 0; // Indicates if going from key press state to release state (some keys pressed to no keys pressed)
  133. uint16_t threshold = THRESHOLD;
  134. uint16_t keys_averages_acc[KEY_COUNT];
  135. uint16_t keys_averages [KEY_COUNT];
  136. uint8_t keys_debounce [KEY_COUNT]; // Contains debounce statistics
  137. uint8_t keys_problem [KEY_COUNT]; // Marks keys that should be ignored (determined by averaging at startup)
  138. // TODO: change this to 'booting', then count down.
  139. uint16_t boot_count = 0;
  140. uint8_t total_strobes = MAX_STROBES;
  141. uint8_t strobe_map[MAX_STROBES];
  142. // ----- Functions -----
  143. // Initial setup for cap sense controller
  144. inline void Scan_setup()
  145. {
  146. // Register Scan CLI dictionary
  147. CLI_registerDictionary( scanCLIDict, scanCLIDictName );
  148. // Scan for active strobes
  149. // NOTE1: On IBM PCBs, each strobe line that is *NOT* used is connected to GND.
  150. // This means, the strobe GPIO can be set to Tri-State pull-up to detect which strobe lines are not used.
  151. // NOTE2: This will *NOT* detect floating strobes.
  152. // NOTE3: Rev 0.4, the strobe numbers are reversed, so D0 is actually strobe 0 and C7 is strobe 17
  153. info_msg("Detecting Strobes...");
  154. DDRC = 0;
  155. PORTC = C_MASK;
  156. DDRD = 0;
  157. PORTD = D_MASK;
  158. DDRE = 0;
  159. PORTE = E_MASK;
  160. // Initially there are 0 strobes
  161. total_strobes = 0;
  162. // Iterate over each the strobes
  163. for ( uint8_t strobe = 0; strobe < MAX_STROBES; strobe++ )
  164. {
  165. uint8_t detected = 0;
  166. // If PIN is high, then strobe is *NOT* connected to GND and may be a strobe
  167. switch ( strobe )
  168. {
  169. // Strobe Mappings
  170. // Rev Rev
  171. // 0.2 0.4
  172. #ifndef REV0_4_DEBUG // XXX These pins should be reworked, and connect to GND on Rev 0.4
  173. case 0: // D0 0 n/c
  174. case 1: // D1 1 n/c
  175. #endif
  176. case 2: // D2 2 15
  177. case 3: // D3 3 14
  178. case 4: // D4 4 13
  179. case 5: // D5 5 12
  180. case 6: // D6 6 11
  181. case 7: // D7 7 10
  182. detected = PIND & (1 << strobe);
  183. break;
  184. case 8: // E0 8 9
  185. case 9: // E1 9 8
  186. detected = PINE & (1 << (strobe - 8));
  187. break;
  188. case 10: // C0 10 7
  189. case 11: // C1 11 6
  190. case 12: // C2 12 5
  191. case 13: // C3 13 4
  192. case 14: // C4 14 3
  193. case 15: // C5 15 2
  194. #ifndef REV0_2_DEBUG // XXX If not using the 18 pin connector on Rev 0.2, rework these pins to GND
  195. case 16: // C6 16 1
  196. case 17: // C7 17 0
  197. #endif
  198. detected = PINC & (1 << (strobe - 10));
  199. break;
  200. default:
  201. break;
  202. }
  203. // Potential strobe line detected
  204. if ( detected )
  205. {
  206. strobe_map[total_strobes] = strobe;
  207. total_strobes++;
  208. }
  209. }
  210. printInt8( total_strobes );
  211. print( " strobes found." NL );
  212. // Setup Pins for Strobing
  213. DDRC = C_MASK;
  214. PORTC = 0;
  215. DDRD = D_MASK;
  216. PORTD = 0;
  217. DDRE = E_MASK;
  218. PORTE = 0 ;
  219. // Initialize ADC
  220. setup_ADC();
  221. // Reset debounce table
  222. for ( int i = 0; i < KEY_COUNT; ++i )
  223. {
  224. keys_debounce[i] = 0;
  225. }
  226. // Warm things up a bit before we start collecting data, taking real samples.
  227. for ( uint8_t i = 0; i < total_strobes; ++i )
  228. {
  229. sampleColumn( strobe_map[i] );
  230. }
  231. }
  232. // Main Detection Loop
  233. // This is where the important stuff happens
  234. inline uint8_t Scan_loop()
  235. {
  236. capsense_scan();
  237. // Return non-zero if macro and USB processing should be delayed
  238. // Macro processing will always run if returning 0
  239. // USB processing only happens once the USB send timer expires, if it has not, Scan_loop will be called
  240. // after the macro processing has been completed
  241. return 0;
  242. }
  243. // Signal KeyIndex_Buffer that it has been properly read
  244. // NOTE: Only really required for implementing "tricks" in converters for odd protocols
  245. void Scan_finishedWithBuffer( uint8_t sentKeys )
  246. {
  247. return;
  248. }
  249. // Signal KeyIndex_Buffer that it has been properly read and sent out by the USB module
  250. // NOTE: Only really required for implementing "tricks" in converters for odd protocols
  251. void Scan_finishedWithUSBBuffer( uint8_t sentKeys )
  252. {
  253. return;
  254. }
  255. inline void capsense_scan()
  256. {
  257. // Accumulated average used for the next scan
  258. uint32_t cur_full_avg = 0;
  259. uint32_t cur_high_avg = 0;
  260. // Reset average counters
  261. low_avg = 0;
  262. low_count = 0;
  263. high_count = 0;
  264. // Reset key activity, if there is no key activity, averages will accumulate for sense deltas, otherwise they will be reset
  265. key_activity = 0;
  266. // Scan each of the mapped strobes in the matrix
  267. for ( uint8_t strober = 0; strober < total_strobes; ++strober )
  268. {
  269. uint8_t map_strobe = strobe_map[strober];
  270. // Sample the ADCs for the given column/strobe
  271. sampleColumn( map_strobe );
  272. // Only process sense data if warmup is finished
  273. if ( boot_count >= WARMUP_LOOPS )
  274. {
  275. testColumn( map_strobe );
  276. }
  277. uint8_t strobe_line = map_strobe << MUXES_COUNT_XSHIFT;
  278. for ( int mux = 0; mux < MUXES_COUNT; ++mux )
  279. {
  280. // discard sketchy low bit, and meaningless high bits.
  281. uint8_t sample = samples[map_strobe][mux] >> 1;
  282. keys_averages_acc[strobe_line + mux] += sample;
  283. }
  284. // Accumulate 3 total averages (used for determining starting average during warmup)
  285. // full_avg - Average of all sampled lines on the previous scan set
  286. // cur_full_avg - Average of all sampled lines for this scan set
  287. // high_avg - Average of all sampled lines above full_avg on the previous scan set
  288. // cur_high_avg - Average of all sampled lines above full_avg
  289. // low_avg - Average of all sampled lines below or equal to full_avg
  290. if ( boot_count < WARMUP_LOOPS )
  291. {
  292. for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
  293. {
  294. uint8_t sample = samples[map_strobe][mux] >> 1;
  295. // Sample is high, add it to high avg
  296. if ( sample > full_avg )
  297. {
  298. high_count++;
  299. cur_high_avg += sample;
  300. }
  301. // Sample is low, add it to low avg
  302. else
  303. {
  304. low_count++;
  305. low_avg += sample;
  306. }
  307. // If sample is higher than previous high_avg, then mark as "problem key"
  308. // XXX Giving a bit more margin to pass (high_avg vs. high_avg + high_avg - full_avg) -HaaTa
  309. keys_problem[strobe_line + mux] = sample > high_avg + (high_avg - full_avg) ? sample : 0;
  310. // Prepare for next average
  311. cur_full_avg += sample;
  312. }
  313. }
  314. } // for strober
  315. // Update total sense average (only during warm-up)
  316. if ( boot_count < WARMUP_LOOPS )
  317. {
  318. full_avg = cur_full_avg / (total_strobes * MUXES_COUNT);
  319. high_avg = cur_high_avg / high_count;
  320. low_avg /= low_count;
  321. // Update the base average value using the low_avg (best chance of not ignoring a keypress)
  322. for ( int i = 0; i < KEY_COUNT; ++i )
  323. {
  324. keys_averages[i] = low_avg;
  325. keys_averages_acc[i] = low_avg;
  326. }
  327. }
  328. // Warm up voltage references
  329. if ( boot_count < WARMUP_LOOPS )
  330. {
  331. boot_count++;
  332. switch ( boot_count )
  333. {
  334. // First loop
  335. case 1:
  336. // Show msg at first iteration only
  337. info_msg("Warming up the voltage references");
  338. break;
  339. // Middle iterations
  340. case 300:
  341. case 600:
  342. case 900:
  343. case 1200:
  344. print(".");
  345. break;
  346. // Last loop
  347. case WARMUP_STOP:
  348. print( NL );
  349. info_msg("Warmup finished using ");
  350. printInt16( WARMUP_LOOPS );
  351. print(" iterations" NL );
  352. // Display the final calculated averages of all the sensed strobes
  353. info_msg("Full average (");
  354. printInt8( total_strobes * MUXES_COUNT );
  355. print("): ");
  356. printHex( full_avg );
  357. print(" High average (");
  358. printInt8( high_count );
  359. print("): ");
  360. printHex( high_avg );
  361. print(" Low average (");
  362. printInt8( low_count );
  363. print("): ");
  364. printHex( low_avg );
  365. print(" Rejection threshold: ");
  366. printHex( high_avg + (high_avg - full_avg) );
  367. print( NL );
  368. // Display problem keys, and the sense value at the time
  369. for ( uint8_t key = 0; key < KEY_COUNT; key++ )
  370. {
  371. if ( keys_problem[key] )
  372. {
  373. warn_msg("Problem key detected: ");
  374. printHex( key );
  375. print(" (");
  376. printHex( keys_problem[key] );
  377. print(")" NL );
  378. }
  379. }
  380. info_print("If problem keys were detected, and were being held down, they will be reset as soon as let go.");
  381. info_print("Some keys have unusually high sense values, on the first press they should be re-enabled.");
  382. break;
  383. }
  384. }
  385. else
  386. {
  387. // No keypress, accumulate averages
  388. if( !key_activity )
  389. {
  390. // Only start averaging once the idle counter has counted down to 0
  391. if ( key_idle == 0 )
  392. {
  393. // Average Debugging
  394. if ( enableAvgDebug )
  395. {
  396. print("\033[1mAvg\033[0m: ");
  397. }
  398. // aggregate
  399. for ( uint8_t i = 0; i < KEY_COUNT; ++i )
  400. {
  401. uint16_t acc = keys_averages_acc[i];
  402. //uint16_t acc = keys_averages_acc[i] >> IDLE_COUNT_SHIFT; // XXX This fixes things... -HaaTa
  403. uint32_t av = keys_averages[i];
  404. av = (av << KEYS_AVERAGES_MIX_SHIFT) - av + acc;
  405. av >>= KEYS_AVERAGES_MIX_SHIFT;
  406. keys_averages[i] = av;
  407. keys_averages_acc[i] = 0;
  408. // Average Debugging
  409. if ( enableAvgDebug && av > 0 )
  410. {
  411. printHex( av );
  412. print(" ");
  413. }
  414. }
  415. // Average Debugging
  416. if ( enableAvgDebug )
  417. {
  418. print( NL );
  419. }
  420. // No key presses detected, set key_release indicator
  421. key_release = 1;
  422. }
  423. // Otherwise decrement the idle counter
  424. else
  425. {
  426. key_idle--;
  427. }
  428. }
  429. // Keypresses, reset accumulators
  430. else if ( key_release )
  431. {
  432. for ( uint8_t c = 0; c < KEY_COUNT; ++c ) { keys_averages_acc[c] = 0; }
  433. key_release = 0;
  434. }
  435. // If the debugging sense table is non-zero, display
  436. if ( senseDebugCount > 0 )
  437. {
  438. senseDebugCount--;
  439. print( NL );
  440. dumpSenseTable();
  441. }
  442. }
  443. }
  444. void setup_ADC()
  445. {
  446. // disable adc digital pins.
  447. DIDR1 |= (1 << AIN0D) | (1<<AIN1D); // set disable on pins 1,0.
  448. DDRF = 0x0;
  449. PORTF = 0x0;
  450. uint8_t mux = 0 & 0x1f; // 0 == first. // 0x1e = 1.1V ref.
  451. // 0 = external aref 1,1 = 2.56V internal ref
  452. uint8_t aref = ((1 << REFS1) | (1 << REFS0)) & ((1 << REFS1) | (1 << REFS0));
  453. uint8_t adate = (1 << ADATE) & (1 << ADATE); // trigger enable
  454. uint8_t trig = 0 & ((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2)); // 0 = free running
  455. // ps2, ps1 := /64 ( 2^6 ) ps2 := /16 (2^4), ps1 := 4, ps0 :=2, PS1,PS0 := 8 (2^8)
  456. uint8_t prescale = ( ((PRESCALE) << PRESCALE_SHIFT) & PRESCALE_MASK ); // 001 == 2^1 == 2
  457. uint8_t hispeed = (1 << ADHSM);
  458. uint8_t en_mux = (1 << ACME);
  459. ADCSRA = (1 << ADEN) | prescale; // ADC enable
  460. // select ref.
  461. //ADMUX |= ((1 << REFS1) | (1 << REFS0)); // 2.56 V internal.
  462. //ADMUX |= ((1 << REFS0) ); // Vcc with external cap.
  463. //ADMUX &= ~((1 << REFS1) | (1 << REFS0)); // 0,0 : aref.
  464. ADMUX = aref | mux | ADLAR_BITS;
  465. // set free-running
  466. ADCSRA |= adate; // trigger enable
  467. ADCSRB = en_mux | hispeed | trig | (ADCSRB & ~((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2))); // trigger select free running
  468. ADCSRA |= (1 << ADEN); // ADC enable
  469. ADCSRA |= (1 << ADSC); // start conversions q
  470. }
  471. void recovery( uint8_t on )
  472. {
  473. DDRB |= (1 << RECOVERY_CONTROL);
  474. PORTB &= ~(1 << RECOVERY_SINK); // SINK always zero
  475. DDRB &= ~(1 << RECOVERY_SOURCE); // SOURCE high imp
  476. if ( on )
  477. {
  478. // set strobes to sink to gnd.
  479. DDRC |= C_MASK;
  480. DDRD |= D_MASK;
  481. DDRE |= E_MASK;
  482. PORTC &= ~C_MASK;
  483. PORTD &= ~D_MASK;
  484. PORTE &= ~E_MASK;
  485. DDRB |= (1 << RECOVERY_SINK); // SINK pull
  486. PORTB |= (1 << RECOVERY_CONTROL);
  487. PORTB |= (1 << RECOVERY_SOURCE); // SOURCE high
  488. DDRB |= (1 << RECOVERY_SOURCE);
  489. }
  490. else
  491. {
  492. PORTB &= ~(1 << RECOVERY_CONTROL);
  493. DDRB &= ~(1 << RECOVERY_SOURCE);
  494. PORTB &= ~(1 << RECOVERY_SOURCE); // SOURCE low
  495. DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp
  496. }
  497. }
  498. void hold_sample( uint8_t on )
  499. {
  500. if ( !on )
  501. {
  502. PORTB |= (1 << SAMPLE_CONTROL);
  503. DDRB |= (1 << SAMPLE_CONTROL);
  504. }
  505. else
  506. {
  507. DDRB |= (1 << SAMPLE_CONTROL);
  508. PORTB &= ~(1 << SAMPLE_CONTROL);
  509. }
  510. }
  511. void strobe_w( uint8_t strobe_num )
  512. {
  513. PORTC &= ~(C_MASK);
  514. PORTD &= ~(D_MASK);
  515. PORTE &= ~(E_MASK);
  516. // Strobe table
  517. // Not all strobes are used depending on which are detected
  518. switch ( strobe_num )
  519. {
  520. case 0: PORTD |= (1 << 0); break;
  521. case 1: PORTD |= (1 << 1); break;
  522. case 2: PORTD |= (1 << 2); break;
  523. case 3: PORTD |= (1 << 3); break;
  524. case 4: PORTD |= (1 << 4); break;
  525. case 5: PORTD |= (1 << 5); break;
  526. case 6: PORTD |= (1 << 6); break;
  527. case 7: PORTD |= (1 << 7); break;
  528. case 8: PORTE |= (1 << 0); break;
  529. case 9: PORTE |= (1 << 1); break;
  530. case 10: PORTC |= (1 << 0); break;
  531. case 11: PORTC |= (1 << 1); break;
  532. case 12: PORTC |= (1 << 2); break;
  533. case 13: PORTC |= (1 << 3); break;
  534. case 14: PORTC |= (1 << 4); break;
  535. case 15: PORTC |= (1 << 5); break;
  536. case 16: PORTC |= (1 << 6); break;
  537. case 17: PORTC |= (1 << 7); break;
  538. default:
  539. break;
  540. }
  541. }
  542. inline uint16_t getADC(void)
  543. {
  544. ADCSRA |= (1 << ADIF); // clear int flag by writing 1.
  545. //wait for last read to complete.
  546. while ( !( ADCSRA & (1 << ADIF) ) );
  547. return ADC; // return sample
  548. }
  549. void sampleColumn( uint8_t column )
  550. {
  551. // ensure all probe lines are driven low, and chill for recovery delay.
  552. ADCSRA |= (1 << ADEN) | (1 << ADSC); // enable and start conversions
  553. PORTC &= ~C_MASK;
  554. PORTD &= ~D_MASK;
  555. PORTE &= ~E_MASK;
  556. PORTF = 0;
  557. DDRF = 0;
  558. recovery( OFF );
  559. strobe_w( column );
  560. hold_sample( OFF );
  561. SET_FULL_MUX( 0 );
  562. // Allow strobes to settle
  563. for ( uint8_t i = 0; i < STROBE_SETTLE; ++i ) { getADC(); }
  564. hold_sample( ON );
  565. uint8_t mux = 0;
  566. SET_FULL_MUX( mux );
  567. getADC(); // throw away; unknown mux.
  568. do {
  569. SET_FULL_MUX( mux + 1 ); // our *next* sample will use this
  570. // retrieve current read.
  571. uint16_t readVal = getADC();
  572. samples[column][mux] = readVal;
  573. // Update max sense sample table
  574. if ( readVal > sampleMax[column][mux] )
  575. {
  576. sampleMax[column][mux] = readVal;
  577. }
  578. mux++;
  579. } while ( mux < 8 );
  580. hold_sample( OFF );
  581. recovery( ON );
  582. // turn off adc.
  583. ADCSRA &= ~(1 << ADEN);
  584. // pull all columns' strobe-lines low.
  585. DDRC |= C_MASK;
  586. DDRD |= D_MASK;
  587. DDRE |= E_MASK;
  588. PORTC &= ~C_MASK;
  589. PORTD &= ~D_MASK;
  590. PORTE &= ~E_MASK;
  591. }
  592. void testColumn( uint8_t strobe )
  593. {
  594. uint16_t db_delta = 0;
  595. uint8_t db_sample = 0;
  596. uint16_t db_threshold = 0;
  597. uint8_t column = 0;
  598. uint8_t bit = 1;
  599. for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
  600. {
  601. uint16_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + mux];
  602. uint8_t key = (strobe << MUXES_COUNT_XSHIFT) + mux;
  603. // Check if this is a bad key (e.g. test point, or non-existent key)
  604. if ( keys_problem[key] )
  605. {
  606. // If the sample value of the problem key goes above initally recorded result + threshold
  607. // re-enable the key
  608. if ( (db_sample = samples[strobe][mux] >> 1) > keys_problem[key] + threshold )
  609. //if ( (db_sample = samples[strobe][mux] >> 1) < high_avg )
  610. {
  611. info_msg("Re-enabling problem key: ");
  612. printHex( key );
  613. print( NL );
  614. keys_problem[key] = 0;
  615. }
  616. // Do not waste any more cycles processing, regardless, a keypress cannot be detected
  617. continue;
  618. }
  619. // Keypress detected
  620. // db_sample (uint8_t), discard meaningless high bit, and garbage low bit
  621. if ( (db_sample = samples[strobe][mux] >> 1) > (db_threshold = threshold) + (db_delta = delta) )
  622. {
  623. column |= bit;
  624. key_activity++; // No longer idle, stop averaging ADC data
  625. key_idle = KEY_IDLE_SCANS; // Reset idle count-down
  626. // Only register keypresses once the warmup is complete, or not enough debounce info
  627. if ( keys_debounce[key] <= DEBOUNCE_THRESHOLD )
  628. {
  629. // Add to the Macro processing buffer if debounce criteria met
  630. // Automatically handles converting to a USB code and sending off to the PC
  631. if ( keys_debounce[key] == DEBOUNCE_THRESHOLD )
  632. {
  633. // Debug message, pressDebug CLI
  634. if ( enablePressDebug )
  635. {
  636. print("0x");
  637. printHex_op( key, 2 );
  638. print(" ");
  639. }
  640. // Initial Keypress
  641. Macro_keyState( key, 0x01 );
  642. }
  643. else if ( keys_debounce[key] >= DEBOUNCE_THRESHOLD )
  644. {
  645. // Held Key
  646. Macro_keyState( key, 0x02 );
  647. }
  648. keys_debounce[key]++;
  649. }
  650. // Long form key debugging
  651. if ( enableKeyDebug )
  652. {
  653. // Debug message
  654. // <key> [<strobe>:<mux>] : <sense val> : <delta + threshold> : <margin>
  655. dbug_msg("0x");
  656. printHex_op( key, 1 );
  657. print(" [");
  658. printInt8( strobe );
  659. print(":");
  660. printInt8( mux );
  661. print("] : ");
  662. printHex( db_sample ); // Sense
  663. print(" : ");
  664. printHex( db_threshold );
  665. print("+");
  666. printHex( db_delta );
  667. print("=");
  668. printHex( db_threshold + db_delta ); // Sense compare
  669. print(" : ");
  670. printHex( db_sample - ( db_threshold + db_delta ) ); // Margin
  671. print( NL );
  672. }
  673. }
  674. // Clear debounce entry if no keypress detected
  675. else
  676. {
  677. // Release Key
  678. if ( KeyIndex_BufferUsed > 0 && keys_debounce[key] >= DEBOUNCE_THRESHOLD )
  679. {
  680. Macro_keyState( key, 0x03 );
  681. }
  682. // Clear debounce entry
  683. keys_debounce[key] = 0;
  684. }
  685. bit <<= 1;
  686. }
  687. }
  688. void dumpSenseTable()
  689. {
  690. // Initial table alignment, with base threshold used for every key
  691. print("\033[1m");
  692. printHex( threshold );
  693. print("\033[0m ");
  694. // Print out headers first
  695. for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
  696. {
  697. print(" Mux \033[1m");
  698. printInt8( mux );
  699. print("\033[0m ");
  700. }
  701. print( NL );
  702. // Display the full strobe/sense table
  703. for ( uint8_t strober = 0; strober < total_strobes; ++strober )
  704. {
  705. uint8_t strobe = strobe_map[strober];
  706. // Display the strobe
  707. print("Strobe \033[1m");
  708. printHex( strobe );
  709. print("\033[0m ");
  710. // For each mux, display sense:threshold:delta
  711. for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
  712. {
  713. uint8_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + mux];
  714. uint8_t sample = samples[strobe][mux] >> 1;
  715. uint8_t max = sampleMax[strobe][mux] >> 1;
  716. // Indicate if the key is being pressed by displaying green
  717. if ( sample > delta + threshold )
  718. {
  719. print("\033[1;32m");
  720. }
  721. printHex_op( sample, 2 );
  722. print(":");
  723. printHex_op( max, 2 );
  724. print(":");
  725. printHex_op( delta, 2 );
  726. print("\033[0m ");
  727. }
  728. // New line for each strobe
  729. print( NL );
  730. }
  731. }
  732. // ----- CLI Command Functions -----
  733. // XXX Just an example command showing how to parse arguments (more complex than generally needed)
  734. void cliFunc_echo( char* args )
  735. {
  736. char* curArgs;
  737. char* arg1Ptr;
  738. char* arg2Ptr = args;
  739. // Parse args until a \0 is found
  740. while ( 1 )
  741. {
  742. print( NL ); // No \r\n by default after the command is entered
  743. curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
  744. CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
  745. // Stop processing args if no more are found
  746. if ( *arg1Ptr == '\0' )
  747. break;
  748. // Print out the arg
  749. dPrint( arg1Ptr );
  750. }
  751. }
  752. void cliFunc_avgDebug( char* args )
  753. {
  754. print( NL );
  755. // Args ignored, just toggling
  756. if ( enableAvgDebug )
  757. {
  758. info_print("Cap Sense averaging debug disabled.");
  759. enableAvgDebug = 0;
  760. }
  761. else
  762. {
  763. info_print("Cap Sense averaging debug enabled.");
  764. enableAvgDebug = 1;
  765. }
  766. }
  767. void cliFunc_keyDebug( char* args )
  768. {
  769. print( NL );
  770. // Args ignored, just toggling
  771. if ( enableKeyDebug )
  772. {
  773. info_print("Cap Sense key long debug disabled - pre debounce.");
  774. enableKeyDebug = 0;
  775. }
  776. else
  777. {
  778. info_print("Cap Sense key long debug enabled - pre debounce.");
  779. enableKeyDebug = 1;
  780. }
  781. }
  782. void cliFunc_pressDebug( char* args )
  783. {
  784. print( NL );
  785. // Args ignored, just toggling
  786. if ( enablePressDebug )
  787. {
  788. info_print("Cap Sense key debug disabled - post debounce.");
  789. enablePressDebug = 0;
  790. }
  791. else
  792. {
  793. info_print("Cap Sense key debug enabled - post debounce.");
  794. enablePressDebug = 1;
  795. }
  796. }
  797. void cliFunc_problemKeys( char* args )
  798. {
  799. print( NL );
  800. uint8_t count = 0;
  801. // Args ignored, just displaying
  802. // Display problem keys, and the sense value at the time
  803. for ( uint8_t key = 0; key < KEY_COUNT; key++ )
  804. {
  805. if ( keys_problem[key] )
  806. {
  807. if ( count++ == 0 )
  808. {
  809. warn_msg("Problem keys: ");
  810. }
  811. printHex( key );
  812. print(" (");
  813. printHex( keys_problem[key] );
  814. print(") " );
  815. }
  816. }
  817. }
  818. void cliFunc_senseDebug( char* args )
  819. {
  820. // Parse code from argument
  821. // NOTE: Only first argument is used
  822. char* arg1Ptr;
  823. char* arg2Ptr;
  824. CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
  825. // Default to a single print
  826. senseDebugCount = 1;
  827. // If there was an argument, use that instead
  828. if ( *arg1Ptr != '\0' )
  829. {
  830. senseDebugCount = decToInt( arg1Ptr );
  831. }
  832. }