Arquivado
1
0
Este repositório está arquivado. Você pode visualizar arquivos e cloná-lo, mas não pode fazer push, abrir issues ou pull requests.
kll/kll_lib/containers.py
Jacob Alexander f610d0fb15 KLL Compiler Re-Write
This was many months of efforts in re-designing how the KLL compiler should work.
The major problem with the original compiler was how difficult it was to extend language wise.
This lead to many delays in KLL 0.4 and 0.5 being implemented.

The new design is a multi-staged compiler, where even tokenization occurs over multiple stages.
This allows individual parsing and token regexes to be expressed more simply without affect other expressions.

Another area of change is the concept of Contexts.
In the original KLL compiler the idea of a cache assigned was "hacked" on when I realized the language was "broken" (after nearly finishing the compiler).
Since assignment order is generally considered not to matter for keymappings, I created a "cached" assignment where the whole file is read into a sub-datastructure, then apply to the master datastructure.
Unfortunately, this wasn't really all that clear, so it was annoying to work with.
To remedy this, I created KLL Contexts, which contain information about a group of expressions.
Not only can these groups can be merged with other Contexts, they have historical data about how they were generated allowing for errors very late in processing to be pin-pointed back to the offending kll file.

Backends work nearly the same as they did before.
However, all call-backs for capability evaluations have been removed.
This makes the interface much cleaner as Contexts can only be symbolically merged now.
(Previously datastructures did evaluation merges where the ScanCode or Capability was looked up right before passing to the backend, but this required additional information from the backend).

Many of the old parsing and tokenization rules have been reused, along with the hid_dict.py code.

The new design takes advantage of processor pools to handle multithreading where it makes sense.
For example, all specified files are loaded into ram simulatenously rather than sparingly reading from.
The reason for this is so that each Context always has all the information it requires at all times.

kll
- Program entry point (previously kll.py)
- Very small now, does some setting up of command-line args
- Most command-line args are specified by the corresponding processing stage

common/channel.py
- Pixel Channel container classes

common/context.py
- Context container classes
- As is usual with other files, blank classes inherit a base class
- These blank classes are identified by the class name itself to handle special behaviour
- And if/when necessary functions are re-implemented
- MergeConext class facilitates merging of contexts while maintaining lineage

common/expression.py
- Expression container classes
  * Expression base class
  * AssignmentExpression
  * NameAssociationExpression
  * DataAssociationExpression
  * MapExpression
- These classes are used to store expressions after they have finished parsing and tokenization

common/file.py
- Container class for files being read by the KLL compiler

common/emitter.py
- Base class for all KLL emitters
- TextEmitter for dealing with text file templates

common/hid_dict.py
- Slightly modified version of kll_lib/hid_dict.py

common/id.py
- Identification container classes
- Used to indentify different types of elements used within the KLL language

common/modifier.py
- Container classes for animation and pixel change functions

common/organization.py
- Data structure merging container classes
- Contains all the sub-datastructure classes as well
- The Organization class handles the merge orchestration and expression insertion

common/parse.py
- Parsing rules for funcparserlib
- Much of this file was taken from the original kll.py
- Many changes to support the multi-stage processing and support KLL 0.5

common/position.py
- Container class dealing with physical positions

common/schedule.py
- Container class dealing with scheduling and timing events

common/stage.py
- Contains ControlStage and main Stage classes
  * CompilerConfigurationStage
  * FileImportStage
  * PreprocessorStage
  * OperationClassificationStage
  * OperationSpecificsStage
  * OperationOrganizationStage
  * DataOrganziationStage
  * DataFinalizationStage
  * DataAnalysisStage
  * CodeGenerationStage
  * ReportGenerationStage
- Each of these classes controls the life-cycle of each stage
- If multi-threading is desired, it must be handled within the class
  * The next stage will not start until the current stage is finished
- Errors are handled such that as many errors as possible are recorded before forcing an exit
  * The exit is handled at the end of each stage if necessary
- Command-line arguments for each stage can be defined if necessary (they are given their own grouping)
- Each stage can pull variables and functions from other stages if necessary using a name lookup
  * This means you don't have to worry about over-arching datastructures

emitters/emitters.py
- Container class for KLL emitters
- Handles emitter setup and selection

emitters/kiibohd/kiibohd.py
- kiibohd .h file KLL emitter
- Re-uses some backend code from the original KLL compiler

funcparserlib/parser.py
- Added debug mode control

examples/assignment.kll
examples/defaultMapExample.kll
examples/example.kll
examples/hhkbpro2.kll
examples/leds.kll
examples/mapping.kll
examples/simple1.kll
examples/simple2.kll
examples/simpleExample.kll
examples/state_scheduling.kll
- Updating/Adding rules for new compiler and KLL 0.4 + KLL 0.5 support
2016-09-01 23:48:13 -07:00

464 linhas
15 KiB
Python

#!/usr/bin/env python3
# KLL Compiler Containers
#
# Copyright (C) 2014-2016 by Jacob Alexander
#
# This file is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This file is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this file. If not, see <http://www.gnu.org/licenses/>.
### Imports ###
import copy
### Decorators ###
## Print Decorator Variables
ERROR = '\033[5;1;31mERROR\033[0m:'
### Parsing ###
## Containers
class ScanCode:
# Container for ScanCodes
#
# scancode - Non-interconnect adjusted scan code
# interconnect_id - Unique id for the interconnect node
def __init__( self, scancode, interconnect_id ):
self.scancode = scancode
self.interconnect_id = interconnect_id
def __eq__( self, other ):
return self.dict() == other.dict()
def __repr__( self ):
return repr( self.dict() )
def dict( self ):
return {
'ScanCode' : self.scancode,
'Id' : self.interconnect_id,
}
# Calculate the actual scancode using the offset list
def offset( self, offsetList ):
if self.interconnect_id > 0:
return self.scancode + offsetList[ self.interconnect_id - 1 ]
else:
return self.scancode
class ScanCodeStore:
# Unique lookup for ScanCodes
def __init__( self ):
self.scancodes = []
def __getitem__( self, name ):
# First check if this is a ScanCode object
if isinstance( name, ScanCode ):
# Do a reverse lookup
for idx, scancode in enumerate( self.scancodes ):
if scancode == name:
return idx
# Could not find scancode
return None
# Return scancode using unique id
return self.scancodes[ name ]
# Attempt add ScanCode to list, return unique id
def append( self, new_scancode ):
# Iterate through list to make sure this is a unique ScanCode
for idx, scancode in enumerate( self.scancodes ):
if new_scancode == scancode:
return idx
# Unique entry, add to the list
self.scancodes.append( new_scancode )
return len( self.scancodes ) - 1
class Capabilities:
# Container for capabilities dictionary and convenience functions
def __init__( self ):
self.capabilities = dict()
def __getitem__( self, name ):
return self.capabilities[ name ]
def __setitem__( self, name, contents ):
self.capabilities[ name ] = contents
def __repr__( self ):
return "Capabilities => {0}\nIndexed Capabilities => {1}".format( self.capabilities, sorted( self.capabilities, key = self.capabilities.get ) )
# Total bytes needed to store arguments
def totalArgBytes( self, name ):
totalBytes = 0
# Iterate over the arguments, summing the total bytes
for arg in self.capabilities[ name ][ 1 ]:
totalBytes += int( arg[ 1 ] )
return totalBytes
# Name of the capability function
def funcName( self, name ):
return self.capabilities[ name ][ 0 ]
# Only valid while dictionary keys are not added/removed
def getIndex( self, name ):
return sorted( self.capabilities, key = self.capabilities.get ).index( name )
def getName( self, index ):
return sorted( self.capabilities, key = self.capabilities.get )[ index ]
def keys( self ):
return sorted( self.capabilities, key = self.capabilities.get )
class Macros:
# Container for Trigger Macro : Result Macro correlation
# Layer selection for generating TriggerLists
#
# Only convert USB Code list once all the ResultMacros have been accumulated (does a macro reduction; not reversible)
# Two staged list for ResultMacros:
# 1) USB Code/Non-converted (may contain capabilities)
# 2) Capabilities
def __init__( self ):
# Default layer (0)
self.layer = 0
# Unique ScanCode Hash Id Lookup
self.scanCodeStore = ScanCodeStore()
# Macro Storage
self.macros = [ dict() ]
# Base Layout Storage
self.baseLayout = None
self.layerLayoutMarkers = []
# Correlated Macro Data
self.resultsIndex = dict()
self.triggersIndex = dict()
self.resultsIndexSorted = []
self.triggersIndexSorted = []
self.triggerList = []
self.maxScanCode = []
self.firstScanCode = []
self.interconnectOffset = []
# USBCode Assignment Cache
self.assignmentCache = []
def __repr__( self ):
return "{0}".format( self.macros )
def completeBaseLayout( self ):
# Copy base layout for later use when creating partial layers and add marker
self.baseLayout = copy.deepcopy( self.macros[ 0 ] )
self.layerLayoutMarkers.append( copy.deepcopy( self.baseLayout ) ) # Not used for default layer, just simplifies coding
def removeUnmarked( self ):
# Remove all of the unmarked mappings from the partial layer
for trigger in self.layerLayoutMarkers[ self.layer ].keys():
del self.macros[ self.layer ][ trigger ]
def addLayer( self ):
# Increment layer count, and append another macros dictionary
self.layer += 1
self.macros.append( copy.deepcopy( self.baseLayout ) )
# Add a layout marker for each layer
self.layerLayoutMarkers.append( copy.deepcopy( self.baseLayout ) )
# Use for ScanCode trigger macros
def appendScanCode( self, trigger, result ):
if not trigger in self.macros[ self.layer ]:
self.replaceScanCode( trigger, result )
else:
self.macros[ self.layer ][ trigger ].append( result )
# Remove the given trigger/result pair
def removeScanCode( self, trigger, result ):
# Remove all instances of the given trigger/result pair
while result in self.macros[ self.layer ][ trigger ]:
self.macros[ self.layer ][ trigger ].remove( result )
# Replaces the given trigger with the given result
# If multiple results for a given trigger, clear, then add
def replaceScanCode( self, trigger, result ):
self.macros[ self.layer ][ trigger ] = [ result ]
# Mark layer scan code, so it won't be removed later
# Also check to see if it hasn't already been removed before
if not self.baseLayout is None and trigger in self.layerLayoutMarkers[ self.layer ]:
del self.layerLayoutMarkers[ self.layer ][ trigger ]
# Return a list of ScanCode triggers with the given USB Code trigger
def lookupUSBCodes( self, usbCode ):
scanCodeList = []
# Scan current layer for USB Codes
for macro in self.macros[ self.layer ].keys():
if usbCode in self.macros[ self.layer ][ macro ]:
scanCodeList.append( macro )
if len(scanCodeList) == 0:
if len(usbCode) > 1 or len(usbCode[0]) > 1:
for combo in usbCode:
comboCodes = list()
for key in combo:
scanCode = self.lookupUSBCodes(((key,),))
comboCodes.append(scanCode[0][0][0])
scanCodeList.append(tuple(code for code in comboCodes))
scanCodeList = [tuple(scanCodeList)]
return scanCodeList
# Check whether we should do soft replacement
def softReplaceCheck( self, scanCode ):
# First check if not the default layer
if self.layer == 0:
return True
# Check if current layer is set the same as the BaseMap
if not self.baseLayout is None and scanCode in self.layerLayoutMarkers[ self.layer ]:
return False
# Otherwise, allow replacement
return True
# Cache USBCode Assignment
def cacheAssignment( self, operator, scanCode, result ):
self.assignmentCache.append( [ operator, scanCode, result ] )
# Assign cached USBCode Assignments
def replayCachedAssignments( self ):
# Iterate over each item in the assignment cache
for item in self.assignmentCache:
# Check operator, and choose the specified assignment action
# Append Case
if item[0] == ":+":
self.appendScanCode( item[1], item[2] )
# Remove Case
elif item[0] == ":-":
self.removeScanCode( item[1], item[2] )
# Replace Case
elif item[0] == ":" or item[0] == "::":
self.replaceScanCode( item[1], item[2] )
# Clear assignment cache
self.assignmentCache = []
# Generate/Correlate Layers
def generate( self ):
self.generateIndices()
self.sortIndexLists()
self.generateOffsetTable()
self.generateTriggerLists()
# Generates Index of Results and Triggers
def generateIndices( self ):
# Iterate over every trigger result, and add to the resultsIndex and triggersIndex
for layer in range( 0, len( self.macros ) ):
for trigger in self.macros[ layer ].keys():
# Each trigger has a list of results
for result in self.macros[ layer ][ trigger ]:
# Only add, with an index, if result hasn't been added yet
if not result in self.resultsIndex:
self.resultsIndex[ result ] = len( self.resultsIndex )
# Then add a trigger for each result, if trigger hasn't been added yet
triggerItem = tuple( [ trigger, self.resultsIndex[ result ] ] )
if not triggerItem in self.triggersIndex:
self.triggersIndex[ triggerItem ] = len( self.triggersIndex )
# Sort Index Lists using the indices rather than triggers/results
def sortIndexLists( self ):
self.resultsIndexSorted = [ None ] * len( self.resultsIndex )
# Iterate over the resultsIndex and sort by index
for result in self.resultsIndex.keys():
self.resultsIndexSorted[ self.resultsIndex[ result ] ] = result
self.triggersIndexSorted = [ None ] * len( self.triggersIndex )
# Iterate over the triggersIndex and sort by index
for trigger in self.triggersIndex.keys():
self.triggersIndexSorted[ self.triggersIndex[ trigger ] ] = trigger
# Generates list of offsets for each of the interconnect ids
def generateOffsetTable( self ):
idMaxScanCode = [ 0 ]
# Iterate over each layer to get list of max scancodes associated with each interconnect id
for layer in range( 0, len( self.macros ) ):
# Iterate through each trigger/sequence in the layer
for sequence in self.macros[ layer ].keys():
# Iterate over the trigger to locate the ScanCodes
for combo in sequence:
# Iterate over each scancode id in the combo
for scancode_id in combo:
# Lookup ScanCode
scancode_obj = self.scanCodeStore[ scancode_id ]
# Extend list if not large enough
if scancode_obj.interconnect_id >= len( idMaxScanCode ):
idMaxScanCode.extend( [ 0 ] * ( scancode_obj.interconnect_id - len( idMaxScanCode ) + 1 ) )
# Determine if the max seen id for this interconnect id
if scancode_obj.scancode > idMaxScanCode[ scancode_obj.interconnect_id ]:
idMaxScanCode[ scancode_obj.interconnect_id ] = scancode_obj.scancode
# Generate interconnect offsets
self.interconnectOffset = [ idMaxScanCode[0] + 1 ]
for index in range( 1, len( idMaxScanCode ) ):
self.interconnectOffset.append( self.interconnectOffset[ index - 1 ] + idMaxScanCode[ index ] )
# Generates Trigger Lists per layer using index lists
def generateTriggerLists( self ):
for layer in range( 0, len( self.macros ) ):
# Set max scancode to 0xFF (255)
# But keep track of the actual max scancode and reduce the list size
self.triggerList.append( [ [] ] * 0xFF )
self.maxScanCode.append( 0x00 )
# Iterate through trigger macros to locate necessary ScanCodes and corresponding triggerIndex
for trigger in self.macros[ layer ].keys():
for variant in range( 0, len( self.macros[ layer ][ trigger ] ) ):
# Identify result index
resultIndex = self.resultsIndex[ self.macros[ layer ][ trigger ][ variant ] ]
# Identify trigger index
triggerIndex = self.triggersIndex[ tuple( [ trigger, resultIndex ] ) ]
# Iterate over the trigger to locate the ScanCodes
for sequence in trigger:
for combo_id in sequence:
combo = self.scanCodeStore[ combo_id ].offset( self.interconnectOffset )
# Append triggerIndex for each found scanCode of the Trigger List
# Do not re-add if triggerIndex is already in the Trigger List
if not triggerIndex in self.triggerList[ layer ][ combo ]:
# Append is working strangely with list pre-initialization
# Doing a 0 check replacement instead -HaaTa
if len( self.triggerList[ layer ][ combo ] ) == 0:
self.triggerList[ layer ][ combo ] = [ triggerIndex ]
else:
self.triggerList[ layer ][ combo ].append( triggerIndex )
# Look for max Scan Code
if combo > self.maxScanCode[ layer ]:
self.maxScanCode[ layer ] = combo
# Shrink triggerList to actual max size
self.triggerList[ layer ] = self.triggerList[ layer ][ : self.maxScanCode[ layer ] + 1 ]
# Calculate first scan code for layer, useful for uC implementations trying to save RAM
firstScanCode = 0
for triggerList in range( 0, len( self.triggerList[ layer ] ) ):
firstScanCode = triggerList
# Break if triggerList has items
if len( self.triggerList[ layer ][ triggerList ] ) > 0:
break;
self.firstScanCode.append( firstScanCode )
# Determine overall maxScanCode
self.overallMaxScanCode = 0x00
for maxVal in self.maxScanCode:
if maxVal > self.overallMaxScanCode:
self.overallMaxScanCode = maxVal
class Variables:
# Container for variables
# Stores three sets of variables, the overall combined set, per layer, and per file
def __init__( self ):
# Dictionaries of variables
self.baseLayout = dict()
self.fileVariables = dict()
self.layerVariables = [ dict() ]
self.overallVariables = dict()
self.defines = dict()
self.currentFile = ""
self.currentLayer = 0
self.baseLayoutEnabled = True
def baseLayoutFinished( self ):
self.baseLayoutEnabled = False
def setCurrentFile( self, name ):
# Store using filename and current layer
self.currentFile = name
self.fileVariables[ name ] = dict()
# If still processing BaseLayout
if self.baseLayoutEnabled:
if '*LayerFiles' in self.baseLayout.keys():
self.baseLayout['*LayerFiles'] += [ name ]
else:
self.baseLayout['*LayerFiles'] = [ name ]
# Set for the current layer
else:
if '*LayerFiles' in self.layerVariables[ self.currentLayer ].keys():
self.layerVariables[ self.currentLayer ]['*LayerFiles'] += [ name ]
else:
self.layerVariables[ self.currentLayer ]['*LayerFiles'] = [ name ]
def incrementLayer( self ):
# Store using layer index
self.currentLayer += 1
self.layerVariables.append( dict() )
def assignVariable( self, key, value ):
# Overall set of variables
self.overallVariables[ key ] = value
# The Name variable is a special accumulation case
if key == 'Name':
# BaseLayout still being processed
if self.baseLayoutEnabled:
if '*NameStack' in self.baseLayout.keys():
self.baseLayout['*NameStack'] += [ value ]
else:
self.baseLayout['*NameStack'] = [ value ]
# Layers
else:
if '*NameStack' in self.layerVariables[ self.currentLayer ].keys():
self.layerVariables[ self.currentLayer ]['*NameStack'] += [ value ]
else:
self.layerVariables[ self.currentLayer ]['*NameStack'] = [ value ]
# If still processing BaseLayout
if self.baseLayoutEnabled:
self.baseLayout[ key ] = value
# Set for the current layer
else:
self.layerVariables[ self.currentLayer ][ key ] = value
# File context variables
self.fileVariables[ self.currentFile ][ key ] = value