tmk_keyboard/tmk_core/tool/mbed/mbed-sdk/libraries/USBDevice/USBDevice/USBHAL_STM32F4.cpp

411 line
12 KiB
C++

/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#if defined(TARGET_STM32F4)
#include "USBHAL.h"
#include "USBRegs_STM32.h"
#include "pinmap.h"
USBHAL * USBHAL::instance;
static volatile int epComplete = 0;
static uint32_t bufferEnd = 0;
static const uint32_t rxFifoSize = 512;
static uint32_t rxFifoCount = 0;
static uint32_t setupBuffer[MAX_PACKET_SIZE_EP0 >> 2];
uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
return 0;
}
USBHAL::USBHAL(void) {
NVIC_DisableIRQ(OTG_FS_IRQn);
epCallback[0] = &USBHAL::EP1_OUT_callback;
epCallback[1] = &USBHAL::EP1_IN_callback;
epCallback[2] = &USBHAL::EP2_OUT_callback;
epCallback[3] = &USBHAL::EP2_IN_callback;
epCallback[4] = &USBHAL::EP3_OUT_callback;
epCallback[5] = &USBHAL::EP3_IN_callback;
// Enable power and clocking
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN;
#if defined(TARGET_STM32F407VG) || defined(TARGET_STM32F401RE) || defined(TARGET_STM32F411RE)
pin_function(PA_8, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF10_OTG_FS));
pin_function(PA_9, STM_PIN_DATA(STM_MODE_INPUT, GPIO_PULLDOWN, GPIO_AF10_OTG_FS));
pin_function(PA_10, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_PULLUP, GPIO_AF10_OTG_FS));
pin_function(PA_11, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF10_OTG_FS));
pin_function(PA_12, STM_PIN_DATA(STM_MODE_AF_PP, GPIO_NOPULL, GPIO_AF10_OTG_FS));
#else
pin_function(PA_8, STM_PIN_DATA(2, 10));
pin_function(PA_9, STM_PIN_DATA(0, 0));
pin_function(PA_10, STM_PIN_DATA(2, 10));
pin_function(PA_11, STM_PIN_DATA(2, 10));
pin_function(PA_12, STM_PIN_DATA(2, 10));
// Set ID pin to open drain with pull-up resistor
pin_mode(PA_10, OpenDrain);
GPIOA->PUPDR &= ~(0x3 << 20);
GPIOA->PUPDR |= 1 << 20;
// Set VBUS pin to open drain
pin_mode(PA_9, OpenDrain);
#endif
RCC->AHB2ENR |= RCC_AHB2ENR_OTGFSEN;
// Enable interrupts
OTG_FS->GREGS.GAHBCFG |= (1 << 0);
// Turnaround time to maximum value - too small causes packet loss
OTG_FS->GREGS.GUSBCFG |= (0xF << 10);
// Unmask global interrupts
OTG_FS->GREGS.GINTMSK |= (1 << 3) | // SOF
(1 << 4) | // RX FIFO not empty
(1 << 12); // USB reset
OTG_FS->DREGS.DCFG |= (0x3 << 0) | // Full speed
(1 << 2); // Non-zero-length status OUT handshake
OTG_FS->GREGS.GCCFG |= (1 << 19) | // Enable VBUS sensing
(1 << 16); // Power Up
instance = this;
NVIC_SetVector(OTG_FS_IRQn, (uint32_t)&_usbisr);
NVIC_SetPriority(OTG_FS_IRQn, 1);
}
USBHAL::~USBHAL(void) {
}
void USBHAL::connect(void) {
NVIC_EnableIRQ(OTG_FS_IRQn);
}
void USBHAL::disconnect(void) {
NVIC_DisableIRQ(OTG_FS_IRQn);
}
void USBHAL::configureDevice(void) {
// Not needed
}
void USBHAL::unconfigureDevice(void) {
// Not needed
}
void USBHAL::setAddress(uint8_t address) {
OTG_FS->DREGS.DCFG |= (address << 4);
EP0write(0, 0);
}
bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket,
uint32_t flags) {
uint32_t epIndex = endpoint >> 1;
uint32_t type;
switch (endpoint) {
case EP0IN:
case EP0OUT:
type = 0;
break;
case EPISO_IN:
case EPISO_OUT:
type = 1;
case EPBULK_IN:
case EPBULK_OUT:
type = 2;
break;
case EPINT_IN:
case EPINT_OUT:
type = 3;
break;
}
// Generic in or out EP controls
uint32_t control = (maxPacket << 0) | // Packet size
(1 << 15) | // Active endpoint
(type << 18); // Endpoint type
if (endpoint & 0x1) { // In Endpoint
// Set up the Tx FIFO
if (endpoint == EP0IN) {
OTG_FS->GREGS.DIEPTXF0_HNPTXFSIZ = ((maxPacket >> 2) << 16) |
(bufferEnd << 0);
}
else {
OTG_FS->GREGS.DIEPTXF[epIndex - 1] = ((maxPacket >> 2) << 16) |
(bufferEnd << 0);
}
bufferEnd += maxPacket >> 2;
// Set the In EP specific control settings
if (endpoint != EP0IN) {
control |= (1 << 28); // SD0PID
}
control |= (epIndex << 22) | // TxFIFO index
(1 << 27); // SNAK
OTG_FS->INEP_REGS[epIndex].DIEPCTL = control;
// Unmask the interrupt
OTG_FS->DREGS.DAINTMSK |= (1 << epIndex);
}
else { // Out endpoint
// Set the out EP specific control settings
control |= (1 << 26); // CNAK
OTG_FS->OUTEP_REGS[epIndex].DOEPCTL = control;
// Unmask the interrupt
OTG_FS->DREGS.DAINTMSK |= (1 << (epIndex + 16));
}
return true;
}
// read setup packet
void USBHAL::EP0setup(uint8_t *buffer) {
memcpy(buffer, setupBuffer, MAX_PACKET_SIZE_EP0);
}
void USBHAL::EP0readStage(void) {
}
void USBHAL::EP0read(void) {
}
uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
uint32_t* buffer32 = (uint32_t *) buffer;
uint32_t length = rxFifoCount;
for (uint32_t i = 0; i < length; i += 4) {
buffer32[i >> 2] = OTG_FS->FIFO[0][0];
}
rxFifoCount = 0;
return length;
}
void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
endpointWrite(0, buffer, size);
}
void USBHAL::EP0getWriteResult(void) {
}
void USBHAL::EP0stall(void) {
// If we stall the out endpoint here then we have problems transferring
// and setup requests after the (stalled) get device qualifier requests.
// TODO: Find out if this is correct behavior, or whether we are doing
// something else wrong
stallEndpoint(EP0IN);
// stallEndpoint(EP0OUT);
}
EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
uint32_t epIndex = endpoint >> 1;
uint32_t size = (1 << 19) | // 1 packet
(maximumSize << 0); // Packet size
// if (endpoint == EP0OUT) {
size |= (1 << 29); // 1 setup packet
// }
OTG_FS->OUTEP_REGS[epIndex].DOEPTSIZ = size;
OTG_FS->OUTEP_REGS[epIndex].DOEPCTL |= (1 << 31) | // Enable endpoint
(1 << 26); // Clear NAK
epComplete &= ~(1 << endpoint);
return EP_PENDING;
}
EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
if (!(epComplete & (1 << endpoint))) {
return EP_PENDING;
}
uint32_t* buffer32 = (uint32_t *) buffer;
uint32_t length = rxFifoCount;
for (uint32_t i = 0; i < length; i += 4) {
buffer32[i >> 2] = OTG_FS->FIFO[endpoint >> 1][0];
}
rxFifoCount = 0;
*bytesRead = length;
return EP_COMPLETED;
}
EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
uint32_t epIndex = endpoint >> 1;
OTG_FS->INEP_REGS[epIndex].DIEPTSIZ = (1 << 19) | // 1 packet
(size << 0); // Size of packet
OTG_FS->INEP_REGS[epIndex].DIEPCTL |= (1 << 31) | // Enable endpoint
(1 << 26); // CNAK
OTG_FS->DREGS.DIEPEMPMSK = (1 << epIndex);
while ((OTG_FS->INEP_REGS[epIndex].DTXFSTS & 0XFFFF) < ((size + 3) >> 2));
for (uint32_t i=0; i<(size + 3) >> 2; i++, data+=4) {
OTG_FS->FIFO[epIndex][0] = *(uint32_t *)data;
}
epComplete &= ~(1 << endpoint);
return EP_PENDING;
}
EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
if (epComplete & (1 << endpoint)) {
epComplete &= ~(1 << endpoint);
return EP_COMPLETED;
}
return EP_PENDING;
}
void USBHAL::stallEndpoint(uint8_t endpoint) {
if (endpoint & 0x1) { // In EP
OTG_FS->INEP_REGS[endpoint >> 1].DIEPCTL |= (1 << 30) | // Disable
(1 << 21); // Stall
}
else { // Out EP
OTG_FS->DREGS.DCTL |= (1 << 9); // Set global out NAK
OTG_FS->OUTEP_REGS[endpoint >> 1].DOEPCTL |= (1 << 30) | // Disable
(1 << 21); // Stall
}
}
void USBHAL::unstallEndpoint(uint8_t endpoint) {
}
bool USBHAL::getEndpointStallState(uint8_t endpoint) {
return false;
}
void USBHAL::remoteWakeup(void) {
}
void USBHAL::_usbisr(void) {
instance->usbisr();
}
void USBHAL::usbisr(void) {
if (OTG_FS->GREGS.GINTSTS & (1 << 12)) { // USB Reset
// Set SNAK bits
OTG_FS->OUTEP_REGS[0].DOEPCTL |= (1 << 27);
OTG_FS->OUTEP_REGS[1].DOEPCTL |= (1 << 27);
OTG_FS->OUTEP_REGS[2].DOEPCTL |= (1 << 27);
OTG_FS->OUTEP_REGS[3].DOEPCTL |= (1 << 27);
OTG_FS->DREGS.DIEPMSK = (1 << 0);
bufferEnd = 0;
// Set the receive FIFO size
OTG_FS->GREGS.GRXFSIZ = rxFifoSize >> 2;
bufferEnd += rxFifoSize >> 2;
// Create the endpoints, and wait for setup packets on out EP0
realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0);
OTG_FS->GREGS.GINTSTS = (1 << 12);
}
if (OTG_FS->GREGS.GINTSTS & (1 << 4)) { // RX FIFO not empty
uint32_t status = OTG_FS->GREGS.GRXSTSP;
uint32_t endpoint = (status & 0xF) << 1;
uint32_t length = (status >> 4) & 0x7FF;
uint32_t type = (status >> 17) & 0xF;
rxFifoCount = length;
if (type == 0x6) {
// Setup packet
for (uint32_t i=0; i<length; i+=4) {
setupBuffer[i >> 2] = OTG_FS->FIFO[0][i >> 2];
}
rxFifoCount = 0;
}
if (type == 0x4) {
// Setup complete
EP0setupCallback();
endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0);
}
if (type == 0x2) {
// Out packet
if (endpoint == EP0OUT) {
EP0out();
}
else {
epComplete |= (1 << endpoint);
if ((instance->*(epCallback[endpoint - 2]))()) {
epComplete &= (1 << endpoint);
}
}
}
for (uint32_t i=0; i<rxFifoCount; i+=4) {
(void) OTG_FS->FIFO[0][0];
}
OTG_FS->GREGS.GINTSTS = (1 << 4);
}
if (OTG_FS->GREGS.GINTSTS & (1 << 18)) { // In endpoint interrupt
// Loop through the in endpoints
for (uint32_t i=0; i<4; i++) {
if (OTG_FS->DREGS.DAINT & (1 << i)) { // Interrupt is on endpoint
if (OTG_FS->INEP_REGS[i].DIEPINT & (1 << 7)) {// Tx FIFO empty
// If the Tx FIFO is empty on EP0 we need to send a further
// packet, so call EP0in()
if (i == 0) {
EP0in();
}
// Clear the interrupt
OTG_FS->INEP_REGS[i].DIEPINT = (1 << 7);
// Stop firing Tx empty interrupts
// Will get turned on again if another write is called
OTG_FS->DREGS.DIEPEMPMSK &= ~(1 << i);
}
// If the transfer is complete
if (OTG_FS->INEP_REGS[i].DIEPINT & (1 << 0)) { // Tx Complete
epComplete |= (1 << (1 + (i << 1)));
OTG_FS->INEP_REGS[i].DIEPINT = (1 << 0);
}
}
}
OTG_FS->GREGS.GINTSTS = (1 << 18);
}
if (OTG_FS->GREGS.GINTSTS & (1 << 3)) { // Start of frame
SOF((OTG_FS->GREGS.GRXSTSR >> 17) & 0xF);
OTG_FS->GREGS.GINTSTS = (1 << 3);
}
}
#endif