Arhivēts
1
0
Šis repozitorijs ir arhivēts. Ir iespējams aplūkot tā failus un to konēt, bet nav iespējams iesūtīt izmaiņas, kā arī izveidot jaunas problēmas vai izmaiņu pieprasījumus.
kll/kll.py
Jacob Alexander f610d0fb15 KLL Compiler Re-Write
This was many months of efforts in re-designing how the KLL compiler should work.
The major problem with the original compiler was how difficult it was to extend language wise.
This lead to many delays in KLL 0.4 and 0.5 being implemented.

The new design is a multi-staged compiler, where even tokenization occurs over multiple stages.
This allows individual parsing and token regexes to be expressed more simply without affect other expressions.

Another area of change is the concept of Contexts.
In the original KLL compiler the idea of a cache assigned was "hacked" on when I realized the language was "broken" (after nearly finishing the compiler).
Since assignment order is generally considered not to matter for keymappings, I created a "cached" assignment where the whole file is read into a sub-datastructure, then apply to the master datastructure.
Unfortunately, this wasn't really all that clear, so it was annoying to work with.
To remedy this, I created KLL Contexts, which contain information about a group of expressions.
Not only can these groups can be merged with other Contexts, they have historical data about how they were generated allowing for errors very late in processing to be pin-pointed back to the offending kll file.

Backends work nearly the same as they did before.
However, all call-backs for capability evaluations have been removed.
This makes the interface much cleaner as Contexts can only be symbolically merged now.
(Previously datastructures did evaluation merges where the ScanCode or Capability was looked up right before passing to the backend, but this required additional information from the backend).

Many of the old parsing and tokenization rules have been reused, along with the hid_dict.py code.

The new design takes advantage of processor pools to handle multithreading where it makes sense.
For example, all specified files are loaded into ram simulatenously rather than sparingly reading from.
The reason for this is so that each Context always has all the information it requires at all times.

kll
- Program entry point (previously kll.py)
- Very small now, does some setting up of command-line args
- Most command-line args are specified by the corresponding processing stage

common/channel.py
- Pixel Channel container classes

common/context.py
- Context container classes
- As is usual with other files, blank classes inherit a base class
- These blank classes are identified by the class name itself to handle special behaviour
- And if/when necessary functions are re-implemented
- MergeConext class facilitates merging of contexts while maintaining lineage

common/expression.py
- Expression container classes
  * Expression base class
  * AssignmentExpression
  * NameAssociationExpression
  * DataAssociationExpression
  * MapExpression
- These classes are used to store expressions after they have finished parsing and tokenization

common/file.py
- Container class for files being read by the KLL compiler

common/emitter.py
- Base class for all KLL emitters
- TextEmitter for dealing with text file templates

common/hid_dict.py
- Slightly modified version of kll_lib/hid_dict.py

common/id.py
- Identification container classes
- Used to indentify different types of elements used within the KLL language

common/modifier.py
- Container classes for animation and pixel change functions

common/organization.py
- Data structure merging container classes
- Contains all the sub-datastructure classes as well
- The Organization class handles the merge orchestration and expression insertion

common/parse.py
- Parsing rules for funcparserlib
- Much of this file was taken from the original kll.py
- Many changes to support the multi-stage processing and support KLL 0.5

common/position.py
- Container class dealing with physical positions

common/schedule.py
- Container class dealing with scheduling and timing events

common/stage.py
- Contains ControlStage and main Stage classes
  * CompilerConfigurationStage
  * FileImportStage
  * PreprocessorStage
  * OperationClassificationStage
  * OperationSpecificsStage
  * OperationOrganizationStage
  * DataOrganziationStage
  * DataFinalizationStage
  * DataAnalysisStage
  * CodeGenerationStage
  * ReportGenerationStage
- Each of these classes controls the life-cycle of each stage
- If multi-threading is desired, it must be handled within the class
  * The next stage will not start until the current stage is finished
- Errors are handled such that as many errors as possible are recorded before forcing an exit
  * The exit is handled at the end of each stage if necessary
- Command-line arguments for each stage can be defined if necessary (they are given their own grouping)
- Each stage can pull variables and functions from other stages if necessary using a name lookup
  * This means you don't have to worry about over-arching datastructures

emitters/emitters.py
- Container class for KLL emitters
- Handles emitter setup and selection

emitters/kiibohd/kiibohd.py
- kiibohd .h file KLL emitter
- Re-uses some backend code from the original KLL compiler

funcparserlib/parser.py
- Added debug mode control

examples/assignment.kll
examples/defaultMapExample.kll
examples/example.kll
examples/hhkbpro2.kll
examples/leds.kll
examples/mapping.kll
examples/simple1.kll
examples/simple2.kll
examples/simpleExample.kll
examples/state_scheduling.kll
- Updating/Adding rules for new compiler and KLL 0.4 + KLL 0.5 support
2016-09-01 23:48:13 -07:00

1077 rindas
36 KiB
Python
Izpildāmais fails

#!/usr/bin/env python3
# KLL Compiler
# Keyboard Layout Langauge
#
# Copyright (C) 2014-2016 by Jacob Alexander
#
# This file is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This file is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this file. If not, see <http://www.gnu.org/licenses/>.
### Imports ###
import argparse
import importlib
import io
import os
import re
import sys
import token
from pprint import pformat
from re import VERBOSE
from tokenize import generate_tokens
from kll_lib.containers import *
from kll_lib.hid_dict import *
from funcparserlib.lexer import make_tokenizer, Token, LexerError
from funcparserlib.parser import (some, a, many, oneplus, skip, finished, maybe, skip, forward_decl, NoParseError)
### Decorators ###
## Print Decorator Variables
ERROR = '\033[5;1;31mERROR\033[0m:'
## Python Text Formatting Fixer...
## Because the creators of Python are averse to proper capitalization.
textFormatter_lookup = {
"usage: " : "Usage: ",
"optional arguments" : "Optional Arguments",
}
def textFormatter_gettext( s ):
return textFormatter_lookup.get( s, s )
argparse._ = textFormatter_gettext
### Argument Parsing ###
def checkFileExists( filename ):
if not os.path.isfile( filename ):
print ( "{0} {1} does not exist...".format( ERROR, filename ) )
sys.exit( 1 )
def processCommandLineArgs():
# Setup argument processor
pArgs = argparse.ArgumentParser(
usage="%(prog)s [options] <file1>...",
description="Generates .h file state tables and pointer indices from KLL .kll files.",
epilog="Example: {0} mykeyboard.kll -d colemak.kll -p hhkbpro2.kll -p symbols.kll".format( os.path.basename( sys.argv[0] ) ),
formatter_class=argparse.RawTextHelpFormatter,
add_help=False,
)
# Positional Arguments
pArgs.add_argument( 'files', type=str, nargs='+',
help=argparse.SUPPRESS ) # Suppressed help output, because Python output is verbosely ugly
# Optional Arguments
pArgs.add_argument( '-b', '--backend', type=str, default="kiibohd",
help="Specify target backend for the KLL compiler.\n"
"Default: kiibohd\n"
"Options: kiibohd" )
pArgs.add_argument( '-d', '--default', type=str, nargs='+',
help="Specify .kll files to layer on top of the default map to create a combined map." )
pArgs.add_argument( '-p', '--partial', type=str, nargs='+', action='append',
help="Specify .kll files to generate partial map, multiple files per flag.\n"
"Each -p defines another partial map.\n"
"Base .kll files (that define the scan code maps) must be defined for each partial map." )
pArgs.add_argument( '-t', '--templates', type=str, nargs='+',
help="Specify template used to generate the keymap.\n"
"Default: <backend specific>" )
pArgs.add_argument( '-o', '--outputs', type=str, nargs='+',
help="Specify output file. Writes to current working directory by default.\n"
"Default: <backend specific>" )
pArgs.add_argument( '-h', '--help', action="help",
help="This message." )
# Process Arguments
args = pArgs.parse_args()
# Parameters
baseFiles = args.files
defaultFiles = args.default
partialFileSets = args.partial
if defaultFiles is None:
defaultFiles = []
if partialFileSets is None:
partialFileSets = [[]]
# Check file existance
for filename in baseFiles:
checkFileExists( filename )
for filename in defaultFiles:
checkFileExists( filename )
for partial in partialFileSets:
for filename in partial:
checkFileExists( filename )
return (baseFiles, defaultFiles, partialFileSets, args.backend, args.templates, args.outputs)
### Tokenizer ###
def tokenize( string ):
"""str -> Sequence(Token)"""
# Basic Tokens Spec
specs = [
( 'Comment', ( r' *#.*', ) ),
( 'Space', ( r'[ \t\r\n]+', ) ),
( 'USBCode', ( r'U(("[^"]+")|(0x[0-9a-fA-F]+)|([0-9]+))', ) ),
( 'USBCodeStart', ( r'U\[', ) ),
( 'ConsCode', ( r'CONS(("[^"]+")|(0x[0-9a-fA-F]+)|([0-9]+))', ) ),
( 'ConsCodeStart', ( r'CONS\[', ) ),
( 'SysCode', ( r'SYS(("[^"]+")|(0x[0-9a-fA-F]+)|([0-9]+))', ) ),
( 'SysCodeStart', ( r'SYS\[', ) ),
( 'ScanCode', ( r'S((0x[0-9a-fA-F]+)|([0-9]+))', ) ),
( 'ScanCodeStart', ( r'S\[', ) ),
( 'Indicator', ( r'I(("[^"]+")|(0x[0-9a-fA-F]+)|([0-9]+))', ) ),
( 'IndicatorStart', ( r'I\[', ) ),
( 'Pixel', ( r'P"[^"]+"', ) ),
( 'PixelStart', ( r'P\[', ) ),
( 'PixelLayer', ( r'PL"[^"]+"', ) ),
( 'PixelLayerStart', ( r'PL\[', ) ),
( 'Animation', ( r'A"[^"]+"', ) ),
( 'AnimationStart', ( r'A\[', ) ),
( 'CodeBegin', ( r'\[', ) ),
( 'CodeEnd', ( r'\]', ) ),
( 'Position', ( r'r?[xyz]:[0-9]+(.[0-9]+)?', ) ),
( 'String', ( r'"[^"]*"', ) ),
( 'SequenceString', ( r"'[^']*'", ) ),
( 'PixelOperator', ( r'(\+:|-:|>>|<<)', ) ),
( 'Operator', ( r'=>|<=|:\+|:-|::|:|=', ) ),
( 'Comma', ( r',', ) ),
( 'Dash', ( r'-', ) ),
( 'Plus', ( r'\+', ) ),
( 'Parenthesis', ( r'\(|\)', ) ),
( 'None', ( r'None', ) ),
( 'Timing', ( r'[0-9]+(.[0-9]+)?((s)|(ms)|(us))', ) ),
( 'Number', ( r'-?(0x[0-9a-fA-F]+)|(0|([1-9][0-9]*))', VERBOSE ) ),
( 'Name', ( r'[A-Za-z_][A-Za-z_0-9]*', ) ),
( 'VariableContents', ( r'''[^"' ;:=>()]+''', ) ),
( 'EndOfLine', ( r';', ) ),
]
# Tokens to filter out of the token stream
useless = ['Space', 'Comment']
tokens = make_tokenizer( specs )
return [x for x in tokens( string ) if x.type not in useless]
### Parsing ###
## Map Arrays
macros_map = Macros()
variables_dict = Variables()
capabilities_dict = Capabilities()
## Parsing Functions
class Make:
def scanCode( token ):
scanCode = int( token[1:], 0 )
# Check size, to make sure it's valid
# XXX Add better check that takes symbolic names into account (i.e. U"Latch5")
#if scanCode > 0xFF:
# print ( "{0} ScanCode value {1} is larger than 255".format( ERROR, scanCode ) )
# raise
return scanCode
def hidCode( type, token ):
# If first character is a U or I, strip
if token[0] == "U" or token[0] == "I":
token = token[1:]
# CONS specifier
elif 'CONS' in token:
token = token[4:]
# SYS specifier
elif 'SYS' in token:
token = token[3:]
# If using string representation of USB Code, do lookup, case-insensitive
if '"' in token:
try:
hidCode = kll_hid_lookup_dictionary[ type ][ token[1:-1].upper() ][1]
except LookupError as err:
print ( "{0} {1} is an invalid USB HID Code Lookup...".format( ERROR, err ) )
raise
else:
# Already tokenized
if type == 'USBCode' and token[0] == 'USB' or type == 'SysCode' and token[0] == 'SYS' or type == 'ConsCode' and token[0] == 'CONS':
hidCode = token[1]
# Convert
else:
hidCode = int( token, 0 )
# Check size if a USB Code, to make sure it's valid
# XXX Add better check that takes symbolic names into account (i.e. U"Latch5")
#if type == 'USBCode' and hidCode > 0xFF:
# print ( "{0} USBCode value {1} is larger than 255".format( ERROR, hidCode ) )
# raise
# Return a tuple, identifying which type it is
if type == 'USBCode':
return Make.usbCode_number( hidCode )
elif type == 'ConsCode':
return Make.consCode_number( hidCode )
elif type == 'SysCode':
return Make.sysCode_number( hidCode )
elif type == 'IndCode':
return Make.indCode_number( hidCode )
print ( "{0} Unknown HID Specifier '{1}'".format( ERROR, type ) )
raise
def usbCode( token ):
return Make.hidCode( 'USBCode', token )
def consCode( token ):
return Make.hidCode( 'ConsCode', token )
def sysCode( token ):
return Make.hidCode( 'SysCode', token )
def indCode( token ):
return Make.hidCode( 'IndCode', token )
def animation( token ):
# TODO
print( token )
return "NULL"
def animationCapability( token ):
# TODO
print( token )
return "DIS"
def pixelCapability( token ):
# TODO
print( token )
return "DAT"
def pixel( token ):
# TODO
print( token )
return "PNULL"
def pixelLayer( token ):
# TODO
print( token )
return "PLNULL"
def pixelchans( token ):
# Create dictionary list
channel_widths = []
for elem in token:
channel_widths.append( {
'chan' : elem[0],
'width' : elem[1],
} )
print(channel_widths)
return channel_widths
def pixelchan_elem( token ):
channel_config = {
'pixels' : token[0],
'chans' : token[1],
}
return channel_config
def pixelmods( token ):
# TODO
print( token )
return "PMOD"
def pixellayer( token ):
# TODO
print( token )
return "PL"
def position( token ):
return token.split(':')
def hidCode_number( type, token ):
lookup = {
'ConsCode' : 'CONS',
'SysCode' : 'SYS',
'USBCode' : 'USB',
'IndCode' : 'LED',
}
return ( lookup[ type ], token )
def usbCode_number( token ):
return Make.hidCode_number( 'USBCode', token )
def consCode_number( token ):
return Make.hidCode_number( 'ConsCode', token )
def sysCode_number( token ):
return Make.hidCode_number( 'SysCode', token )
def indCode_number( token ):
return Make.hidCode_number( 'IndCode', token )
# Replace key-word with None specifier (which indicates a noneOut capability)
def none( token ):
return [[[('NONE', 0)]]]
def seqString( token ):
# Shifted Characters, and amount to move by to get non-shifted version
# US ANSI
shiftCharacters = (
( "ABCDEFGHIJKLMNOPQRSTUVWXYZ", 0x20 ),
( "+", 0x12 ),
( "&(", 0x11 ),
( "!#$%", 0x10 ),
( "*", 0x0E ),
( ")", 0x07 ),
( '"', 0x05 ),
( ":", 0x01 ),
( "@", -0x0E ),
( "<>?", -0x10 ),
( "~", -0x1E ),
( "{}|", -0x20 ),
( "^", -0x28 ),
( "_", -0x32 ),
)
listOfLists = []
shiftKey = kll_hid_lookup_dictionary['USBCode']["SHIFT"]
# Creates a list of USB codes from the string: sequence (list) of combos (lists)
for char in token[1:-1]:
processedChar = char
# Whether or not to create a combo for this sequence with a shift
shiftCombo = False
# Depending on the ASCII character, convert to single character or Shift + character
for pair in shiftCharacters:
if char in pair[0]:
shiftCombo = True
processedChar = chr( ord( char ) + pair[1] )
break
# Do KLL HID Lookup on non-shifted character
# NOTE: Case-insensitive, which is why the shift must be pre-computed
usbCode = kll_hid_lookup_dictionary['USBCode'][ processedChar.upper() ]
# Create Combo for this character, add shift key if shifted
charCombo = []
if shiftCombo:
charCombo = [ [ shiftKey ] ]
charCombo.append( [ usbCode ] )
# Add to list of lists
listOfLists.append( charCombo )
return listOfLists
def string( token ):
return token[1:-1]
def unseqString( token ):
return token[1:-1]
def number( token ):
return int( token, 0 )
def timing( token ):
# Find ms, us, or s
if 'ms' in token:
unit = 'ms'
num = token.split('m')[0]
print (token.split('m'))
elif 'us' in token:
unit = 'us'
num = token.split('u')[0]
elif 's' in token:
unit = 's'
num = token.split('s')[0]
else:
print ( "{0} cannot find timing unit in token '{1}'".format( ERROR, token ) )
return "NULL"
print ( num, unit )
ret = {
'time' : float( num ),
'unit' : unit,
}
return ret
def specifierState( values ):
# TODO
print ( values )
return "SPECSTATE"
def specifierAnalog( value ):
# TODO
print( value )
return "SPECANALOG"
def specifierUnroll( value ):
# TODO
print( value )
return [ value[0] ]
# Range can go from high to low or low to high
def scanCode_range( rangeVals ):
start = rangeVals[0]
end = rangeVals[1]
# Swap start, end if start is greater than end
if start > end:
start, end = end, start
# Iterate from start to end, and generate the range
return list( range( start, end + 1 ) )
# Range can go from high to low or low to high
# Warn on 0-9 for USBCodes (as this does not do what one would expect) TODO
# Lookup USB HID tags and convert to a number
def hidCode_range( type, rangeVals ):
# Check if already integers
if isinstance( rangeVals[0], int ):
start = rangeVals[0]
else:
start = Make.hidCode( type, rangeVals[0] )[1]
if isinstance( rangeVals[1], int ):
end = rangeVals[1]
else:
end = Make.hidCode( type, rangeVals[1] )[1]
# Swap start, end if start is greater than end
if start > end:
start, end = end, start
# Iterate from start to end, and generate the range
listRange = list( range( start, end + 1 ) )
# Convert each item in the list to a tuple
for item in range( len( listRange ) ):
listRange[ item ] = Make.hidCode_number( type, listRange[ item ] )
return listRange
def usbCode_range( rangeVals ):
return Make.hidCode_range( 'USBCode', rangeVals )
def sysCode_range( rangeVals ):
return Make.hidCode_range( 'SysCode', rangeVals )
def consCode_range( rangeVals ):
return Make.hidCode_range( 'ConsCode', rangeVals )
def indCode_range( rangeVals ):
return Make.hidCode_range( 'IndCode', rangeVals )
def range( rangeVals ):
# TODO
print (rangeVals)
return ""
## Base Rules
const = lambda x: lambda _: x
unarg = lambda f: lambda x: f(*x)
flatten = lambda list: sum( list, [] )
tokenValue = lambda x: x.value
tokenType = lambda t: some( lambda x: x.type == t ) >> tokenValue
operator = lambda s: a( Token( 'Operator', s ) ) >> tokenValue
parenthesis = lambda s: a( Token( 'Parenthesis', s ) ) >> tokenValue
bracket = lambda s: a( Token( 'Bracket', s ) ) >> tokenValue
eol = a( Token( 'EndOfLine', ';' ) )
def listElem( item ):
return [ item ]
def listToTuple( items ):
return tuple( items )
# Flatten only the top layer (list of lists of ...)
def oneLayerFlatten( items ):
mainList = []
for sublist in items:
for item in sublist:
mainList.append( item )
return mainList
# Capability arguments may need to be expanded (e.g. 1 16 bit argument needs to be 2 8 bit arguments for the state machine)
def capArgExpander( items ):
newArgs = []
# For each defined argument in the capability definition
for arg in range( 0, len( capabilities_dict[ items[0] ][1] ) ):
argLen = capabilities_dict[ items[0] ][1][ arg ][1]
num = items[1][ arg ]
byteForm = num.to_bytes( argLen, byteorder='little' ) # XXX Yes, little endian from how the uC structs work
# For each sub-argument, split into byte-sized chunks
for byte in range( 0, argLen ):
newArgs.append( byteForm[ byte ] )
return tuple( [ items[0], tuple( newArgs ) ] )
# Expand ranges of values in the 3rd dimension of the list, to a list of 2nd lists
# i.e. [ sequence, [ combo, [ range ] ] ] --> [ [ sequence, [ combo ] ], <option 2>, <option 3> ]
def optionExpansion( sequences ):
expandedSequences = []
# Total number of combinations of the sequence of combos that needs to be generated
totalCombinations = 1
# List of leaf lists, with number of leaves
maxLeafList = []
# Traverse to the leaf nodes, and count the items in each leaf list
for sequence in sequences:
for combo in sequence:
rangeLen = len( combo )
totalCombinations *= rangeLen
maxLeafList.append( rangeLen )
# Counter list to keep track of which combination is being generated
curLeafList = [0] * len( maxLeafList )
# Generate a list of permuations of the sequence of combos
for count in range( 0, totalCombinations ):
expandedSequences.append( [] ) # Prepare list for adding the new combination
position = 0
# Traverse sequence of combos to generate permuation
for sequence in sequences:
expandedSequences[ -1 ].append( [] )
for combo in sequence:
expandedSequences[ -1 ][ -1 ].append( combo[ curLeafList[ position ] ] )
position += 1
# Increment combination tracker
for leaf in range( 0, len( curLeafList ) ):
curLeafList[ leaf ] += 1
# Reset this position, increment next position (if it exists), then stop
if curLeafList[ leaf ] >= maxLeafList[ leaf ]:
curLeafList[ leaf ] = 0
if leaf + 1 < len( curLeafList ):
curLeafList[ leaf + 1 ] += 1
return expandedSequences
# Converts USB Codes into Capabilities
# These are tuples (<type>, <integer>)
def hidCodeToCapability( items ):
# Items already converted to variants using optionExpansion
for variant in range( 0, len( items ) ):
# Sequence of Combos
for sequence in range( 0, len( items[ variant ] ) ):
for combo in range( 0, len( items[ variant ][ sequence ] ) ):
if items[ variant ][ sequence ][ combo ][0] in backend.requiredCapabilities.keys():
try:
# Use backend capability name and a single argument
items[ variant ][ sequence ][ combo ] = tuple(
[ backend.capabilityLookup( items[ variant ][ sequence ][ combo ][0] ),
tuple( [ hid_lookup_dictionary[ items[ variant ][ sequence ][ combo ] ] ] ) ]
)
except KeyError:
print ( "{0} {1} is an invalid HID lookup value".format( ERROR, items[ variant ][ sequence ][ combo ] ) )
sys.exit( 1 )
return items
# Convert tuple of tuples to list of lists
def listit( t ):
return list( map( listit, t ) ) if isinstance( t, ( list, tuple ) ) else t
# Convert list of lists to tuple of tuples
def tupleit( t ):
return tuple( map( tupleit, t ) ) if isinstance( t, ( tuple, list ) ) else t
## Evaluation Rules
class Eval:
def scanCode( triggers, operator, results ):
print ( triggers, operator, results )
# Convert to lists of lists of lists to tuples of tuples of tuples
# Tuples are non-mutable, and can be used has index items
triggers = tuple( tuple( tuple( sequence ) for sequence in variant ) for variant in triggers )
results = tuple( tuple( tuple( sequence ) for sequence in variant ) for variant in results )
# Lookup interconnect id (Current file scope)
# Default to 0 if not specified
if 'ConnectId' not in variables_dict.overallVariables.keys():
id_num = 0
else:
id_num = int( variables_dict.overallVariables['ConnectId'] )
# Iterate over all combinations of triggers and results
for sequence in triggers:
# Convert tuple of tuples to list of lists so each element can be modified
trigger = listit( sequence )
# Create ScanCode entries for trigger
for seq_index, combo in enumerate( sequence ):
for com_index, scancode in enumerate( combo ):
trigger[ seq_index ][ com_index ] = macros_map.scanCodeStore.append( ScanCode( scancode, id_num ) )
# Convert back to a tuple of tuples
trigger = tupleit( trigger )
for result in results:
# Append Case
if operator == ":+":
macros_map.appendScanCode( trigger, result )
# Remove Case
elif operator == ":-":
macros_map.removeScanCode( trigger, result )
# Replace Case
# Soft Replace Case is the same for Scan Codes
elif operator == ":" or operator == "::":
macros_map.replaceScanCode( trigger, result )
def usbCode( triggers, operator, results ):
# TODO
return
# Convert to lists of lists of lists to tuples of tuples of tuples
# Tuples are non-mutable, and can be used has index items
triggers = tuple( tuple( tuple( sequence ) for sequence in variant ) for variant in triggers )
results = tuple( tuple( tuple( sequence ) for sequence in variant ) for variant in results )
# Iterate over all combinations of triggers and results
for trigger in triggers:
scanCodes = macros_map.lookupUSBCodes( trigger )
for scanCode in scanCodes:
for result in results:
# Soft Replace needs additional checking to see if replacement is necessary
if operator == "::" and not macros_map.softReplaceCheck( scanCode ):
continue
# Cache assignment until file finishes processing
macros_map.cacheAssignment( operator, scanCode, result )
def variable( name, content ):
# Content might be a concatenation of multiple data types, convert everything into a single string
assigned_content = ""
for item in content:
assigned_content += str( item )
variables_dict.assignVariable( name, assigned_content )
def capability( name, function, args ):
capabilities_dict[ name ] = [ function, args ]
def define( name, cdefine_name ):
variables_dict.defines[ name ] = cdefine_name
def scanCodePosition( scanCode, positions ):
print (scanCode)
# Re-organize position lists into a dictionary first
pos_dict = dict()
for pos in positions:
pos_dict[ pos[0] ] = pos[1]
print (pos_dict)
# TODO Create datastructure for positions
def pixelPosition( pixel, position ):
# TODO
print (pixel, position)
def pixelChannels( channel, scanCode ):
# TODO
print (channel, scanCode )
def animation( animation, modifiers ):
# TODO
print( animation, modifiers )
def animationFrame( animation, frame, modifiers ):
# TODO
print( frame, modifiers )
def animationTrigger( animation, operator, results ):
# TODO
print ( animation, operator, results )
def animationTriggerFrame( animation, frame, operator, results ):
# TODO
print ( animation, frame, operator, results )
def array( name, index, content ):
# TODO
print (name, index, content)
class Map:
scanCode = unarg( Eval.scanCode )
usbCode = unarg( Eval.usbCode )
animationTrigger = unarg( Eval.animationTrigger )
animationTriggerFrame = unarg( Eval.animationTriggerFrame )
class Set:
animation = unarg( Eval.animation )
animationFrame = unarg( Eval.animationFrame )
array = unarg( Eval.array )
capability = unarg( Eval.capability )
define = unarg( Eval.define )
pixelChannels = unarg( Eval.pixelChannels )
pixelPosition = unarg( Eval.pixelPosition )
scanCodePosition = unarg( Eval.scanCodePosition )
variable = unarg( Eval.variable )
## Sub Rules
usbCode = tokenType('USBCode') >> Make.usbCode
scanCode = tokenType('ScanCode') >> Make.scanCode
consCode = tokenType('ConsCode') >> Make.consCode
sysCode = tokenType('SysCode') >> Make.sysCode
indCode = tokenType('Indicator') >> Make.indCode
animation = tokenType('Animation') >> Make.animation
pixel = tokenType('Pixel') >> Make.pixel
pixelLayer = tokenType('PixelLayer') >> Make.pixelLayer
none = tokenType('None') >> Make.none
position = tokenType('Position') >> Make.position
name = tokenType('Name')
number = tokenType('Number') >> Make.number
timing = tokenType('Timing') >> Make.timing
comma = tokenType('Comma')
dash = tokenType('Dash')
plus = tokenType('Plus')
content = tokenType('VariableContents')
string = tokenType('String') >> Make.string
unString = tokenType('String') # When the double quotes are still needed for internal processing
seqString = tokenType('SequenceString') >> Make.seqString
unseqString = tokenType('SequenceString') >> Make.unseqString # For use with variables
pixelOperator = tokenType('PixelOperator')
# Code variants
code_begin = tokenType('CodeBegin')
code_end = tokenType('CodeEnd')
# Specifier
specifier_state = ( name + skip( operator(':') ) + timing ) | ( name + skip( operator(':') ) + timing ) | timing | name >> Make.specifierState
specifier_analog = number >> Make.specifierAnalog
specifier_list = skip( parenthesis('(') ) + many( ( specifier_state | specifier_analog ) + skip( maybe( comma ) ) ) + skip( parenthesis(')') )
# Scan Codes
scanCode_start = tokenType('ScanCodeStart')
scanCode_range = number + skip( dash ) + number >> Make.scanCode_range
scanCode_listElem = number >> listElem
scanCode_specifier = ( scanCode_range | scanCode_listElem ) + maybe( specifier_list ) >> Make.specifierUnroll >> flatten
scanCode_innerList = many( scanCode_specifier + skip( maybe( comma ) ) ) >> flatten
scanCode_expanded = skip( scanCode_start ) + scanCode_innerList + skip( code_end )
scanCode_elem = scanCode + maybe( specifier_list ) >> Make.specifierUnroll >> listElem
scanCode_combo = oneplus( ( scanCode_expanded | scanCode_elem ) + skip( maybe( plus ) ) )
scanCode_sequence = oneplus( scanCode_combo + skip( maybe( comma ) ) )
# Cons Codes
consCode_start = tokenType('ConsCodeStart')
consCode_number = number >> Make.consCode_number
consCode_range = ( consCode_number | unString ) + skip( dash ) + ( number | unString ) >> Make.consCode_range
consCode_listElemTag = unString >> Make.consCode
consCode_listElem = ( consCode_number | consCode_listElemTag ) >> listElem
consCode_specifier = ( consCode_range | consCode_listElem ) + maybe( specifier_list ) >> Make.specifierUnroll >> flatten
consCode_innerList = oneplus( consCode_specifier + skip( maybe( comma ) ) ) >> flatten
consCode_expanded = skip( consCode_start ) + consCode_innerList + skip( code_end )
consCode_elem = consCode + maybe( specifier_list ) >> Make.specifierUnroll >> listElem
# Sys Codes
sysCode_start = tokenType('SysCodeStart')
sysCode_number = number >> Make.sysCode_number
sysCode_range = ( sysCode_number | unString ) + skip( dash ) + ( number | unString ) >> Make.sysCode_range
sysCode_listElemTag = unString >> Make.sysCode
sysCode_listElem = ( sysCode_number | sysCode_listElemTag ) >> listElem
sysCode_specifier = ( sysCode_range | sysCode_listElem ) + maybe( specifier_list ) >> Make.specifierUnroll >> flatten
sysCode_innerList = oneplus( sysCode_specifier + skip( maybe( comma ) ) ) >> flatten
sysCode_expanded = skip( sysCode_start ) + sysCode_innerList + skip( code_end )
sysCode_elem = sysCode + maybe( specifier_list ) >> Make.specifierUnroll >> listElem
# Indicator Codes
indCode_start = tokenType('IndicatorStart')
indCode_number = number >> Make.indCode_number
indCode_range = ( indCode_number | unString ) + skip( dash ) + ( number | unString ) >> Make.indCode_range
indCode_listElemTag = unString >> Make.indCode
indCode_listElem = ( indCode_number | indCode_listElemTag ) >> listElem
indCode_specifier = ( indCode_range | indCode_listElem ) + maybe( specifier_list ) >> Make.specifierUnroll >> flatten
indCode_innerList = oneplus( indCode_specifier + skip( maybe( comma ) ) ) >> flatten
indCode_expanded = skip( indCode_start ) + indCode_innerList + skip( code_end )
indCode_elem = indCode + maybe( specifier_list ) >> Make.specifierUnroll >> listElem
# USB Codes
usbCode_start = tokenType('USBCodeStart')
usbCode_number = number >> Make.usbCode_number
usbCode_range = ( usbCode_number | unString ) + skip( dash ) + ( number | unString ) >> Make.usbCode_range
usbCode_listElemTag = unString >> Make.usbCode
usbCode_listElem = ( usbCode_number | usbCode_listElemTag ) >> listElem
usbCode_specifier = ( usbCode_range | usbCode_listElem ) + maybe( specifier_list ) >> Make.specifierUnroll >> flatten
usbCode_innerList = oneplus( usbCode_specifier + skip( maybe( comma ) ) ) >> flatten
usbCode_expanded = skip( usbCode_start ) + usbCode_innerList + skip( code_end )
usbCode_elem = usbCode + maybe( specifier_list ) >> Make.specifierUnroll >> listElem
# HID Codes
hidCode_elem = usbCode_expanded | usbCode_elem | sysCode_expanded | sysCode_elem | consCode_expanded | consCode_elem | indCode_expanded | indCode_elem
usbCode_combo = oneplus( hidCode_elem + skip( maybe( plus ) ) ) >> listElem
usbCode_sequence = oneplus( ( usbCode_combo | seqString ) + skip( maybe( comma ) ) ) >> oneLayerFlatten
# Pixels
pixel_start = tokenType('PixelStart')
pixel_number = number
pixel_range = ( pixel_number ) + skip( dash ) + ( number ) >> Make.range
pixel_listElem = pixel_number >> listElem
pixel_innerList = many( ( pixel_range | pixel_listElem ) + skip( maybe( comma ) ) )
pixel_expanded = skip( pixel_start ) + pixel_innerList + skip( code_end )
pixel_elem = pixel >> listElem
# Pixel Layer
pixellayer_start = tokenType('PixelLayerStart')
pixellayer_number = number
pixellayer_expanded = skip( pixellayer_start ) + pixellayer_number + skip( code_end )
pixellayer_elem = pixelLayer >> listElem
# Pixel Channels
pixelchan_chans = many( number + skip( operator(':') ) + number + skip( maybe( comma ) ) ) >> Make.pixelchans
pixelchan_elem = ( pixel_expanded | pixel_elem ) + skip( parenthesis('(') ) + pixelchan_chans + skip( parenthesis(')') ) >> Make.pixelchan_elem
# Pixel Mods
pixelmod_mods = many( maybe( pixelOperator | plus | dash ) + number + skip( maybe( comma ) ) ) >> Make.pixelmods
pixelmod_layer = ( pixellayer_expanded | pixellayer_elem ) >> Make.pixellayer
pixelmod_elem = ( pixel_expanded | pixel_elem | pixelmod_layer ) + skip( parenthesis('(') ) + pixelmod_mods + skip( parenthesis(')') )
# Pixel Capability
pixel_capability = pixelmod_elem >> Make.pixelCapability
# Animations
animation_start = tokenType('AnimationStart')
animation_name = name
animation_frame_range = ( number ) + skip( dash ) + ( number ) >> Make.range
animation_name_frame = many( ( number | animation_frame_range ) + skip( maybe( comma ) ) )
animation_def = skip( animation_start ) + animation_name + skip( code_end )
animation_expanded = skip( animation_start ) + animation_name + skip( comma ) + animation_name_frame + skip( code_end )
animation_elem = animation >> listElem
# Animation Modifier
animation_modifier = many( ( name | number ) + maybe( skip( operator(':') ) + number ) + skip( maybe( comma ) ) )
# Animation Capability
animation_capability = ( animation_def | animation_elem ) + maybe( skip( parenthesis('(') + animation_modifier + skip( parenthesis(')') ) ) ) >> Make.animationCapability
# Capabilities
capFunc_arguments = many( number + skip( maybe( comma ) ) ) >> listToTuple
capFunc_elem = name + skip( parenthesis('(') ) + capFunc_arguments + skip( parenthesis(')') ) >> capArgExpander >> listElem
capFunc_combo = oneplus( ( hidCode_elem | capFunc_elem | animation_capability | pixel_capability ) + skip( maybe( plus ) ) ) >> listElem
capFunc_sequence = oneplus( ( capFunc_combo | seqString ) + skip( maybe( comma ) ) ) >> oneLayerFlatten
# Trigger / Result Codes
triggerCode_outerList = scanCode_sequence >> optionExpansion
triggerUSBCode_outerList = usbCode_sequence >> optionExpansion >> hidCodeToCapability
resultCode_outerList = ( ( capFunc_sequence >> optionExpansion ) | none ) >> hidCodeToCapability
# Positions
position_list = oneplus( position + skip( maybe( comma ) ) )
## Main Rules
#| Assignment
#| <variable> = <variable contents>;
variable_contents = name | content | string | number | comma | dash | unseqString
variable_expression = name + skip( operator('=') ) + oneplus( variable_contents ) + skip( eol ) >> Set.variable
#| Array Assignment
#| <variable>[] = <space> <separated> <list>;
#| <variable>[<index>] = <index element>;
array_expression = name + skip( code_begin ) + maybe( number ) + skip( code_end ) + skip( operator('=') ) + oneplus( variable_contents ) + skip( eol ) >> Set.array
#| Name Association
#| <capability name> => <c function>;
capability_arguments = name + skip( operator(':') ) + number + skip( maybe( comma ) )
capability_expression = name + skip( operator('=>') ) + name + skip( parenthesis('(') ) + many( capability_arguments ) + skip( parenthesis(')') ) + skip( eol ) >> Set.capability
#| Name Association
#| <define name> => <c define>;
define_expression = name + skip( operator('=>') ) + name + skip( eol ) >> Set.define
#| Data Association
#| <animation> <= <modifiers>;
#| <animation frame> <= <modifiers>;
animation_expression = ( animation_elem | animation_def ) + skip( operator('<=') ) + animation_modifier + skip( eol ) >> Set.animation
animationFrame_expression = animation_expanded + skip( operator('<=') ) + many( pixelmod_elem + skip( maybe( comma ) ) ) + skip( eol ) >> Set.animationFrame
#| Data Association
#| <pixel> <= <position>;
pixelPosition_expression = ( pixel_expanded | pixel_elem ) + skip( operator('<=') ) + position_list + skip( eol ) >> Set.pixelPosition
#| Data Association
#| <pixel chan> <= <scanCode>;
pixelChan_expression = pixelchan_elem + skip( operator(':') ) + ( scanCode_expanded | scanCode_elem | none ) + skip( eol ) >> Set.pixelChannels
#| Data Association
#| <scancode> <= <position>;
scanCodePosition_expression = triggerCode_outerList + skip( operator('<=') ) + position_list + skip( eol ) >> Set.scanCodePosition
#| Mapping
#| <trigger> : <result>;
operatorTriggerResult = operator(':') | operator(':+') | operator(':-') | operator('::')
scanCode_expression = triggerCode_outerList + operatorTriggerResult + resultCode_outerList + skip( eol ) >> Map.scanCode
usbCode_expression = triggerUSBCode_outerList + operatorTriggerResult + resultCode_outerList + skip( eol ) >> Map.usbCode
animation_trigger = ( animation_elem | animation_def ) + operatorTriggerResult + resultCode_outerList + skip( eol ) >> Map.animationTrigger
animation_triggerFrame = animation_expanded + operatorTriggerResult + resultCode_outerList + skip( eol ) >> Map.animationTriggerFrame
def parse( tokenSequence ):
"""Sequence(Token) -> object"""
# Top-level Parser
expression = (
scanCode_expression |
scanCodePosition_expression |
usbCode_expression |
animation_trigger |
animation_triggerFrame |
pixelPosition_expression |
pixelChan_expression |
animation_expression |
animationFrame_expression |
array_expression |
variable_expression |
capability_expression |
define_expression
)
kll_text = many( expression )
kll_file = maybe( kll_text ) + skip( finished )
return kll_file.parse( tokenSequence )
def processKLLFile( filename ):
with open( filename ) as file:
data = file.read()
try:
tokenSequence = tokenize( data )
except LexerError as err:
print ( "{0} Tokenization error in '{1}' - {2}".format( ERROR, filename, err ) )
sys.exit( 1 )
#print ( pformat( tokenSequence ) ) # Display tokenization
try:
tree = parse( tokenSequence )
except (NoParseError, KeyError) as err:
print ( "{0} Parsing error in '{1}' - {2}".format( ERROR, filename, err ) )
sys.exit( 1 )
### Misc Utility Functions ###
def gitRevision( kllPath ):
import subprocess
# Change the path to where kll.py is
origPath = os.getcwd()
os.chdir( kllPath )
# Just in case git can't be found
try:
# Get hash of the latest git commit
revision = subprocess.check_output( ['git', 'rev-parse', 'HEAD'] ).decode()[:-1]
# Get list of files that have changed since the commit
changed = subprocess.check_output( ['git', 'diff-index', '--name-only', 'HEAD', '--'] ).decode().splitlines()
except:
revision = "<no git>"
changed = []
# Change back to the old working directory
os.chdir( origPath )
return revision, changed
### Main Entry Point ###
if __name__ == '__main__':
(baseFiles, defaultFiles, partialFileSets, backend_name, templates, outputs) = processCommandLineArgs()
# Look up git information on the compiler
gitRev, gitChanges = gitRevision( os.path.dirname( os.path.realpath( __file__ ) ) )
# Load backend module
global backend
backend_import = importlib.import_module( "backends.{0}".format( backend_name ) )
backend = backend_import.Backend( templates )
# Process base layout files
for filename in baseFiles:
variables_dict.setCurrentFile( filename )
processKLLFile( filename )
macros_map.completeBaseLayout() # Indicates to macros_map that the base layout is complete
variables_dict.baseLayoutFinished()
# Default combined layer
for filename in defaultFiles:
variables_dict.setCurrentFile( filename )
processKLLFile( filename )
# Apply assignment cache, see 5.1.2 USB Codes for why this is necessary
macros_map.replayCachedAssignments()
# Iterate through additional layers
for partial in partialFileSets:
# Increment layer for each -p option
macros_map.addLayer()
variables_dict.incrementLayer() # DefaultLayer is layer 0
# Iterate and process each of the file in the layer
for filename in partial:
variables_dict.setCurrentFile( filename )
processKLLFile( filename )
# Apply assignment cache, see 5.1.2 USB Codes for why this is necessary
macros_map.replayCachedAssignments()
# Remove un-marked keys to complete the partial layer
macros_map.removeUnmarked()
# Do macro correlation and transformation
macros_map.generate()
# Process needed templating variables using backend
backend.process(
capabilities_dict,
macros_map,
variables_dict,
gitRev,
gitChanges
)
# Generate output file using template and backend
backend.generate( outputs )
# Successful Execution
sys.exit( 0 )