# -*- coding: utf-8 -*- # Copyright (c) 2008/2013 Andrey Vlasovskikh # Small Python 3 modifications by Jacob Alexander 2014 # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """A recurisve descent parser library based on functional combinators. Basic combinators are taken from Harrison's book ["Introduction to Functional Programming"][1] and translated from ML into Python. See also [a Russian translation of the book][2]. [1]: http://www.cl.cam.ac.uk/teaching/Lectures/funprog-jrh-1996/ [2]: http://code.google.com/p/funprog-ru/ A parser `p` is represented by a function of type: p :: Sequence(a), State -> (b, State) that takes as its input a sequence of tokens of arbitrary type `a` and a current parsing state and return a pair of a parsed token of arbitrary type `b` and the new parsing state. The parsing state includes the current position in the sequence being parsed and the position of the rightmost token that has been consumed while parsing. Parser functions are wrapped into an object of the class `Parser`. This class implements custom operators `+` for sequential composition of parsers, `|` for choice composition, `>>` for transforming the result of parsing. The method `Parser.parse` provides an easier way for invoking a parser hiding details related to a parser state: Parser.parse :: Parser(a, b), Sequence(a) -> b Altough this module is able to deal with a sequences of any kind of objects, the recommended way of using it is applying a parser to a `Sequence(Token)`. `Token` objects are produced by a regexp-based tokenizer defined in `funcparserlib.lexer`. By using it this way you get more readable parsing error messages (as `Token` objects contain their position in the source file) and good separation of lexical and syntactic levels of the grammar. See examples for more info. Debug messages are emitted via a `logging.Logger` object named `"funcparserlib"`. """ __all__ = [ 'some', 'a', 'many', 'pure', 'finished', 'maybe', 'skip', 'oneplus', 'forward_decl', 'NoParseError', ] import logging log = logging.getLogger('funcparserlib') debug = False class Parser(object): """A wrapper around a parser function that defines some operators for parser composition. """ def __init__(self, p): """Wraps a parser function p into an object.""" self.define(p) def named(self, name): """Specifies the name of the parser for more readable parsing log.""" self.name = name return self def define(self, p): """Defines a parser wrapped into this object.""" f = getattr(p, 'run', p) if debug: setattr(self, '_run', f) else: setattr(self, 'run', f) self.named(getattr(p, 'name', p.__doc__)) def run(self, tokens, s): """Sequence(a), State -> (b, State) Runs a parser wrapped into this object. """ if debug: log.debug('trying %s' % self.name) return self._run(tokens, s) def _run(self, tokens, s): raise NotImplementedError('you must define() a parser') def parse(self, tokens): """Sequence(a) -> b Applies the parser to a sequence of tokens producing a parsing result. It provides a way to invoke a parser hiding details related to the parser state. Also it makes error messages more readable by specifying the position of the rightmost token that has been reached. """ try: (tree, _) = self.run(tokens, State()) return tree except NoParseError as e: max = e.state.max if len(tokens) > max: tok = tokens[max] else: tok = '' raise NoParseError('%s: %s' % (e.msg, tok), e.state) def __add__(self, other): """Parser(a, b), Parser(a, c) -> Parser(a, _Tuple(b, c)) A sequential composition of parsers. NOTE: The real type of the parsed value isn't always such as specified. Here we use dynamic typing for ignoring the tokens that are of no interest to the user. Also we merge parsing results into a single _Tuple unless the user explicitely prevents it. See also skip and >> combinators. """ def magic(v1, v2): vs = [v for v in [v1, v2] if not isinstance(v, _Ignored)] if len(vs) == 1: return vs[0] elif len(vs) == 2: if isinstance(vs[0], _Tuple): return _Tuple(v1 + (v2,)) else: return _Tuple(vs) else: return _Ignored(()) @Parser def _add(tokens, s): (v1, s2) = self.run(tokens, s) (v2, s3) = other.run(tokens, s2) return magic(v1, v2), s3 # or in terms of bind and pure: # _add = self.bind(lambda x: other.bind(lambda y: pure(magic(x, y)))) _add.name = '(%s , %s)' % (self.name, other.name) return _add def __or__(self, other): """Parser(a, b), Parser(a, c) -> Parser(a, b or c) A choice composition of two parsers. NOTE: Here we are not providing the exact type of the result. In a statically typed langage something like Either b c could be used. See also + combinator. """ @Parser def _or(tokens, s): try: return self.run(tokens, s) except NoParseError as e: return other.run(tokens, State(s.pos, e.state.max)) _or.name = '(%s | %s)' % (self.name, other.name) return _or def __rshift__(self, f): """Parser(a, b), (b -> c) -> Parser(a, c) Given a function from b to c, transforms a parser of b into a parser of c. It is useful for transorming a parser value into another value for making it a part of a parse tree or an AST. This combinator may be thought of as a functor from b -> c to Parser(a, b) -> Parser(a, c). """ @Parser def _shift(tokens, s): (v, s2) = self.run(tokens, s) return f(v), s2 # or in terms of bind and pure: # _shift = self.bind(lambda x: pure(f(x))) _shift.name = '(%s)' % (self.name,) return _shift def bind(self, f): """Parser(a, b), (b -> Parser(a, c)) -> Parser(a, c) NOTE: A monadic bind function. It is used internally to implement other combinators. Functions bind and pure make the Parser a Monad. """ @Parser def _bind(tokens, s): (v, s2) = self.run(tokens, s) return f(v).run(tokens, s2) _bind.name = '(%s >>=)' % (self.name,) return _bind class State(object): """A parsing state that is maintained basically for error reporting. It consists of the current position pos in the sequence being parsed and the position max of the rightmost token that has been consumed while parsing. """ def __init__(self, pos=0, max=0): self.pos = pos self.max = max def __str__(self): return unicode((self.pos, self.max)) def __repr__(self): return 'State(%r, %r)' % (self.pos, self.max) class NoParseError(Exception): def __init__(self, msg='', state=None): self.msg = msg self.state = state def __str__(self): return self.msg class _Tuple(tuple): pass class _Ignored(object): def __init__(self, value): self.value = value def __repr__(self): return '_Ignored(%s)' % repr(self.value) @Parser def finished(tokens, s): """Parser(a, None) Throws an exception if any tokens are left in the input unparsed. """ if s.pos >= len(tokens): return None, s else: raise NoParseError('should have reached ', s) finished.name = 'finished' def many(p): """Parser(a, b) -> Parser(a, [b]) Returns a parser that infinitely applies the parser p to the input sequence of tokens while it successfully parsers them. The resulting parser returns a list of parsed values. """ @Parser def _many(tokens, s): """Iterative implementation preventing the stack overflow.""" res = [] try: while True: (v, s) = p.run(tokens, s) res.append(v) except NoParseError as e: return res, State(s.pos, e.state.max) _many.name = '{ %s }' % p.name return _many def some(pred): """(a -> bool) -> Parser(a, a) Returns a parser that parses a token if it satisfies a predicate pred. """ @Parser def _some(tokens, s): if s.pos >= len(tokens): raise NoParseError('no tokens left in the stream', s) else: t = tokens[s.pos] if pred(t): pos = s.pos + 1 s2 = State(pos, max(pos, s.max)) if debug: log.debug('*matched* "%s", new state = %s' % (t, s2)) return t, s2 else: if debug: log.debug('failed "%s", state = %s' % (t, s)) raise NoParseError('got unexpected token', s) _some.name = '(some)' return _some def a(value): """Eq(a) -> Parser(a, a) Returns a parser that parses a token that is equal to the value value. """ name = getattr(value, 'name', value) return some(lambda t: t == value).named('(a "%s")' % (name,)) def pure(x): @Parser def _pure(_, s): return x, s _pure.name = '(pure %r)' % (x,) return _pure def maybe(p): """Parser(a, b) -> Parser(a, b or None) Returns a parser that retuns None if parsing fails. NOTE: In a statically typed language, the type Maybe b could be more approprieate. """ return (p | pure(None)).named('[ %s ]' % (p.name,)) def skip(p): """Parser(a, b) -> Parser(a, _Ignored(b)) Returns a parser which results are ignored by the combinator +. It is useful for throwing away elements of concrete syntax (e. g. ",", ";"). """ return p >> _Ignored def oneplus(p): """Parser(a, b) -> Parser(a, [b]) Returns a parser that applies the parser p one or more times. """ q = p + many(p) >> (lambda x: [x[0]] + x[1]) return q.named('(%s , { %s })' % (p.name, p.name)) def with_forward_decls(suspension): """(None -> Parser(a, b)) -> Parser(a, b) Returns a parser that computes itself lazily as a result of the suspension provided. It is needed when some parsers contain forward references to parsers defined later and such references are cyclic. See examples for more details. """ @Parser def f(tokens, s): return suspension().run(tokens, s) return f def forward_decl(): """None -> Parser(?, ?) Returns an undefined parser that can be used as a forward declaration. You will be able to define() it when all the parsers it depends on are available. """ @Parser def f(tokens, s): raise NotImplementedError('you must define() a forward_decl somewhere') return f if __name__ == '__main__': import doctest doctest.testmod()