Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/ISSILed/led_scan.c
Jacob Alexander ff0c45ec8f Initial support for the ICPad
- Basic support for up to 4 ISSI chips (and partial support for 16 chip configurations)
- Initial USB mux support
  * Required USB re-init procedure
- Initial interconnect mux support
  * Required some state reset commands
2015-11-12 22:21:32 +13:00

1159 lines
28 KiB
C

/* Copyright (C) 2014-2015 by Jacob Alexander
*
* This file is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this file. If not, see <http://www.gnu.org/licenses/>.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <cli.h>
#include <kll_defs.h>
#include <led.h>
#include <print.h>
// Interconnect module if compiled in
#if defined(ConnectEnabled_define)
#include <connect_scan.h>
#endif
// Local Includes
#include "led_scan.h"
// ----- Defines -----
// Increase buffer sizes for RGB
#ifdef ISSI_RGB_define
#define I2C_TxBufferLength 600
#define I2C_RxBufferLength 16
#else
#define I2C_TxBufferLength 300
#define I2C_RxBufferLength 8
#endif
#define LED_BufferLength 144
#define LED_EnableBufferLength 18
#define LED_TotalChannels (144 * ISSI_Chips_define)
// ISSI Addresses
// IS31FL3731 (max 4 channels per bus)
#if 1
#define ISSI_Ch1 0xE8
#define ISSI_Ch2 0xEA
#define ISSI_Ch3 0xEC
#define ISSI_Ch4 0xEE
// IS31FL3732 (max 16 channels per bus)
#else
#define ISSI_Ch1 0xB0
#define ISSI_Ch2 0xB2
#define ISSI_Ch3 0xB4
#define ISSI_Ch4 0xB6
#endif
// ----- Macros -----
#define LED_MaskDefine(ch) \
{ \
ISSI_Ch##ch, /* I2C address */ \
0x00, /* Starting register address */ \
{ ISSILedMask##ch##_define }, \
}
#define LED_BrightnessDefine(ch) \
{ \
ISSI_Ch##ch, /* I2C address */ \
0x24, /* Starting register address */ \
{ ISSILedBrightness##ch##_define }, \
}
// ----- Structs -----
typedef struct I2C_Buffer {
uint16_t head;
uint16_t tail;
uint8_t sequencePos;
uint16_t size;
uint8_t *buffer;
} I2C_Buffer;
typedef struct LED_Buffer {
uint8_t i2c_addr;
uint8_t reg_addr;
uint8_t buffer[LED_BufferLength];
} LED_Buffer;
typedef struct LED_EnableBuffer {
uint8_t i2c_addr;
uint8_t reg_addr;
uint8_t buffer[LED_EnableBufferLength];
} LED_EnableBuffer;
// ----- Function Declarations -----
// CLI Functions
void cliFunc_i2cRecv ( char* args );
void cliFunc_i2cSend ( char* args );
void cliFunc_ledCtrl ( char* args );
void cliFunc_ledRPage( char* args );
void cliFunc_ledStart( char* args );
void cliFunc_ledTest ( char* args );
void cliFunc_ledWPage( char* args );
void cliFunc_ledZero ( char* args );
uint8_t I2C_TxBufferPop();
void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer );
uint16_t I2C_BufferLen( I2C_Buffer *buffer );
uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen );
// ----- Variables -----
// Scan Module command dictionary
CLIDict_Entry( i2cRecv, "Send I2C sequence of bytes and expect a reply of 1 byte on the last sequence." NL "\t\tUse |'s to split sequences with a stop." );
CLIDict_Entry( i2cSend, "Send I2C sequence of bytes. Use |'s to split sequences with a stop." );
CLIDict_Entry( ledCtrl, "Basic LED control. Args: <mode> <amount> [<index>]" );
CLIDict_Entry( ledRPage, "Read the given register page." );
CLIDict_Entry( ledStart, "Disable software shutdown." );
CLIDict_Entry( ledTest, "Test out the led pages." );
CLIDict_Entry( ledWPage, "Write to given register page starting at address. i.e. 0xE8 0x2 0x24 0xF0 0x12" );
CLIDict_Entry( ledZero, "Zero out LED register pages (non-configuration)." );
CLIDict_Def( ledCLIDict, "ISSI LED Module Commands" ) = {
CLIDict_Item( i2cRecv ),
CLIDict_Item( i2cSend ),
CLIDict_Item( ledCtrl ),
CLIDict_Item( ledRPage ),
CLIDict_Item( ledStart ),
CLIDict_Item( ledTest ),
CLIDict_Item( ledWPage ),
CLIDict_Item( ledZero ),
{ 0, 0, 0 } // Null entry for dictionary end
};
// Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented
// Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent
volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ];
volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ];
volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, (uint8_t*)I2C_TxBufferPtr };
volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, (uint8_t*)I2C_RxBufferPtr };
LED_Buffer LED_pageBuffer[ ISSI_Chips_define ];
// Enable mask and default brightness for ISSI chip channel
const LED_EnableBuffer LED_ledEnableMask[ISSI_Chips_define] = {
LED_MaskDefine( 1 ),
#if ISSI_Chips_define >= 2
LED_MaskDefine( 2 ),
#endif
#if ISSI_Chips_define >= 3
LED_MaskDefine( 3 ),
#endif
#if ISSI_Chips_define >= 4
LED_MaskDefine( 4 ),
#endif
};
// Default LED brightness
const LED_Buffer LED_defaultBrightness[ISSI_Chips_define] = {
LED_BrightnessDefine( 1 ),
#if ISSI_Chips_define >= 2
LED_BrightnessDefine( 2 ),
#endif
#if ISSI_Chips_define >= 3
LED_BrightnessDefine( 3 ),
#endif
#if ISSI_Chips_define >= 4
LED_BrightnessDefine( 4 ),
#endif
};
#if ISSI_Chips_define >= 5
#error "Invalid number of ISSI Chips"
#endif
// ----- Interrupt Functions -----
void i2c0_isr()
{
cli(); // Disable Interrupts
uint8_t status = I2C0_S; // Read I2C Bus status
// Master Mode Transmit
if ( I2C0_C1 & I2C_C1_TX )
{
// Check current use of the I2C bus
// Currently sending data
if ( I2C_TxBuffer.sequencePos > 0 )
{
// Make sure slave sent an ACK
if ( status & I2C_S_RXAK )
{
// NACK Detected, disable interrupt
erro_print("I2C NAK detected...");
I2C0_C1 = I2C_C1_IICEN;
// Abort Tx Buffer
I2C_TxBuffer.head = 0;
I2C_TxBuffer.tail = 0;
I2C_TxBuffer.sequencePos = 0;
}
else
{
// Transmit byte
I2C0_D = I2C_TxBufferPop();
}
}
// Receiving data
else if ( I2C_RxBuffer.sequencePos > 0 )
{
// Master Receive, addr sent
if ( status & I2C_S_ARBL )
{
// Arbitration Lost
erro_print("Arbitration lost...");
// TODO Abort Rx
I2C0_C1 = I2C_C1_IICEN;
I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt
}
if ( status & I2C_S_RXAK )
{
// Slave Address NACK Detected, disable interrupt
erro_print("Slave Address I2C NAK detected...");
// TODO Abort Rx
I2C0_C1 = I2C_C1_IICEN;
}
else
{
dbug_msg("Attempting to read byte - ");
printHex( I2C_RxBuffer.sequencePos );
print( NL );
I2C0_C1 = I2C_RxBuffer.sequencePos == 1
? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read
: I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read
}
}
else
{
/*
dbug_msg("STOP - ");
printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) );
print(NL);
*/
// Delay around STOP to make sure it actually happens...
delayMicroseconds( 1 );
I2C0_C1 = I2C_C1_IICEN; // Send STOP
delayMicroseconds( 7 );
// If there is another sequence, start sending
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size )
{
// Clear status flags
I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
// Wait...till the master dies
while ( I2C0_S & I2C_S_BUSY );
// Enable I2C interrupt
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
// Transmit byte
I2C0_D = I2C_TxBufferPop();
}
}
}
// Master Mode Receive
else
{
// XXX Do we need to handle 2nd last byte?
//I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv
// Last byte
if ( I2C_TxBuffer.sequencePos <= 1 )
{
// Change to Tx mode
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
// Grab last byte
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
delayMicroseconds( 1 ); // Should be enough time before issuing the stop
I2C0_C1 = I2C_C1_IICEN; // Send STOP
}
else
{
// Retrieve data
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
}
}
I2C0_S = I2C_S_IICIF; // Clear interrupt
sei(); // Re-enable Interrupts
}
// ----- Functions -----
inline void I2C_setup()
{
// Enable I2C internal clock
SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0
// External pull-up resistor
PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
// SCL Frequency Divider
// 1.8 MBaud (likely higher than spec)
// 0x85 -> 36 MHz / (4 * 5) = 1.8 MBaud
// 0x80 => mul(4)
// 0x05 => ICL(5)
I2C0_F = 0x85;
I2C0_FLT = 4;
I2C0_C1 = I2C_C1_IICEN;
I2C0_C2 = I2C_C2_HDRS; // High drive select
// Enable I2C Interrupt
NVIC_ENABLE_IRQ( IRQ_I2C0 );
}
void LED_zeroPages( uint8_t addr, uint8_t startPage, uint8_t numPages, uint8_t startReg, uint8_t endReg )
{
// Page Setup
uint8_t pageSetup[] = { addr, 0xFD, 0x00 };
// Max length of a page + chip id + reg start
uint8_t fullPage[ 0xB4 + 2 ] = { 0 }; // Max size of page
fullPage[0] = addr; // Set chip id
fullPage[1] = startReg; // Set start reg
// Iterate through given pages, zero'ing out the given register regions
for ( uint8_t page = startPage; page < startPage + numPages; page++ )
{
// Set page
pageSetup[2] = page;
// Setup page
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
delay(1);
// Zero out page
while ( I2C_Send( fullPage, endReg - startReg + 2, 0 ) == 0 )
delay(1);
}
}
void LED_sendPage( uint8_t addr, uint8_t *buffer, uint8_t len, uint8_t page )
{
// Page Setup
uint8_t pageSetup[] = { addr, 0xFD, page };
// Setup page
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
delay(1);
// Write page to I2C Tx Buffer
while ( I2C_Send( buffer, len, 0 ) == 0 )
delay(1);
}
// Write address
void LED_writeReg( uint8_t addr, uint8_t reg, uint8_t val, uint8_t page )
{
// Page Setup
uint8_t pageSetup[] = { addr, 0xFD, page };
// Reg Write Setup
uint8_t writeData[] = { addr, reg, val };
// Setup page
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
delay(1);
// Write register
while ( I2C_Send( writeData, sizeof( writeData ), 0 ) == 0 )
delay(1);
}
// Read address
void LED_readReg( uint8_t addr, uint8_t reg, uint8_t page )
{
// Software shutdown must be enabled to read registers
LED_writeReg( addr, 0x0A, 0x00, 0x0B );
// Page Setup
uint8_t pageSetup[] = { addr, 0xFD, page };
// Setup page
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
delay(1);
// Register Setup
uint8_t regSetup[] = { addr, reg };
// Configure register
while ( I2C_Send( regSetup, sizeof( regSetup ), 0 ) == 0 )
delay(1);
// Register Read Command
uint8_t regReadCmd[] = { addr | 0x1 };
// Request single register byte
while ( I2C_Send( regReadCmd, sizeof( regReadCmd ), 1 ) == 0 )
delay(1);
// TODO get byte from buffer
// Disable software shutdown
LED_writeReg( addr, 0x0A, 0x01, 0x0B );
}
// Setup
inline void LED_setup()
{
// Register Scan CLI dictionary
CLI_registerDictionary( ledCLIDict, ledCLIDictName );
// Initialize I2C
I2C_setup();
// Setup LED_pageBuffer addresses and brightness section
LED_pageBuffer[0].i2c_addr = ISSI_Ch1;
LED_pageBuffer[0].reg_addr = 0x24;
#if ISSI_Chips_define >= 2
LED_pageBuffer[1].i2c_addr = ISSI_Ch2;
LED_pageBuffer[1].reg_addr = 0x24;
#endif
#if ISSI_Chips_define >= 3
LED_pageBuffer[2].i2c_addr = ISSI_Ch3;
LED_pageBuffer[2].reg_addr = 0x24;
#endif
#if ISSI_Chips_define >= 4
LED_pageBuffer[3].i2c_addr = ISSI_Ch4;
LED_pageBuffer[3].reg_addr = 0x24;
#endif
// Zero out Frame Registers
// This needs to be done before disabling the hardware shutdown (or the leds will do undefined things)
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_zeroPages( addr, 0x0B, 1, 0x00, 0x0C ); // Control Registers
}
// Disable Hardware shutdown of ISSI chip (pull high)
GPIOB_PDDR |= (1<<16);
PORTB_PCR16 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOB_PSOR |= (1<<16);
// Clear LED Pages
// Enable LEDs based upon mask
// Set default brightness
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_zeroPages( addr, 0x00, 8, 0x00, 0xB4 ); // LED Registers
LED_sendPage( addr, (uint8_t*)&LED_ledEnableMask[ ch ], sizeof( LED_EnableBuffer ), 0 );
LED_sendPage( addr, (uint8_t*)&LED_defaultBrightness[ ch ], sizeof( LED_Buffer ), 0 );
}
// Disable Software shutdown of ISSI chip
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_writeReg( addr, 0x0A, 0x01, 0x0B );
}
}
inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer )
{
uint8_t reTurn = 0;
// If sendLen is greater than buffer fail right away
if ( sendLen > buffer->size )
return 0;
// Calculate new tail to determine if buffer has enough space
// The first element specifies the expected number of bytes from the slave (+1)
// The second element in the new buffer is the length of the buffer sequence (+1)
uint16_t newTail = buffer->tail + sendLen + 2;
if ( newTail >= buffer->size )
newTail -= buffer->size;
if ( I2C_BufferLen( buffer ) < sendLen + 2 )
return 0;
/*
print("|");
printHex( sendLen + 2 );
print("|");
printHex( *tail );
print("@");
printHex( newTail );
print("@");
*/
// If buffer is clean, return 1, otherwise 2
reTurn = buffer->head == buffer->tail ? 1 : 2;
// Add to buffer, already know there is enough room (simplifies adding logic)
uint8_t bufferHeaderPos = 0;
for ( uint16_t c = 0; c < sendLen; c++ )
{
// Add data to buffer
switch ( bufferHeaderPos )
{
case 0:
buffer->buffer[ buffer->tail ] = recvLen;
bufferHeaderPos++;
c--;
break;
case 1:
buffer->buffer[ buffer->tail ] = sendLen;
bufferHeaderPos++;
c--;
break;
default:
buffer->buffer[ buffer->tail ] = data[ c ];
break;
}
// Check for wrap-around case
if ( buffer->tail + 1 >= buffer->size )
{
buffer->tail = 0;
}
// Normal case
else
{
buffer->tail++;
}
}
return reTurn;
}
inline uint16_t I2C_BufferLen( I2C_Buffer *buffer )
{
// Tail >= Head
if ( buffer->tail >= buffer->head )
return buffer->head + buffer->size - buffer->tail;
// Head > Tail
return buffer->head - buffer->tail;
}
void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer )
{
dbug_msg("DATA: ");
printHex( byte );
// Make sure buffer isn't full
if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) )
{
warn_msg("I2C_BufferPush failed, buffer full: ");
printHex( byte );
print( NL );
return;
}
// Check for wrap-around case
if ( buffer->tail + 1 >= buffer->size )
{
buffer->tail = 0;
}
// Normal case
else
{
buffer->tail++;
}
// Add byte to buffer
buffer->buffer[ buffer->tail ] = byte;
}
uint8_t I2C_TxBufferPop()
{
// Return 0xFF if no buffer left (do not rely on this)
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size )
{
erro_msg("No buffer to pop an entry from... ");
printHex( I2C_TxBuffer.head );
print(" ");
printHex( I2C_TxBuffer.tail );
print(" ");
printHex( I2C_TxBuffer.sequencePos );
print(NL);
return 0xFF;
}
// If there is currently no sequence being sent, the first entry in the RingBuffer is the length
if ( I2C_TxBuffer.sequencePos == 0 )
{
I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop
I2C_RxBuffer.sequencePos = I2C_TxBufferPop();
I2C_TxBuffer.sequencePos = I2C_TxBufferPop();
}
uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ];
// Prune head
I2C_TxBuffer.head++;
// Wrap-around case
if ( I2C_TxBuffer.head >= I2C_TxBuffer.size )
I2C_TxBuffer.head = 0;
// Decrement buffer sequence (until next stop will be sent)
I2C_TxBuffer.sequencePos--;
/*
dbug_msg("Popping: ");
printHex( data );
print(" ");
printHex( I2C_TxBuffer.head );
print(" ");
printHex( I2C_TxBuffer.tail );
print(" ");
printHex( I2C_TxBuffer.sequencePos );
print(NL);
*/
return data;
}
uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen )
{
// Check head and tail pointers
// If full, return 0
// If empty, start up I2C Master Tx
// If buffer is non-empty and non-full, just append to the buffer
switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) )
{
// Not enough buffer space...
case 0:
/*
erro_msg("Not enough Tx buffer space... ");
printHex( I2C_TxBuffer.head );
print(":");
printHex( I2C_TxBuffer.tail );
print("+");
printHex( sendLen );
print("|");
printHex( I2C_TxBuffer.size );
print( NL );
*/
return 0;
// Empty buffer, initialize I2C
case 1:
// Clear status flags
I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
// Check to see if we already have control of the bus
if ( I2C0_C1 & I2C_C1_MST )
{
// Already the master (ah yeah), send a repeated start
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
}
// Otherwise, seize control
else
{
// Wait...till the master dies
while ( I2C0_S & I2C_S_BUSY );
// Now we're the master (ah yisss), get ready to send stuffs
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
}
// Enable I2C interrupt
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
// Depending on what type of transfer, the first byte is configured for R or W
I2C0_D = I2C_TxBufferPop();
return 1;
}
// Dirty buffer, I2C already initialized
return 2;
}
// LED State processing loop
inline uint8_t LED_scan()
{
return 0;
}
// ----- Capabilities -----
// Basic LED Control Capability
typedef enum LedControlMode {
// Single LED Modes
LedControlMode_brightness_decrease,
LedControlMode_brightness_increase,
LedControlMode_brightness_set,
// Set all LEDs (index argument not required)
LedControlMode_brightness_decrease_all,
LedControlMode_brightness_increase_all,
LedControlMode_brightness_set_all,
} LedControlMode;
typedef struct LedControl {
LedControlMode mode; // XXX Make sure to adjust the .kll capability if this variable is larger than 8 bits
uint8_t amount;
uint16_t index;
} LedControl;
void LED_control( LedControl *control )
{
// Configure based upon the given mode
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
// TODO Perhaps do gamma adjustment?
switch ( control->mode )
{
case LedControlMode_brightness_decrease:
// Don't worry about rolling over, the cycle is quick
LED_pageBuffer[ ch ].buffer[ control->index ] -= control->amount;
break;
case LedControlMode_brightness_increase:
// Don't worry about rolling over, the cycle is quick
LED_pageBuffer[ ch ].buffer[ control->index ] += control->amount;
break;
case LedControlMode_brightness_set:
LED_pageBuffer[ ch ].buffer[ control->index ] = control->amount;
break;
case LedControlMode_brightness_decrease_all:
for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ )
{
// Don't worry about rolling over, the cycle is quick
LED_pageBuffer[ ch ].buffer[ channel ] -= control->amount;
}
break;
case LedControlMode_brightness_increase_all:
for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ )
{
// Don't worry about rolling over, the cycle is quick
LED_pageBuffer[ ch ].buffer[ channel ] += control->amount;
}
break;
case LedControlMode_brightness_set_all:
for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ )
{
LED_pageBuffer[ ch ].buffer[ channel ] = control->amount;
}
break;
}
}
// Sync LED buffer with ISSI chip buffer
// TODO Support multiple frames
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
LED_sendPage( LED_pageBuffer[ ch ].i2c_addr, (uint8_t*)&LED_pageBuffer[ ch ], sizeof( LED_Buffer ), 0 );
}
}
uint8_t LED_control_timer = 0;
void LED_control_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("LED_control_capability(mode,amount,index)");
return;
}
// Only use capability on press
// TODO Analog
if ( stateType == 0x00 && state == 0x03 ) // Not on release
return;
// XXX
// ISSI Chip locks up if we spam updates too quickly (might be an I2C bug on this side too -HaaTa)
// Make sure we only send an update every 30 milliseconds at most
// It may be possible to optimize speed even further, but will likely require serious time with a logic analyzer
uint8_t currentTime = (uint8_t)systick_millis_count;
int8_t compare = (int8_t)(currentTime - LED_control_timer) & 0x7F;
if ( compare < 30 )
{
return;
}
LED_control_timer = currentTime;
// Set the input structure
LedControl *control = (LedControl*)args;
// Interconnect broadcasting
#if defined(ConnectEnabled_define)
uint8_t send_packet = 0;
uint8_t ignore_node = 0;
// By default send to the *next* node, which will determine where to go next
extern uint8_t Connect_id; // connect_scan.c
uint8_t addr = Connect_id + 1;
switch ( control->mode )
{
// Calculate the led address to send
// If greater than the Total hannels
// Set address - Total channels
// Otherwise, ignore
case LedControlMode_brightness_decrease:
case LedControlMode_brightness_increase:
case LedControlMode_brightness_set:
// Ignore if led is on this node
if ( control->index < LED_TotalChannels )
break;
// Calculate new led index
control->index -= LED_TotalChannels;
ignore_node = 1;
send_packet = 1;
break;
// Broadcast to all nodes
// XXX Do not set broadcasting address
// Will send command twice
case LedControlMode_brightness_decrease_all:
case LedControlMode_brightness_increase_all:
case LedControlMode_brightness_set_all:
send_packet = 1;
break;
}
// Only send interconnect remote capability packet if necessary
if ( send_packet )
{
// generatedKeymap.h
extern const Capability CapabilitiesList[];
// Broadcast layerStackExact remote capability (0xFF is the broadcast id)
Connect_send_RemoteCapability(
addr,
LED_control_capability_index,
state,
stateType,
CapabilitiesList[ LED_control_capability_index ].argCount,
args
);
}
// If there is nothing to do on this node, ignore
if ( ignore_node )
return;
#endif
// Modify led state of this node
LED_control( control );
}
// ----- CLI Command Functions -----
// TODO Currently not working correctly
void cliFunc_i2cSend( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Buffer used after interpretting the args, will be sent to I2C functions
// NOTE: Limited to 8 bytes currently (can be increased if necessary
#define i2cSend_BuffLenMax 8
uint8_t buffer[ i2cSend_BuffLenMax ];
uint8_t bufferLen = 0;
// No \r\n by default after the command is entered
print( NL );
info_msg("Sending: ");
// Parse args until a \0 is found
while ( bufferLen < i2cSend_BuffLenMax )
{
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// If | is found, end sequence and start new one
if ( *arg1Ptr == '|' )
{
print("| ");
I2C_Send( buffer, bufferLen, 0 );
bufferLen = 0;
continue;
}
// Interpret the argument
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
// Print out the arg
dPrint( arg1Ptr );
print(" ");
}
print( NL );
I2C_Send( buffer, bufferLen, 0 );
}
void cliFunc_i2cRecv( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Buffer used after interpretting the args, will be sent to I2C functions
// NOTE: Limited to 8 bytes currently (can be increased if necessary
#define i2cSend_BuffLenMax 8
uint8_t buffer[ i2cSend_BuffLenMax ];
uint8_t bufferLen = 0;
// No \r\n by default after the command is entered
print( NL );
info_msg("Sending: ");
// Parse args until a \0 is found
while ( bufferLen < i2cSend_BuffLenMax )
{
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// If | is found, end sequence and start new one
if ( *arg1Ptr == '|' )
{
print("| ");
I2C_Send( buffer, bufferLen, 0 );
bufferLen = 0;
continue;
}
// Interpret the argument
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
// Print out the arg
dPrint( arg1Ptr );
print(" ");
}
print( NL );
I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip
}
// TODO Currently not working correctly
void cliFunc_ledRPage( char* args )
{
/* TODO Use readReg command instead
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// Default to 0 if no argument is given
uint8_t page = 0;
if ( arg1Ptr[0] != '\0' )
{
page = (uint8_t)numToInt( arg1Ptr );
}
// No \r\n by default after the command is entered
print( NL );
// TODO, multi-channel
LED_readPage( ISSI_Ch1, 0xB4, page );
*/
}
void cliFunc_ledWPage( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// First specify the write address
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
uint8_t addr = numToInt( arg1Ptr );
// Next process page and starting address
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
uint8_t page[] = { addr, 0xFD, numToInt( arg1Ptr ) };
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
uint8_t data[] = { addr, numToInt( arg1Ptr ), 0 };
// Set the register page
while ( I2C_Send( page, sizeof( page ), 0 ) == 0 )
delay(1);
// Process all args
for ( ;; )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
data[2] = numToInt( arg1Ptr );
// Write register location and data to I2C
while ( I2C_Send( data, sizeof( data ), 0 ) == 0 )
delay(1);
// Increment address
data[1]++;
}
}
void cliFunc_ledStart( char* args )
{
print( NL ); // No \r\n by default after the command is entered
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
LED_zeroPages( LED_ledEnableMask[ ch ].i2c_addr, 0x0B, 1, 0x00, 0x0C ); // Control Registers
//LED_zeroPages( 0x00, 8, 0x00, 0xB4 ); // LED Registers
LED_writeReg( LED_ledEnableMask[ ch ].i2c_addr, 0x0A, 0x01, 0x0B );
LED_sendPage( LED_ledEnableMask[ ch ].i2c_addr, (uint8_t*)&LED_ledEnableMask[ ch ], sizeof( LED_EnableBuffer ), 0 );
}
}
void cliFunc_ledTest( char* args )
{
print( NL ); // No \r\n by default after the command is entered
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
LED_sendPage( LED_defaultBrightness[ ch ].i2c_addr, (uint8_t*)&LED_defaultBrightness[ ch ], sizeof( LED_Buffer ), 0 );
}
}
void cliFunc_ledZero( char* args )
{
print( NL ); // No \r\n by default after the command is entered
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
LED_zeroPages( LED_defaultBrightness[ ch ].i2c_addr, 0x00, 8, 0x24, 0xB4 ); // Only PWMs
}
}
void cliFunc_ledCtrl( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
LedControl control;
// First process mode
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
control.mode = numToInt( arg1Ptr );
// Next process amount
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
control.amount = numToInt( arg1Ptr );
// Finally process led index, if it exists
// Default to 0
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
control.index = *arg1Ptr == '\0' ? 0 : numToInt( arg1Ptr );
// Process request
LED_control( &control );
}