15ec4ff71c
- Includes serial putchar and getchar cleanup (overall) - Moved avr-capsense to DPH (renaming) - Basic cleanup for including CLI on the avr architecture
1013 lines
23 KiB
C
1013 lines
23 KiB
C
/* Copyright (C) 2011-2013 by Joseph Makuch
|
|
* Additions by Jacob Alexander (2013-2014)
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 3.0 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// ----- Includes -----
|
|
|
|
// Compiler Includes
|
|
#include <Lib/ScanLib.h>
|
|
|
|
// Project Includes
|
|
#include <led.h>
|
|
#include <print.h>
|
|
|
|
// Local Includes
|
|
#include "scan_loop.h"
|
|
|
|
|
|
|
|
// ----- Defines -----
|
|
|
|
// TODO dfj defines...needs commenting and maybe some cleaning...
|
|
#define MAX_PRESS_DELTA_MV 450 // As measured from the Teensy ADC pin
|
|
#define THRESHOLD_MV (MAX_PRESS_DELTA_MV >> 1)
|
|
//(2560 / (0x3ff/2)) ~= 5
|
|
#define MV_PER_ADC 5
|
|
#define THRESHOLD (THRESHOLD_MV / MV_PER_ADC)
|
|
|
|
#define STROBE_SETTLE 1
|
|
|
|
#define TEST_KEY_STROBE (0x05)
|
|
#define TEST_KEY_MASK (1 << 0)
|
|
|
|
#define ADHSM 7
|
|
|
|
#define RIGHT_JUSTIFY 0
|
|
#define LEFT_JUSTIFY (0xff)
|
|
|
|
// set left or right justification here:
|
|
#define JUSTIFY_ADC RIGHT_JUSTIFY
|
|
#define ADLAR_MASK (1 << ADLAR)
|
|
|
|
#ifdef JUSTIFY_ADC
|
|
#define ADLAR_BITS ((ADLAR_MASK) & (JUSTIFY_ADC))
|
|
#else // defaults to right justification.
|
|
#define ADLAR_BITS 0
|
|
#endif
|
|
|
|
// full muxmask
|
|
#define FULL_MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2) | (1 << MUX3) | (1 << MUX4))
|
|
|
|
// F0-f7 pins only muxmask.
|
|
#define MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2))
|
|
|
|
// Strobe Masks
|
|
#define D_MASK (0xff)
|
|
#define E_MASK (0x03)
|
|
#define C_MASK (0xff)
|
|
|
|
// set ADC clock prescale
|
|
#define PRESCALE_MASK ((1 << ADPS0) | (1 << ADPS1) | (1 << ADPS2))
|
|
#define PRESCALE_SHIFT (ADPS0)
|
|
#define PRESCALE 3
|
|
|
|
// Max number of strobes supported by the hardware
|
|
// Strobe lines are detected at startup, extra strobes cause anomalies like phantom keypresses
|
|
#define MAX_STROBES 18
|
|
|
|
// Number of consecutive samples required to pass debounce
|
|
#define DEBOUNCE_THRESHOLD 5
|
|
|
|
#define MUXES_COUNT 8
|
|
#define MUXES_COUNT_XSHIFT 3
|
|
|
|
#define WARMUP_LOOPS ( 1024 )
|
|
#define WARMUP_STOP (WARMUP_LOOPS - 1)
|
|
|
|
#define SAMPLE_CONTROL 3
|
|
|
|
#define KEY_COUNT ((MAX_STROBES) * (MUXES_COUNT))
|
|
|
|
#define RECOVERY_CONTROL 1
|
|
#define RECOVERY_SOURCE 0
|
|
#define RECOVERY_SINK 2
|
|
|
|
#define ON 1
|
|
#define OFF 0
|
|
|
|
// mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
|
|
#define MUX_MIX 2
|
|
|
|
#define IDLE_COUNT_MASK 0xff
|
|
#define IDLE_COUNT_SHIFT 8
|
|
|
|
// av = (av << shift) - av + sample; av >>= shift
|
|
// e.g. 1 -> (av + sample) / 2 simple average of new and old
|
|
// 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new.
|
|
// 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new.
|
|
#define KEYS_AVERAGES_MIX_SHIFT 3
|
|
|
|
|
|
|
|
// ----- Macros -----
|
|
|
|
// Make sure we haven't overflowed the buffer
|
|
#define bufferAdd(byte) \
|
|
if ( KeyIndex_BufferUsed < KEYBOARD_BUFFER ) \
|
|
KeyIndex_Buffer[KeyIndex_BufferUsed++] = byte
|
|
|
|
// Select mux
|
|
#define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))
|
|
|
|
|
|
|
|
// ----- Variables -----
|
|
|
|
// Buffer used to inform the macro processing module which keys have been detected as pressed
|
|
volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
|
|
volatile uint8_t KeyIndex_BufferUsed;
|
|
|
|
|
|
// TODO dfj variables...needs cleaning up and commenting
|
|
|
|
// Variables used to calculate the starting sense value (averaging)
|
|
uint32_t full_avg = 0;
|
|
uint32_t high_avg = 0;
|
|
uint32_t low_avg = 0;
|
|
|
|
uint8_t high_count = 0;
|
|
uint8_t low_count = 0;
|
|
|
|
|
|
uint8_t ze_strober = 0;
|
|
|
|
uint16_t samples[MUXES_COUNT];
|
|
|
|
uint8_t cur_keymap[MAX_STROBES];
|
|
|
|
uint8_t keymap_change;
|
|
|
|
uint16_t threshold = THRESHOLD;
|
|
|
|
uint8_t column = 0;
|
|
|
|
uint16_t keys_averages_acc[KEY_COUNT];
|
|
uint16_t keys_averages [KEY_COUNT];
|
|
uint8_t keys_debounce [KEY_COUNT]; // Contains debounce statistics
|
|
uint8_t keys_problem [KEY_COUNT]; // Marks keys that should be ignored (determined by averaging at startup)
|
|
|
|
uint8_t full_samples[KEY_COUNT];
|
|
|
|
// TODO: change this to 'booting', then count down.
|
|
uint16_t boot_count = 0;
|
|
|
|
uint16_t idle_count = 0;
|
|
uint8_t idle = 1;
|
|
|
|
uint8_t error = 0;
|
|
uint16_t error_data = 0;
|
|
|
|
uint8_t total_strobes = MAX_STROBES;
|
|
uint8_t strobe_map[MAX_STROBES];
|
|
|
|
uint8_t dump_count = 0;
|
|
|
|
|
|
|
|
// ----- Function Declarations -----
|
|
|
|
void dump( void );
|
|
|
|
void recovery( uint8_t on );
|
|
|
|
int sampleColumn( uint8_t column );
|
|
|
|
void capsense_scan( void );
|
|
|
|
void setup_ADC( void );
|
|
|
|
void strobe_w( uint8_t strobe_num );
|
|
|
|
uint8_t testColumn( uint8_t strobe );
|
|
|
|
|
|
|
|
// ----- Functions -----
|
|
|
|
// Initial setup for cap sense controller
|
|
inline void scan_setup()
|
|
{
|
|
// TODO dfj code...needs cleanup + commenting...
|
|
setup_ADC();
|
|
|
|
DDRC = C_MASK;
|
|
PORTC = 0;
|
|
DDRD = D_MASK;
|
|
PORTD = 0;
|
|
DDRE = E_MASK;
|
|
PORTE = 0 ;
|
|
|
|
// Hardcoded strobes for debugging
|
|
// Strobes start at 0 and go to 17 (18), not all Model Fs use all of the available strobes
|
|
// The single row ribbon connector Model Fs only have a max of 16 strobes
|
|
#define KISHSAVER_STROBE
|
|
//#define KISHSAVER_OLD_STROBE
|
|
//#define TERMINAL_6110668_OLD_STROBE
|
|
//#define UNSAVER_OLD_STROBE
|
|
#ifdef KISHSAVER_OLD_STROBE
|
|
total_strobes = 9;
|
|
|
|
strobe_map[0] = 2; // Kishsaver doesn't use strobe 0 and 1
|
|
strobe_map[1] = 3;
|
|
strobe_map[2] = 4;
|
|
strobe_map[3] = 5;
|
|
strobe_map[4] = 6;
|
|
strobe_map[5] = 7;
|
|
strobe_map[6] = 8;
|
|
strobe_map[7] = 9;
|
|
strobe_map[8] = 15; // Test point strobe (3 test points, sense 1, 4, 5)
|
|
#elif defined(KISHSAVER_STROBE)
|
|
total_strobes = 9;
|
|
|
|
strobe_map[0] = 15; // Kishsaver doesn't use strobe 0 and 1
|
|
strobe_map[1] = 14;
|
|
strobe_map[2] = 13;
|
|
strobe_map[3] = 12;
|
|
strobe_map[4] = 11;
|
|
strobe_map[5] = 10;
|
|
strobe_map[6] = 9;
|
|
strobe_map[7] = 8;
|
|
strobe_map[8] = 2; // Test point strobe (3 test points, sense 1, 4, 5)
|
|
#elif defined(TERMINAL_6110668_OLD_STROBE)
|
|
total_strobes = 16;
|
|
|
|
strobe_map[0] = 0;
|
|
strobe_map[1] = 1;
|
|
strobe_map[2] = 2;
|
|
strobe_map[3] = 3;
|
|
strobe_map[4] = 4;
|
|
strobe_map[5] = 5;
|
|
strobe_map[6] = 6;
|
|
strobe_map[7] = 7;
|
|
strobe_map[8] = 8;
|
|
strobe_map[9] = 9;
|
|
strobe_map[10] = 10;
|
|
strobe_map[11] = 11;
|
|
strobe_map[12] = 12;
|
|
strobe_map[13] = 13;
|
|
strobe_map[14] = 14;
|
|
strobe_map[15] = 15;
|
|
#elif defined(UNSAVER_OLD_STROBE)
|
|
total_strobes = 14;
|
|
|
|
strobe_map[0] = 0;
|
|
strobe_map[1] = 1;
|
|
strobe_map[2] = 2;
|
|
strobe_map[3] = 3;
|
|
strobe_map[4] = 4;
|
|
strobe_map[5] = 5;
|
|
strobe_map[6] = 6;
|
|
strobe_map[7] = 7;
|
|
strobe_map[8] = 8;
|
|
strobe_map[9] = 9;
|
|
strobe_map[10] = 10;
|
|
strobe_map[11] = 11;
|
|
strobe_map[12] = 12;
|
|
strobe_map[13] = 13;
|
|
#else
|
|
// Strobe detection
|
|
// TODO
|
|
#endif
|
|
|
|
// TODO all this code should probably be in scan_resetKeyboard
|
|
for ( int i = 0; i < total_strobes; ++i)
|
|
{
|
|
cur_keymap[i] = 0;
|
|
}
|
|
|
|
// Reset debounce table
|
|
for ( int i = 0; i < KEY_COUNT; ++i )
|
|
{
|
|
keys_debounce[i] = 0;
|
|
}
|
|
|
|
// Warm things up a bit before we start collecting data, taking real samples.
|
|
for ( uint8_t i = 0; i < total_strobes; ++i )
|
|
{
|
|
sampleColumn( strobe_map[i] );
|
|
}
|
|
|
|
|
|
// Reset the keyboard before scanning, we might be in a wierd state
|
|
// Also sets the KeyIndex_BufferUsed to 0
|
|
scan_resetKeyboard();
|
|
}
|
|
|
|
|
|
// Main Detection Loop
|
|
// This is where the important stuff happens
|
|
inline uint8_t scan_loop()
|
|
{
|
|
capsense_scan();
|
|
|
|
// Error case, should not occur in normal operation
|
|
if ( error )
|
|
{
|
|
erro_msg("Problem detected... ");
|
|
|
|
// Keymap scan debug
|
|
for ( uint8_t i = 0; i < total_strobes; ++i )
|
|
{
|
|
printHex(cur_keymap[strobe_map[i]]);
|
|
print(" ");
|
|
}
|
|
|
|
print(" : ");
|
|
printHex(error);
|
|
error = 0;
|
|
print(" : ");
|
|
printHex(error_data);
|
|
error_data = 0;
|
|
|
|
// Display keymaps and other debug information if warmup completede
|
|
if ( boot_count >= WARMUP_LOOPS )
|
|
{
|
|
dump();
|
|
}
|
|
}
|
|
|
|
|
|
// Return non-zero if macro and USB processing should be delayed
|
|
// Macro processing will always run if returning 0
|
|
// USB processing only happens once the USB send timer expires, if it has not, scan_loop will be called
|
|
// after the macro processing has been completed
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Reset Keyboard
|
|
void scan_resetKeyboard( void )
|
|
{
|
|
// Empty buffer, now that keyboard has been reset
|
|
KeyIndex_BufferUsed = 0;
|
|
}
|
|
|
|
|
|
// Send data to keyboard
|
|
// NOTE: Only used for converters, since the scan module shouldn't handle sending data in a controller
|
|
uint8_t scan_sendData( uint8_t dataPayload )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Reset/Hold keyboard
|
|
// NOTE: Only used for converters, not needed for full controllers
|
|
void scan_lockKeyboard( void )
|
|
{
|
|
}
|
|
|
|
// NOTE: Only used for converters, not needed for full controllers
|
|
void scan_unlockKeyboard( void )
|
|
{
|
|
}
|
|
|
|
|
|
// Signal KeyIndex_Buffer that it has been properly read
|
|
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
|
|
void scan_finishedWithBuffer( uint8_t sentKeys )
|
|
{
|
|
// Convenient place to clear the KeyIndex_Buffer
|
|
KeyIndex_BufferUsed = 0;
|
|
return;
|
|
}
|
|
|
|
|
|
// Signal KeyIndex_Buffer that it has been properly read and sent out by the USB module
|
|
// NOTE: Only really required for implementing "tricks" in converters for odd protocols
|
|
void scan_finishedWithUSBBuffer( uint8_t sentKeys )
|
|
{
|
|
return;
|
|
}
|
|
|
|
|
|
inline void capsense_scan()
|
|
{
|
|
// Accumulated average used for the next scan
|
|
uint32_t cur_full_avg = 0;
|
|
uint32_t cur_high_avg = 0;
|
|
|
|
// Reset average counters
|
|
low_avg = 0;
|
|
low_count = 0;
|
|
|
|
high_count = 0;
|
|
|
|
// Scan each of the mapped strobes in the matrix
|
|
for ( uint8_t strober = 0; strober < total_strobes; ++strober )
|
|
{
|
|
uint8_t map_strobe = strobe_map[strober];
|
|
|
|
uint8_t tries = 1;
|
|
while ( tries++ && sampleColumn( map_strobe ) ) { tries &= 0x7; } // don't waste this one just because the last one was poop.
|
|
|
|
// Only process sense data if warmup is finished
|
|
if ( boot_count >= WARMUP_LOOPS )
|
|
{
|
|
column = testColumn( map_strobe );
|
|
|
|
idle |= column; // if column has any pressed keys, then we are not idle.
|
|
|
|
// TODO Is this needed anymore? Really only helps debug -HaaTa
|
|
if( column != cur_keymap[map_strobe] && ( boot_count >= WARMUP_LOOPS ) )
|
|
{
|
|
cur_keymap[map_strobe] = column;
|
|
keymap_change = 1;
|
|
}
|
|
|
|
idle |= keymap_change; // if any keys have changed inc. released, then we are not idle.
|
|
}
|
|
|
|
if ( error == 0x50 )
|
|
{
|
|
error_data |= (((uint16_t)map_strobe) << 12);
|
|
}
|
|
|
|
uint8_t strobe_line = map_strobe << MUXES_COUNT_XSHIFT;
|
|
for ( int i = 0; i < MUXES_COUNT; ++i )
|
|
{
|
|
// discard sketchy low bit, and meaningless high bits.
|
|
uint8_t sample = samples[i] >> 1;
|
|
full_samples[strobe_line + i] = sample;
|
|
keys_averages_acc[strobe_line + i] += sample;
|
|
}
|
|
|
|
// Accumulate 3 total averages (used for determining starting average during warmup)
|
|
// full_avg - Average of all sampled lines on the previous scan set
|
|
// cur_full_avg - Average of all sampled lines for this scan set
|
|
// high_avg - Average of all sampled lines above full_avg on the previous scan set
|
|
// cur_high_avg - Average of all sampled lines above full_avg
|
|
// low_avg - Average of all sampled lines below or equal to full_avg
|
|
if ( boot_count < WARMUP_LOOPS )
|
|
{
|
|
for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
|
|
{
|
|
uint8_t sample = samples[i] >> 1;
|
|
|
|
// Sample is high, add it to high avg
|
|
if ( sample > full_avg )
|
|
{
|
|
high_count++;
|
|
cur_high_avg += sample;
|
|
}
|
|
// Sample is low, add it to low avg
|
|
else
|
|
{
|
|
low_count++;
|
|
low_avg += sample;
|
|
}
|
|
|
|
// If sample is higher than previous high_avg, then mark as "problem key"
|
|
keys_problem[strobe_line + i] = sample > high_avg ? sample : 0;
|
|
|
|
// Prepare for next average
|
|
cur_full_avg += sample;
|
|
}
|
|
}
|
|
} // for strober
|
|
|
|
// Update total sense average (only during warm-up)
|
|
if ( boot_count < WARMUP_LOOPS )
|
|
{
|
|
full_avg = cur_full_avg / (total_strobes * MUXES_COUNT);
|
|
high_avg = cur_high_avg / high_count;
|
|
low_avg /= low_count;
|
|
|
|
// Update the base average value using the low_avg (best chance of not ignoring a keypress)
|
|
for ( int i = 0; i < KEY_COUNT; ++i )
|
|
{
|
|
keys_averages[i] = low_avg;
|
|
keys_averages_acc[i] = low_avg;
|
|
}
|
|
}
|
|
|
|
#ifdef VERIFY_TEST_PAD
|
|
// verify test key is not down.
|
|
if ( ( cur_keymap[TEST_KEY_STROBE] & TEST_KEY_MASK ) )
|
|
{
|
|
error = 0x05;
|
|
error_data = cur_keymap[TEST_KEY_STROBE] << 8;
|
|
error_data += full_samples[TEST_KEY_STROBE * 8];
|
|
}
|
|
#endif
|
|
|
|
/** aggregate if booting, or if idle;
|
|
* else, if not booting, check for dirty USB.
|
|
* */
|
|
|
|
idle_count++;
|
|
idle_count &= IDLE_COUNT_MASK;
|
|
|
|
// Warm up voltage references
|
|
if ( boot_count < WARMUP_LOOPS )
|
|
{
|
|
boot_count++;
|
|
|
|
switch ( boot_count )
|
|
{
|
|
// First loop
|
|
case 1:
|
|
// Show msg at first iteration only
|
|
info_msg("Warming up the voltage references");
|
|
break;
|
|
// Middle iterations
|
|
case 300:
|
|
case 600:
|
|
case 900:
|
|
case 1200:
|
|
print(".");
|
|
break;
|
|
// Last loop
|
|
case WARMUP_STOP:
|
|
print("\n");
|
|
info_msg("Warmup finished using ");
|
|
printInt16( WARMUP_LOOPS );
|
|
print(" iterations\n");
|
|
|
|
// Display the final calculated averages of all the sensed strobes
|
|
info_msg("Full average (");
|
|
printInt8( total_strobes * MUXES_COUNT );
|
|
print("): ");
|
|
printHex( full_avg );
|
|
|
|
print(" High average (");
|
|
printInt8( high_count );
|
|
print("): ");
|
|
printHex( high_avg );
|
|
|
|
print(" Low average (");
|
|
printInt8( low_count );
|
|
print("): ");
|
|
printHex( low_avg );
|
|
print("\n");
|
|
|
|
// Display problem keys, and the sense value at the time
|
|
for ( uint8_t key = 0; key < KEY_COUNT; key++ )
|
|
{
|
|
if ( keys_problem[key] )
|
|
{
|
|
warn_msg("Problem key detected: ");
|
|
printHex( key );
|
|
print(" (");
|
|
printHex( keys_problem[key] );
|
|
print(")\n");
|
|
}
|
|
}
|
|
|
|
info_print("If problem keys were detected, and were being held down, they will be reset as soon as let go");
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Reset accumulators and idle flag/counter
|
|
if ( keymap_change )
|
|
{
|
|
for ( uint8_t c = 0; c < KEY_COUNT; ++c ) { keys_averages_acc[c] = 0; }
|
|
idle_count = 0;
|
|
idle = 0;
|
|
|
|
keymap_change = 0;
|
|
}
|
|
|
|
if ( !idle_count )
|
|
{
|
|
if( idle )
|
|
{
|
|
// aggregate
|
|
for ( uint8_t i = 0; i < KEY_COUNT; ++i )
|
|
{
|
|
uint16_t acc = keys_averages_acc[i] >> IDLE_COUNT_SHIFT;
|
|
uint32_t av = keys_averages[i];
|
|
|
|
av = (av << KEYS_AVERAGES_MIX_SHIFT) - av + acc;
|
|
av >>= KEYS_AVERAGES_MIX_SHIFT;
|
|
|
|
keys_averages[i] = av;
|
|
keys_averages_acc[i] = 0;
|
|
}
|
|
}
|
|
|
|
if ( boot_count >= WARMUP_LOOPS )
|
|
{
|
|
dump();
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
void setup_ADC()
|
|
{
|
|
// disable adc digital pins.
|
|
DIDR1 |= (1 << AIN0D) | (1<<AIN1D); // set disable on pins 1,0.
|
|
DDRF = 0x0;
|
|
PORTF = 0x0;
|
|
uint8_t mux = 0 & 0x1f; // 0 == first. // 0x1e = 1.1V ref.
|
|
|
|
// 0 = external aref 1,1 = 2.56V internal ref
|
|
uint8_t aref = ((1 << REFS1) | (1 << REFS0)) & ((1 << REFS1) | (1 << REFS0));
|
|
uint8_t adate = (1 << ADATE) & (1 << ADATE); // trigger enable
|
|
uint8_t trig = 0 & ((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2)); // 0 = free running
|
|
// ps2, ps1 := /64 ( 2^6 ) ps2 := /16 (2^4), ps1 := 4, ps0 :=2, PS1,PS0 := 8 (2^8)
|
|
uint8_t prescale = ( ((PRESCALE) << PRESCALE_SHIFT) & PRESCALE_MASK ); // 001 == 2^1 == 2
|
|
uint8_t hispeed = (1 << ADHSM);
|
|
uint8_t en_mux = (1 << ACME);
|
|
|
|
ADCSRA = (1 << ADEN) | prescale; // ADC enable
|
|
|
|
// select ref.
|
|
//ADMUX |= ((1 << REFS1) | (1 << REFS0)); // 2.56 V internal.
|
|
//ADMUX |= ((1 << REFS0) ); // Vcc with external cap.
|
|
//ADMUX &= ~((1 << REFS1) | (1 << REFS0)); // 0,0 : aref.
|
|
ADMUX = aref | mux | ADLAR_BITS;
|
|
|
|
// set free-running
|
|
ADCSRA |= adate; // trigger enable
|
|
ADCSRB = en_mux | hispeed | trig | (ADCSRB & ~((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2))); // trigger select free running
|
|
|
|
ADCSRA |= (1 << ADEN); // ADC enable
|
|
ADCSRA |= (1 << ADSC); // start conversions q
|
|
}
|
|
|
|
|
|
void recovery( uint8_t on )
|
|
{
|
|
DDRB |= (1 << RECOVERY_CONTROL);
|
|
PORTB &= ~(1 << RECOVERY_SINK); // SINK always zero
|
|
DDRB &= ~(1 << RECOVERY_SOURCE); // SOURCE high imp
|
|
|
|
if ( on )
|
|
{
|
|
// set strobes to sink to gnd.
|
|
DDRC |= C_MASK;
|
|
DDRD |= D_MASK;
|
|
DDRE |= E_MASK;
|
|
|
|
PORTC &= ~C_MASK;
|
|
PORTD &= ~D_MASK;
|
|
PORTE &= ~E_MASK;
|
|
|
|
DDRB |= (1 << RECOVERY_SINK); // SINK pull
|
|
PORTB |= (1 << RECOVERY_CONTROL);
|
|
PORTB |= (1 << RECOVERY_SOURCE); // SOURCE high
|
|
DDRB |= (1 << RECOVERY_SOURCE);
|
|
}
|
|
else
|
|
{
|
|
PORTB &= ~(1 << RECOVERY_CONTROL);
|
|
DDRB &= ~(1 << RECOVERY_SOURCE);
|
|
PORTB &= ~(1 << RECOVERY_SOURCE); // SOURCE low
|
|
DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp
|
|
}
|
|
}
|
|
|
|
|
|
void hold_sample( uint8_t on )
|
|
{
|
|
if ( !on )
|
|
{
|
|
PORTB |= (1 << SAMPLE_CONTROL);
|
|
DDRB |= (1 << SAMPLE_CONTROL);
|
|
}
|
|
else
|
|
{
|
|
DDRB |= (1 << SAMPLE_CONTROL);
|
|
PORTB &= ~(1 << SAMPLE_CONTROL);
|
|
}
|
|
}
|
|
|
|
|
|
void strobe_w( uint8_t strobe_num )
|
|
{
|
|
PORTC &= ~(C_MASK);
|
|
PORTD &= ~(D_MASK);
|
|
PORTE &= ~(E_MASK);
|
|
|
|
// Strobe table
|
|
// Not all strobes are used depending on which are detected
|
|
switch ( strobe_num )
|
|
{
|
|
|
|
case 0: PORTD |= (1 << 0); break;
|
|
case 1: PORTD |= (1 << 1); break;
|
|
case 2: PORTD |= (1 << 2); break;
|
|
case 3: PORTD |= (1 << 3); break;
|
|
case 4: PORTD |= (1 << 4); break;
|
|
case 5: PORTD |= (1 << 5); break;
|
|
case 6: PORTD |= (1 << 6); break;
|
|
case 7: PORTD |= (1 << 7); break;
|
|
|
|
case 8: PORTE |= (1 << 0); break;
|
|
case 9: PORTE |= (1 << 1); break;
|
|
|
|
case 10: PORTC |= (1 << 0); break;
|
|
case 11: PORTC |= (1 << 1); break;
|
|
case 12: PORTC |= (1 << 2); break;
|
|
case 13: PORTC |= (1 << 3); break;
|
|
case 14: PORTC |= (1 << 4); break;
|
|
case 15: PORTC |= (1 << 5); break;
|
|
case 16: PORTC |= (1 << 6); break;
|
|
case 17: PORTC |= (1 << 7); break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
inline uint16_t getADC(void)
|
|
{
|
|
ADCSRA |= (1 << ADIF); // clear int flag by writing 1.
|
|
|
|
//wait for last read to complete.
|
|
while ( !( ADCSRA & (1 << ADIF) ) );
|
|
|
|
return ADC; // return sample
|
|
}
|
|
|
|
|
|
int sampleColumn_8x( uint8_t column, uint16_t * buffer )
|
|
{
|
|
// ensure all probe lines are driven low, and chill for recovery delay.
|
|
ADCSRA |= (1 << ADEN) | (1 << ADSC); // enable and start conversions
|
|
|
|
PORTC &= ~C_MASK;
|
|
PORTD &= ~D_MASK;
|
|
PORTE &= ~E_MASK;
|
|
|
|
PORTF = 0;
|
|
DDRF = 0;
|
|
|
|
recovery( OFF );
|
|
strobe_w( column );
|
|
|
|
hold_sample( OFF );
|
|
SET_FULL_MUX( 0 );
|
|
|
|
// Allow strobes to settle
|
|
for ( uint8_t i = 0; i < STROBE_SETTLE; ++i ) { getADC(); }
|
|
|
|
hold_sample( ON );
|
|
|
|
uint8_t mux = 0;
|
|
SET_FULL_MUX( mux );
|
|
getADC(); // throw away; unknown mux.
|
|
do {
|
|
SET_FULL_MUX( mux + 1 ); // our *next* sample will use this
|
|
|
|
// retrieve current read.
|
|
buffer[mux] = getADC();
|
|
mux++;
|
|
|
|
} while ( mux < 8 );
|
|
|
|
hold_sample( OFF );
|
|
recovery( ON );
|
|
|
|
// turn off adc.
|
|
ADCSRA &= ~(1 << ADEN);
|
|
|
|
// pull all columns' strobe-lines low.
|
|
DDRC |= C_MASK;
|
|
DDRD |= D_MASK;
|
|
DDRE |= E_MASK;
|
|
|
|
PORTC &= ~C_MASK;
|
|
PORTD &= ~D_MASK;
|
|
PORTE &= ~E_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int sampleColumn( uint8_t column )
|
|
{
|
|
int rval = 0;
|
|
|
|
rval = sampleColumn_8x( column, samples );
|
|
|
|
return rval;
|
|
}
|
|
|
|
|
|
uint8_t testColumn( uint8_t strobe )
|
|
{
|
|
uint16_t db_delta = 0;
|
|
uint8_t db_sample = 0;
|
|
uint16_t db_threshold = 0;
|
|
|
|
uint8_t column = 0;
|
|
uint8_t bit = 1;
|
|
|
|
for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
|
|
{
|
|
uint16_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + mux];
|
|
|
|
uint8_t key = (strobe << MUXES_COUNT_XSHIFT) + mux;
|
|
|
|
// Check if this is a bad key (e.g. test point, or non-existent key)
|
|
if ( keys_problem[key] )
|
|
{
|
|
// If the sample value of the problem key goes below full_avg (overall initial average)
|
|
// re-enable the key
|
|
if ( (db_sample = samples[mux] >> 1) < full_avg )
|
|
{
|
|
info_msg("Re-enabling problem key: ");
|
|
printHex( key );
|
|
print("\n");
|
|
|
|
keys_problem[key] = 0;
|
|
}
|
|
// Otherwise, don't waste any more cycles processing the problem key
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Keypress detected
|
|
// db_sample (uint8_t), discard meaningless high bit, and garbage low bit
|
|
if ( (db_sample = samples[mux] >> 1) > (db_threshold = threshold) + (db_delta = delta) )
|
|
{
|
|
column |= bit;
|
|
|
|
// Only register keypresses once the warmup is complete, or not enough debounce info
|
|
if ( keys_debounce[key] <= DEBOUNCE_THRESHOLD )
|
|
{
|
|
// Add to the Macro processing buffer if debounce criteria met
|
|
// Automatically handles converting to a USB code and sending off to the PC
|
|
if ( keys_debounce[key] == DEBOUNCE_THRESHOLD )
|
|
{
|
|
//#define KEYSCAN_DEBOUNCE_DEBUG
|
|
#ifdef KEYSCAN_DEBOUNCE_DEBUG
|
|
// Debug message
|
|
print("0x");
|
|
printHex_op( key, 2 );
|
|
print(" ");
|
|
#endif
|
|
|
|
// Only add the key to the buffer once
|
|
// NOTE: Buffer can easily handle multiple adds, just more efficient
|
|
// and nicer debug messages :P
|
|
//bufferAdd( key );
|
|
}
|
|
|
|
keys_debounce[key]++;
|
|
|
|
#define KEYSCAN_THRESHOLD_DEBUG
|
|
#ifdef KEYSCAN_THRESHOLD_DEBUG
|
|
// Debug message
|
|
// <key> [<strobe>:<mux>] : <sense val> : <delta + threshold> : <margin>
|
|
dbug_msg("0x");
|
|
printHex_op( key, 2 );
|
|
print(" [");
|
|
printInt8( strobe );
|
|
print(":");
|
|
printInt8( mux );
|
|
print("] : ");
|
|
printHex( db_sample ); // Sense
|
|
print(" : ");
|
|
printHex( db_threshold );
|
|
print("+");
|
|
printHex( db_delta );
|
|
print("=");
|
|
printHex( db_threshold + db_delta ); // Sense compare
|
|
print(" : ");
|
|
printHex( db_sample - ( db_threshold + db_delta ) ); // Margin
|
|
print("\n");
|
|
#endif
|
|
}
|
|
}
|
|
// Clear debounce entry if no keypress detected
|
|
else
|
|
{
|
|
// If the key was previously pressed, remove from the buffer
|
|
for ( uint8_t c = 0; c < KeyIndex_BufferUsed; c++ )
|
|
{
|
|
// Key to release found
|
|
if ( KeyIndex_Buffer[c] == key )
|
|
{
|
|
// Shift keys from c position
|
|
for ( uint8_t k = c; k < KeyIndex_BufferUsed - 1; k++ )
|
|
KeyIndex_Buffer[k] = KeyIndex_Buffer[k + 1];
|
|
|
|
// Decrement Buffer
|
|
KeyIndex_BufferUsed--;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
// Clear debounce entry
|
|
keys_debounce[key] = 0;
|
|
}
|
|
|
|
bit <<= 1;
|
|
}
|
|
return column;
|
|
}
|
|
|
|
|
|
void dump(void) {
|
|
|
|
#ifdef DEBUG_FULL_SAMPLES_AVERAGES
|
|
// we don't want to debug-out during the measurements.
|
|
if ( !dump_count )
|
|
{
|
|
// Averages currently set per key
|
|
for ( int i = 0; i < KEY_COUNT; ++i )
|
|
{
|
|
if ( !(i & 0x0f) )
|
|
{
|
|
print("\n");
|
|
}
|
|
else if ( !(i & 0x07) )
|
|
{
|
|
print(" ");
|
|
}
|
|
|
|
print(" ");
|
|
printHex( keys_averages[i] );
|
|
}
|
|
|
|
print("\n");
|
|
|
|
// Previously read full ADC scans?
|
|
for ( int i = 0; i< KEY_COUNT; ++i)
|
|
{
|
|
if ( !(i & 0x0f) )
|
|
{
|
|
print("\n");
|
|
}
|
|
else if ( !(i & 0x07) )
|
|
{
|
|
print(" ");
|
|
}
|
|
|
|
print(" ");
|
|
printHex(full_samples[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef DEBUG_STROBE_SAMPLES_AVERAGES
|
|
// Per strobe information
|
|
uint8_t cur_strober = ze_strober;
|
|
print("\n");
|
|
|
|
printHex(cur_strober);
|
|
|
|
// Previously read ADC scans on current strobe
|
|
print(" :");
|
|
for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
|
|
{
|
|
print(" ");
|
|
printHex(full_samples[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
|
|
}
|
|
|
|
// Averages current set on current strobe
|
|
print(" :");
|
|
|
|
for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
|
|
{
|
|
print(" ");
|
|
printHex(keys_averages[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef DEBUG_USB_KEYMAP
|
|
print("\n ");
|
|
|
|
// Current keymap values
|
|
for ( uint8_t i = 0; i < total_strobes; ++i )
|
|
{
|
|
printHex(cur_keymap[i]);
|
|
print(" ");
|
|
}
|
|
#endif
|
|
|
|
ze_strober++;
|
|
ze_strober &= 0xf;
|
|
|
|
dump_count++;
|
|
dump_count &= 0x0f;
|
|
}
|
|
|